Standard Enthalpies of Formation and Calculating Enthalpy of Reaction ($\Delta H_{\rm rxn}^0$)

By Shawn P. Shields, Ph.D.

Standard Enthalpy of Formation (ΔH_f^0)

Standard Enthalpies of formation (ΔH_f^0) are defined as the enthalpy change for the formation of one mole of a given compound from its constituent elements in their standard states.

Standard Enthalpy of Formation (ΔH_f^0)

Examples:

$$\frac{1}{2}N_2(g) + O_2(g) \rightarrow NO_2(g)$$

$$\Delta H_f^0 = 33.18 \, \text{kJ/mol}$$

$$Ca(s) + \frac{1}{2}O_2(g) \rightarrow CaO(s)$$

$$\Delta H_f^0 = -634.9 \, \text{kJ/mol}$$

$$C_{\text{(graphite)}} + 2Br_2(I) \rightarrow CBr_4(s)$$
 $\Delta H_f^0 =$

$$\Delta H_f^0 = 29.4 \, {\rm kJ/mol}$$

Standard Enthalpy of Formation (ΔH_f^0)

Standard Enthalpies of formation (ΔH_f^0) are tabulated at 298 K (usually) and 1 atm.

They are compiled in huge tables of thermodynamic quantities.

Examples of Standard Enthalpies of Formation (ΔH_f^0) in a Table

An example is given below.

Substance		$\Delta H_{\rm f}^{\circ}$ (kJ/mol)	$\Delta G_{\rm f}^{\circ}$ (kJ/mol)	S° (J/mol K)
Aluminum:	1			
Al(s)		0.0	0.0	28.3
Al(g)		330.0	289.4	164.6
AlCl₃(s)		-704.2	-628.8	109.3
Al ₂ O ₃ (s)		-1675.7	-1582.3	50.9

Here is the column that provides ΔH_f^0 values (in kJ/mol).

Standard Enthalpies of Formation (ΔH_f^0) for Elements in their Standard States

Standard Enthalpies of formation (ΔH_f^0) for pure elements in their standard states are **assigned** zero. ($\Delta H_f^0 = 0$)

Examples:

$$\Delta H_f^0(O_2(g)) = 0 \qquad \Delta H_f^0(Al(s)) = 0$$

$$\Delta H_f^0(Fe(s)) = 0 \qquad \Delta H_f^0(C(s, graphite)) = 0$$

Calculating $\Delta H_{\rm rxn}^0$ ($\Delta H_{\rm rxn}^0$) Using Std Enthalpies of Formation (ΔH_f^0)

We can calculate $\Delta H_{\rm rxn}^0$ (i.e., $\Delta H_{\rm rxn}$) from these tabulated enthalpies of formation (ΔH_f^0)

For the reaction

$$aA + bB \rightarrow cC + dD$$

$$\Delta H_{rxn}^{0} = c \left(\Delta H_{f}^{0}(C) \right) + d \left(\Delta H_{f}^{0}(D) \right) - \left[a \left(\Delta H_{f}^{0}(A) \right) + b \left(\Delta H_{f}^{0}(B) \right) \right]$$

Calculating $\Delta H_{\rm rxn}^0$ ($\Delta H_{\rm rxn}^0$) Using Std Enthalpies of Formation (ΔH_f^0)

Another way to write the equation:

For the reaction $aA + bB \rightarrow cC + dD$

$$\Delta H_{rxn}^0 = \sum n_p \, \Delta H_f^0(products) - \sum n_r \, \Delta H_f^0(reactants)$$

$$\Delta H^0_{rxn} = c \left(\Delta H^0_f(C) \right) + d \left(\Delta H^0_f(D) \right) - \left[a \left(\Delta H^0_f(A) \right) + b \left(\Delta H^0_f(B) \right) \right]$$

Example: Calculate $\Delta H_{\rm rxn}^0$ ($\Delta H_{\rm rxn}$) Using Std Enthalpies of Formation (ΔH_f^0)

For the reaction $N_2O_4(g) \rightarrow 2NO_2(g)$ The following data was found in the table:

$$\Delta H_f^0(N_2O_4(g)) = 9.16 \text{ kJ/mol}$$

$$\Delta H_f^0(NO_2(g)) = 33.18 \text{ kJ/mol}$$

Calculate ΔH_{rxn}^0 using these values for the given reaction.

Example: Calculate $\Delta H_{\rm rxn}^0$ ($\Delta H_{\rm rxn}^0$) Using Std Enthalpies of Formation (ΔH_f^0)

For the reaction $N_2O_4(g) \rightarrow 2NO_2(g)$ The following data was found in the table:

$$\Delta H_f^0(N_2O_4(g)) = 9.16 \text{ kJ/mol}$$

 $\Delta H_f^0(NO_2(g)) = 33.18 \text{ kJ/mol}$

Use the equation:

$$\Delta H_{\rm rxn}^0 = \sum n_p \, \Delta H_{\rm f}^0({\rm products}) - \sum n_r \, \Delta H_{\rm f}^0({\rm reactants})$$

Example: Calculate $\Delta H_{\rm rxn}^0$ ($\Delta H_{\rm rxn}^0$) Using Std Enthalpies of Formation (ΔH_f^0)

For the reaction $N_2O_4(g) \rightarrow 2NO_2(g)$ The following data was found in the table:

$$\Delta H_f^0(N_2O_4(g)) = 9.16 \text{ kJ/mol}$$

 $\Delta H_f^0(NO_2(g)) = 33.18 \text{ kJ/mol}$

Fill in the appropriate quantities:

$$\Delta H_{\text{rxn}}^{0} = 2 \left(\Delta H_{f}^{0}(\text{N}O_{2}(\text{g})) \right) - \left[1 \left(\Delta H_{f}^{0}(N_{2}O_{4}(\text{g})) \right) \right]$$

$$\Delta H_{\text{rxn}}^{0} = 2(33.18) - \left[1(9.16) \right] = 57.2 \text{ kJ/mol}$$

Endo or exothermic?

More examples coming soon...

What You Should Be Able to Do (so far)

Describe what standard enthalpies of formation (ΔH_f^0) are and how they are acquired.

Describe how standard enthalpies of formation (ΔH_f^0) can be used to calculate the standard enthalpy of reaction ($\Delta H_{\rm rxn}^0$).

Be able to use standard enthalpies of formation (ΔH_f^0) to calculate the std enthalpy of reaction ($\Delta H_{\rm rxn}^0$), often called ($\Delta H_{\rm rxn}$).

Determine whether enthalpy of reaction (ΔH_{rxn}^0) is exo- or endothermic from the sign of ΔH .