*Real Gases and the van der Waals Equation

By Shawn P. Shields, Ph. D.

*Real Gases...What are they?

*Most gases behave ideally when they are held at low pressures and "high" temperatures.

(Room temperature is considered high T.)

*Remember that "ideal behavior" means that the gas molecules do not interact with each other. Only kinetic energy is present.

*Real Gases...What are they?

- *However, sometimes gas molecules DO interact with each other.
- *Interactions between gas molecules is more likely at
 - *low temperatures
 - *high gas pressures (i.e., high gas densities).

This introduces potential energy into the picture!

*Real Gases...What are they?

* Molecules that have significant intermolecular attractions (aka "polar" molecules) may also interact with each other.

Water is a polar molecule.

"partial charges" on the molecules are attracted to each other

*The Compressibility Factor, Z

*We can use the "compressibility factor" (Z) to detect deviations of a gas from ideal behavior in experiments.

$$Z = \frac{PV}{nRT}$$

*When Z < 1, intermolecular attractions exist, and gas molecules can "feel" each other's presence. ©

*Real Gas Behavior

Compare 3 scenarios for gases in a piston...

Low P

The first piston shows a gas at low pressure.

 $V_{actual} = V_{ideal}$ Ideal Gas Law and KTG are obeyed.

*Real Gas Behavior

The second piston shows a gas at med-high pressure.

As the volume decreases, some molecules stick together, effectively reducing the moles of gas.

Now, Vactual < Videal

The gas is more compressible, and attractions dominate!

*Real Gas Behavior

Compare 3 scenarios for gases in a piston...

Ridiculously high P

The third piston shows a gas at REALLY high pressure.

The gas cannot move and we see that it actually DOES take up space...as our common sense might tell us.

Now, $V_{actual} > V_{ideal}$ Repulsions dominate!

*The Compressibility Factor, Z

*More about the compressibility factor Z

*Corrects the Ideal Gas Law for real gas behavior.

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

- *The van der Waals constants a and b are experimentally-determined for each individual gas.
- *The vdw constant a describes the strength of attractions with units L² atm mole⁻²
- *The vdw constant b increases with increasing molecular size with units L mol-1

*Corrects the Ideal Gas Law for real gas behavior.

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

Correction for the volume taken up by the gas molecules

Correction for the attractions between gas molecules. The <u>actual</u> <u>pressure P is reduced by this amount</u> compared to the Ideal Gas law.

*Predict the relative size of the van der Waals constants for the following gases:

H₂ gas (very small and not polar)

50₂ gas (larger atoms and polar)

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

*Predict the relative size of the van der waals constants for the following gases:

H₂ gas (very small and not polar)

50₂ gas (larger atoms and polar)

The vdw constant a and b would both be larger for SO_2 gas.

*Which gas would produce the lowest pressure, with moles, T and V constant?

CH₄ (methane) gas (small molecule and not polar)

H₂O gas (small molecules and polar)

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

*Which gas would produce the lowest pressure, with moles, T and V constant?

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

If CH_4 is a small molecule, and not polar, this means that a and b are both relatively small. (a = 2.25, b = 0.0428)

The gas should behave close to ideally.

If H_2O gas is also a small molecule, then the vdw constant b will be of a similar size. However, since water is polar, the vdw constant a will be quite a bit larger. (a = 5.46, b = 0.0305)

The pressure exerted by water will be lower than the ideal pressure.

*Summary

- *Real gases interact with each other and take up volume in the container.
- *The van der Waals equation corrects the Ideal Gas Law for real gas behavior.

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

If the gas is under ideal gas conditions, the van der Waals equation reduces to the Ideal Gas Law PV=nRT

(Try this by making a and b = 0) ©