*The Ideal Gas Law

Bx Shawn P. Shhieldse, Ph. B.

*Becall: Characteristics of Gases

*Gases do not have a fixed volume nor a fixed shape.
*Gases are described in terms of four macroscopic observables:
*Pressure
*Temperature
*Volume
*Moles of gas
*Becall: Characteristics of Gases
*The early gas laws described these macroscopic observables or characteristics relative to each other, but none of them put all of the "observables" together in one equation.
*Boyle's law related the pressure and volume of a gas at fixed T and n.
*Charles's law related the temperature and volume of a gas at a fixed P and n.

* Avogadro's law says one mole of any gas at STP ($0^{\circ} \mathrm{C}$ and 1 atm) will take up a volume of 22.4 L .

*Ideal-Gas Law

So, let's continue developing the reasoning for the Ideal Gas Law!
-
Boyle's Law says the pressure of a gas is inversely related to its volume.

$$
(V \propto 1 / P)
$$

Charles's Law determined that the temperature of a gas and its volume or directly proportional.

$$
(V \propto T)
$$

Avogadro's Law demonstrated that the volume of a gas is directly proportional to the number of moles of the gas. $(V \propto n)$

*Ideal-Gas Law

Combining all three laws, we get

$$
V \propto \frac{n T}{P}
$$

But, we need a "proportionality constant" to be able to use our relationship for calculating V, n, P, or T !

*Ideal-Gas Law

The gas constant, R, represents this proportionality.

$$
\mathrm{R}=0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}
$$

**For the gas laws, we will only use this one.
Be sure to convert V, T, and P into these units!**

*Ideal-Gas Law

- Using R, we now have

$$
\begin{gathered}
V=R \frac{n T}{P} \quad \text { Or............... } \\
P V=n R T \\
\text { Aka "PiV-NeRT" }
\end{gathered}
$$

NOTE: You do not need to be able to derive the IG equation.

*Example: The Ideal-Gas Law

When solid calcium carbonate $\left(\mathrm{CaCO}_{3}\right.$ is heated, it decomposes into solid calcium oxide (CaO) and carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$ according to the reaction given below. A small sample of CaCO_{3} is heated, and the carbon dioxide that evolves is collected in a $125-\mathrm{mL}$ flask. The gas collected in the flask has a pressure of 1.95 atm at a temperature of $45{ }^{\circ} \mathrm{C}$. How many moles of CO_{2} gas were produced?

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

* Example: The Ideal-Gas Law (Solution)

When solid calcium carbonate $\left(\mathrm{CaCO}_{3}\right.$ is heated, it decomposes into solid calcium oxide (CaO) and carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$. A small sample of CaCO_{3} is heated, and the carbon dioxide that evolves is collected in a $125-\mathrm{mL}$ flask. The gas collected in the flask has a pressure of 1.95 atm at a temperature of $45^{\circ} \mathrm{C}$. How many moles of CO_{2} gas were produced?

First, let's look at what we are given in the problem: $V=125 \mathrm{~mL}, \mathrm{P}=1.95 \mathrm{~atm}, \mathrm{~T}=45{ }^{\circ} \mathrm{C}$

What are we looking for? The moles (n) of gas.
We need an equation that relates P, V, n, and T.
Use the Ideal Gas Law for this problem!

When solid calcium carbonate $\left(\mathrm{CaCO}_{3}\right.$ is heated, it decomposes into solid calcium oxide (CaO) and carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$. A small sample of CaCO_{3} is heated, and the carbon dioxide that evolves is collected in a $125-\mathrm{mL}$ flask. The gas collected in the flask has a pressure of 1.95 atm at a temperature of $45^{\circ} \mathrm{C}$. How many moles of CO_{2} gas were produced?

Let's convert all of our "givens" into the correct units for the Ideal Gas Law:

T needs to be in K: $45+273=318 \mathrm{~K}$
V needs to be in L : $125 m L\left(\frac{1 L}{1000 m L}\right)=0.125 L$
P should be in atm (and it already is).

*Example: The Ideal-Gas Law (Solution)

Calcium carbonate, $\mathrm{CaCO}_{3}(s)$, the principal compound in limestone, decomposes upon heating to $\mathrm{CaO}(s)$ and $\mathrm{CO}_{2}(g)$. A sample of CaCO_{3} is decomposed, and the carbon dioxide is collected in a 250-mL flask. After decomposition is complete, the gas has a pressure of 1.3 atm at a temperature of $31^{\circ} \mathrm{C}$. How many moles of CO_{2} gas were generated?

$$
\text { Use } P V=n R T
$$

Rearrange the equation to solve for moles (n) of gas. Then plug everything into the equation.

$$
\mathbf{P V}=\mathbf{n R T}
$$

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.95 \mathrm{~atm})(0.125 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}\right)(318 \mathrm{~K})}
$$

*Example: The Ideal-Gas Law (Solution)

Calcium carbonate, $\mathrm{CaCO}_{3}(s)$, the principal compound in limestone, decomposes upon heating to $\mathrm{CaO}(s)$ and $\mathrm{CO}_{2}(g)$. A sample of CaCO_{3} is decomposed, and the carbon dioxide is collected in a $250-\mathrm{mL}$ flask. After decomposition is complete, the gas has a pressure of 1.3 atm at a temperature of $31^{\circ} \mathrm{C}$. How many moles of CO_{2} gas were generated?

Cancel the units to make sure that we get moles, then calculate.

$$
\mathbf{P V}=\mathbf{n R T}
$$

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.95 \mathrm{~atm})(0.125 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~K} \text { atm }}{\mathrm{molK}}\right)(318 \mathrm{~K})}=0.0093 \mathrm{moles} \mathrm{CO}_{2} \text { gas }
$$

