*Beal Gases and
 the yan der Waals

 Equation

 Equation}

Bx Shawn P. Shields. Ph. B.

*Beal Gases... What are they?

*Most gases behave ideally when they are held at low pressures and "high" temperatures.
(Room temperature is considered high T.)
*Remember that "ideal behavior" means that the gas molecules do not interact with each other. Only kinetic energy is present.

*Beal Gases... What are they?

*However, sometimes gas molecules DO interact with each other.
*Interactions between gas molecules is more likely at
*low temperatures
*high gas pressures (i.e., high gas densities).
This introduces potential energy into the picture!

*Beal Gases... What are they?

* Molecules that have significant intermolecular attractions (aka "polar" molecules) may also interact with each other.

Water is a polar molecule.

*The Compressibility Factor, Z

*We can use the "compressibility factor" (Z) to detect deviations of a gas from ideal behavior in experiments.

$$
\mathrm{Z}=\frac{\mathrm{PV}}{\mathrm{nRT}}
$$

*When Z < 1 , intermolecular attractions exist, and gas molecules can "feel" each other's presence.

*Real Gas Behavior

Compare 3 scenarios for gases in a piston...

Low P
The first piston shows a gas at low pressure.
$V_{\text {actual }}=V_{\text {ideal }}$
Ideal Gas Law and KTG are obeyed.

*Beal Gas Behavior

Med to high P
The second piston shows a gas at med-high pressure. As the volume decreases, some molecules stick together, effectively reducing the moles of gas. Now, $\mathrm{V}_{\text {actual }}$ < $\mathrm{V}_{\text {ideal }}$
The gas is more compressible, and attractions dominate!

*Real Gas Behaxior

Compare 3 scenarios for gases in a piston...

Ridiculously high P
The third piston shows a gas at REALLY high pressure.
The gas cannot move and we see that it actually DOES take up space...as our common sense might tell us.

Now, $V_{\text {actual }}>\mathrm{V}_{\text {ideal }}$ Repulsions dominate!

*The Compressibility Factor, Z

*More about the compressibility factor Z

Behaves as an ideal gas under reasonable conditions

Attractions dominate
$P(a+m)$

*The yan der Waals Equation

*Corrects the Ideal Gas Law for real gas behavior.

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

*The van der Waals constants a and b are experimentally-determined for each individual gas.
*The vdw constant a describes the strength of attractions with units L^{2} atm mole e^{-2}
*The vdw constant b increases with increasing molecular size with units $\mathrm{L} \mathrm{mol}^{-1}$

*The yan der Waals Equation

*Corrects the Ideal Gas Law for real gas
behavior.

$$
\quad n R T \quad a n^{2}
$$

Correction for the volume taken up by the gas molecules

*The yan der Waals Equation

*Predict the relative size of the van der Waals constants for the following gases:
H_{2} gas (very small and not polar)
SO_{2} gas (larger atoms and polar)

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

*The yan der Waals Equation

*Predict the relative size of the van der waals constants for the following gases:
H_{2} gas (very small and not polar)
SO_{2} gas (larger atoms and polar)

The vdw constant a and b would both be larger for SO_{2} gas.

*The yan der Waals Equation

*Which gas would produce the lowest pressure, with moles, T and V constant?
CH_{4} (methane) gas
(small molecule and not polar)
$\mathrm{H}_{2} \mathrm{O}$ gas
(small molecules and polar)

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

*The yan der Waals Equation

*Which gas would produce the lowest pressure, with moles, T and V constant?

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

If CH_{4} is a small molecule, and not polar, this means that a and b are both relatively small. ($a=2.25, b=0.0428$)

The gas should behave close to ideally.
If $\mathrm{H}_{2} \mathrm{O}$ gas is also a small molecule, then the vdw constant b will be of a similar size. However, since water is polar, the vdw constant a will be quite a bit larger.

$$
(a=5.46, b=0.0305)
$$

The pressure exerted by water will be lower than the ideal pressure.

* Summary

*Real gases interact with each other and take up volume in the container.
*The van der Waal equation corrects the Ideal Gas Law for real gas behavior.

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

If the gas is under ideal gas conditions, the van der Walls equation reduces to the Ideal Gas Law PV=nRT
(Try this by making a and $b=0$)

