Naming Ionic Compounds Part 1: Cations, Anions, and Ionic Bonds By Shawn P. Shields, Ph.D. #### What are Ionic Bonds? Ionic bonds are formed by electrostatic attractions between oppositely-charged ions #### Recall: - <u>Cations</u> are formed when an atom loses electrons to form a positively-charged ion. (Xⁿ⁺) - Anions are formed when an atom gains electrons to form a negatively-charged ion. (Xⁿ⁻) - Ionic bonds are generally formed between metals and nonmetals. # Recall: Identifying Metals and Nonmetals on the Periodic Table | hydrogen
1 |) (5 | | 253 | z. | 8 | | (**) | π | <i>5</i> 3 | (2.5) | 505 | 13.55 | 5.5 | 07.58 | 8E. | 22.70 | 5.0 I | helium
2
He | |-------------------|---------------------|--------|----------------|----------------------|----------------|-------------------|------------------|-----------------|---------------|-----------------|-------------------|-----------------|----------------|---------------------|-----------------|-----------------------|--------------------|--------------------------| | 1.0079
lithium | beryllium | 1 | | | | | | | | | | Ĭ | boron | carbon | nitrogen | oxygen | fluorine | 4.0026
neon | | 3 | P = | | | | | | | | | | | | 5
D | 6 | 7
NI | 8 | 9 | 10 | | 6.044 | Be
9,0122 | | | | | | | | | | | | B
10.811 | C
12.011 | N
14.007 | O
15.999 | F | Ne | | 6.941
sodium | magnesium | | | | | | | | | | | Ì | aluminium | silicon | phosphorus | sulfur | 18.998
chlorine | 20.180
argon | | 11 | 12 | | | | | | | | | | | | 13
A I | 14 | 15 | 16 | CI | 18 | | Na
22.990 | Mg
24,305 | | | | | | | | | | | | AI
26.982 | Si
28.086 | P 30.974 | S
32.065 | 35,453 | Ar 39.948 | | potassium | calcium | | scandium | titanium | vanadium
23 | chromium | manganese
25 | iron
26 | cobalt
27 | nickel | copper | zinc
30 | gallium | germanium
32 | arsenic
33 | selenium
34 | bromine | krypton | | 19
K | 20 | | Sc | Ti | V | 24
Cr | | Fe | | Ni
Ni | 29 | Zn | Ga | Ğe | A | Se | Br | Kr Kr | | 39.098 | Ca | | 44.956 | 47,867 | 50.942 | Cr
51.996 | Mn
54.938 | 55.845 | Co
58,933 | 58,693 | Cu | 65,39 | 69.723 | 72.61 | As
74.922 | 78,96 | 79.904 | 83.80 | | rubidium
37 | strontium
38 | | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium
43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | tin
50 | antimony
51 | tellurium
52 | iodine
53 | xenon
54 | | Rb | Sr | | Ÿ | Žr | Nb | Mo | Tc | Ru | Rh | Pd | The second second | Cd | l'n | Sn | Sb | Тe | 33
I | Xe | | 85,468 | 87.62 | | 88,906 | 91.224 | 92,906 | 95.94 | [98] | 101.07 | 102.91 | 106.42 | Ag | 112.41 | 114.82 | 118,71 | 121.76 | 127.60 | 126.90 | 131.29 | | caesium
55 | barium
56 | 57-70 | lutetium
71 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | Cs | Ва | * | Lu | Hf | Ta | W | Re | Os | Îr | Pt | Au | Hg | ΤÏ | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | Sin | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] | | francium
87 | radium
88 | 89-102 | 103 | rutherfordium
104 | 105 | seaborgium
106 | 107 | 108 | 109 | 110 | unununium
111 | ununbium
112 | | ununquadium
114 | | | 20 AND 200 AND 20 | | | Fr | Ra | * * | Lr | Rf | Db | Sg | Bh | Hs | Mt | Uun | Uuu | Uub | | Uuq | | | | | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | *Lanthanide series | | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |----|------------------------|----------------------|--------------------|----------------------|------------------|------------------------|-----------------|-------------------------|------------------------|-------------------|-------------------|---------------------|----------------------|------------------------| | | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | -1 | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | ĺ | actinium
89 | thorium
90 | protactinium
91 | uranium
92 | neptunium
93 | plutonium
94 | americium
95 | curlum
96 | berkelium
97 | californium
98 | einsteinium
99 | fermium
100 | mendelevium
101 | nobelium
102 | | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | Į | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | ## Main Group Metals Hydrogen (H) is considered a nonmetal, even though it is in group 1. H usually forms H+ ions. *Lanthanide series | 3 | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |---|-----------------------|----------------------|--------------------|-----------------|-------------------------|------------------------|------------------------|-------------------------|------------------------|-------------------------|----------------------|---------------------|----------------------|------------------------| | 2 | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | | actinium
89 | thorium
90 | protactinium
91 | uranium
92 | neptunium
93 | plutonium
94 | americium
95 | curlum
96 | berkelium
97 | californium
98 | einsteinium
99 | fermium
100 | mendelevium
101 | nobelium
102 | | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | ## Main Group Metals - Metals form cations (positively-charged ions). - **■**Examples: - Sodium cation (Na⁺) in Group 1 - Magnesium cation (Mg²⁺) in Group 2 - ► Aluminum cation (Al3+) in Group 3 - Main group metal cations have a positive charge equal to the group number. - Hydrogen (H) is considered a nonmetal, even though it is in group 1. - H usually forms H⁺ ions, except when bonded to metals. ## Transition Metals | /_ | hydrogen 1 1 1.0079 | beryllium | | - | • • • | | | | • | | | • 1 | :2E | boron | carbon | nitrogen | oxygen | fluorine | helium
2
He
4.0026
neon | |-----|---|---------------------|-----------------|----------------------|-------------------------|-------------------|----------------------|----------------------|---------------------|----------------------|---------------------|---------------------|--------------------|------------------|----------------------|--------------------|--------------------|-----------------------|-------------------------------------| | | 3
 i | Be | | | sitic | | | | | | | | | B | င် | 7
N | ဂိ | 9
F | Ne | | П | 6.941 | 9,0122 | | cent | er p | orti | on a | ot th | ne b | erio | dic 1 | table | 2 | 10.811 | 12.011 | 14.007 | 15,999 | 18.998 | 20,180 | | Ī | sodium | magnesium | | | | | | | | | | | | aluminium | silicon | phosphorus | sulfur | chlorine | argon | | | 11 | 12 | | | (als | o co | alled | the | : "d | -blo | ck") | | | 13 | 14 | 15 | 16 | 17 | 18 | | | Na | Mg | | | (| | | | _ | | , | | | AI | Si | P | S | CI | Ar | | | 22.990 | 24.305 | | | | | | | | | | | | 26,982 | 28.086 | 30.974 | 32.065 | 35.453 | 39.948 | | | potassium
19 | calcium
20 | | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | 26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | | IZ. | | | | anger a | 1/ | | | | | NI: | | | _ | | - | - | | | | | n | Ca | | Sc | 11 | V | Cr | Mn | Fe | Co | INI | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 1 | 39.098
rubidium | 40.078
strontium | | 44.956
vttrium | 47.867
zirconium | 50.942
niobium | 51.996
molybdenum | 54.938
technetium | 55.845
ruthenium | 58,933
rhodium | 58,693
palladium | 63,546
silver | 65.39
cadmium | 69.723
indium | 72.61
tin | 74.922
antimony | 78.96
tellurium | 79.904
lodine | 83.80
xenon | | | 37 | 38 | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | | Rb | Sr | | Y | Zr | Nb | Мо | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | | 1 | 85,468 | 87.62 | | 88.906
lutetium | 91.224 | 92,906 | 95.94 | [98] | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60 | 126.90 | 131.29 | | | caesium
55 | barium
56 | 57-70 | 71 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | | Cs | Ba | * | Lin | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | | 100000000000000000000000000000000000000 | | ^ | Lu | | THE RESERVE | | | Colores Colores At | | 1.40 | | 960 | 1 1 | 1.00 | | 1186 (1588) | 1.546000 19400 44500 | | | ŀ | 132.91
francium | 137.33
radium | | 174.97
lawrencium | 178.49
rutherfordium | 180,95 | 183.84
seaborgium | 186.21
bohrium | 190.23
hassium | 192.22
meitrerium | 195.08
unumilium | 196.97
unununium | 200.59
ununbium | 204.38 | 207.2
ununquadium | 208.98 | [209] | [210] | [222] | | | 87 | 88 | 89-102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | 114 | | | | | | | Fr | Ra | * * | Lr | Rf | Db | Sg | Bh | Hs | Mt | Uun | Umn | Ulub | | Uuq | | | | | | | [223] | 12261 | - Jesus Amerika | [262] | [261] | 12621 | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | | | | | | ją: | 220 | [EEU] | | [202] | [201] | [202] | [200] | [ES4] | [203] | [EOO] | [e.r.i] | [E/Z] | Let I | | [203] | | | | | *Lanthanide series | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |------------------------|----------------------|--------------------|------------------------|------------------|------------------------|------------------------|-------------------------|------------------------|-------------------|--------------------------|----------------|----------------------|------------------------| | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | actinium
89 | thorium
90 | protactinium
91 | uranium
92 | neptunium
93 | plutonium
94 | americium
95 | curium
96 | berkelium
97 | californium
98 | einsteinium
99 | fermium
100 | mendelevium
101 | nobelium
102 | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | #### Transition Metals - Transition metals form cations (positively-charged ions). - Most have more than one possible charge for the cation. - **Examples**: - ■Iron: Fe²⁺ and Fe³⁺ - Copper: Cu⁺ and Cu²⁺ - ■Gold: Au⁺ and Au³⁺ ## Nonmetals | ê | hydrogen
1 | /
3 22 - | | 75. | 2 | Æ. | 3 | 2 | æ | | .348. | fo | und | on t | s are
he ri
tabl | ght h | | • | helium
2
He | |---|--------------------|------------------------|---------------|-----------------------|----------------------|-------------------|----------------------|----------------------|---------------------|-------------------|---------------------|-------------------|------------------|---------------------|------------------------|----------------------|-----------------------|--------------------|--------------------------| | | 1.0079
lithium | beryllium | ž | | | | | | | | | | | boron | carbon | nitrogen | oxygen | fluorine | 4.0026
neon | | | 3 | _4 | | | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | | Li | Be | | | | | | | | | | | | В | C | N | 0 | F | Ne | | | 6.941
sodium | 9.0122
magnesium | | | | | | | | | | | | 10.811
aluminium | 12.011
silicon | 14.007
phosphorus | 15,999
sulfur | 18,998
chlorine | 20.180
argon | | | 11 | 12 | | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | | Na | Mg | | | | | | | | | | | | Al | Si | Р | S | CI | Ar | | | 22.990 | 24.305 | | | | | | | | | | | | 26,982 | 28,086 | 30.974 | 32.065 | 35.453 | 39.948 | | | potassium
19 | calcium
20 | | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | 1ron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium* | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | | 19 | | | | | 1/ | | | | | | | - | | | | | | | | | n | Ca | | Sc | | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 3 | 39.098
rubidium | 40.078
strontium | | 44.956
yttrium | 47.867
zirconium | 50.942
niobium | 51.996
molybdenum | 54.938
technetium | 55.845
ruthenium | 58,933
rhodium | 58.693
palladium | 63,546
silver | 65,39
cadmium | 69,723
indium | 72.61
tin | 74.922
antimony | 78,96
tellurium | 79.904
lodine | 83.80
xenon | | | 37 | 38 | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | | Rb | Sr | | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | | Xe | | 8 | 85,468 | 87.62 | | 88,906 | 91.224 | 92,906 | 95.94 | [98] | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60 | 126.90 | 131.29 | | | caesium
55 | barium
56 | 57-70 | lutetium
71 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | | 132.91 | 137,33 | ^ | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200,59 | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] | | | francium | radium | 92/2012/92/98 | lawrencium | rutherfordium | dubnium | seaborgium | bohrium | hassium | meitnerium | ununnilium | unununium | ununbium | 204.30 | ununquadium | 200,30 | [203] | [210] | [222] | | | 87 | 88 | 89-102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | 114 | | | | | | | Fr | Ra | * * | Lr | Rf | Db | Sg | Bh | Hs | Mt | Uun | Uuu | Uub | | Uuq | | | | | | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | | | | | *Lanthanide series | 3 | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |-----|------------------------|--------------|--------------------|-----------------|-------------------------|----------------|----------------|-------------------------|----------------------|------------------|---------------|--------------|----------------------|------------------------| | 2 | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | Ī | actinium | thorium | protactinium | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | | - 1 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | Į | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | ## Nonmetals in Ionic Compounds - Nonmetals generally form anions (negativelycharged ions) when in ionic compounds. - **Examples**: - Chloride anion (Cl⁻) - \blacksquare Oxide anion (O^{2-}) - \blacksquare Sulfide anion (S²⁻) - Nonmetals form covalent, as opposed to ionic, bonds when bonded to other nonmetals. - Noble gases (group 8) do not form ions. ## Identifying Metals and Nonmetals on the Periodic Table | 1,0079 1,0079 1,0071 1,007 1 | | hydrogen
1 | v dita | | 125 | 15 | | ē | -T
 -T | Æ | | (5.2) | 8.5 | | 6.5 | 17374 | 6.3 | | 6.0 | helium
2 | |--|---|----------------------|-----------------------|--------|--|-----------------|--------------|------------------------|------------------|-----------|------------|------------|-----------|------------|------------|------------------|---------------|---|---|-------------| | The content of | | | | | | | | | | | | Me | allo | ids | | | | | | Не | | 10811 12.011 14.007 15.999 18.998 20.188 20 | | | beryllium
4 | | | | | | | | | | | | 242444232 | 2004 St. 2004 | nitrogen
7 | oxygen
8 | 100000000000000000000000000000000000000 | neon | | Sodium S | | Li | | | | | | | | | | | | 7 | 2500000000 | С | N | 0 | 1.00 | Ne | | 22.990 24.305 24.305 24.305 24.305 24.305 25.26 27 28 29 30 31 32 33 34 35 36 36 36 36 36 36 36 | | sodium | magnesium | | | | | | | | | | | | aluminium | silicon | phosphorus | sulfur | chlorine | argon | | Polassium Calcium 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 36 36 36 39 39 30 31 32 33 34 35 36 36 39 39 30 31 32 33 34 35 36 36 36 36 36 36 36 | | | 1900 4 (2000) | | | | | | | | | | | | (A) A A | 10 0 A 10 A 10 A | Г | 300 N T T T T T T T T T T T T T T T T T T | | Ar | | Sc | | potassium | calcium | | and the second s | 144(0)(0)(0)(0) | | Makes Street Statement | | | | | | | gallium | germanium | arsenic | selenium | bromine | krypton | | Tubidium 37 38 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | | | (ASSESSED | | No. 25 (1) (5) (5) | 11 | and the same | A STATE OF THE A | \$7500 BERNELLEN | MA | | | | VA. 200200 | | ST. 10.157 | | \$5.500 Sept. | (A | Kr | | 85,468 87,62 88,906 91,224 92,906 95,94 [98] 101,07 102,91 106,42 107,87 112,41 114,82 118,71 121,76 127,60 126,90 131,25 126,90 126,90 131,25 126,90 126,9 | | rubidium | strontium | | yttrium | zirconium | niobium | molybdenum | technetium | ruthenium | rhodium | palladium | silver | cadmium | indium | ün | antimony | tellurium | iodine | xenon | | C Ba X Lu Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi 201. | | | | | T | | | | | | | | | | | | | | 1 | Xe | | 132.91 137.33 174.97 178.49 180.95 183.84 196.21 190.23 192.22 195.08 196.97 200.59 204.38 207.2 208.98 [209] [210] [222] 195.08 196.97 200.59 204.38 207.2 208.98 209] | | caesium | barium | 57-70 | lutetium | hafnium | tantalum | tungsten | rhenium | osmium | iridium | platinum | gold | mercury | thallium | lead | bismuth | polonium | astatine | radon | | Fr Ra $\star\star$ Lr Rf Db Sg Bh Hs Mt Uun Uuu Uub Uuq | | | | * | | | | | | | 1.00.00 | 10.000 | | | | 11000 110000011 | | 11.000 11.00000000 | 15 | Rn | | Fr Ra * Lr Rf Db Sg Bh Hs Mt Uun Uuu Uub Uuq | ١ | francium | radium | 89-102 | lawiencium | rutherfordium | dubnium | seaborgium | bohrium | hassium | meitnerium | ununnilium | unununium | ununbium | 204.38 | ununquadium | 208.98 | [209] | [210] | [222] | | | | 230 | | | \$3855E | (6)(9)(1) | | 0.000 | | | | | | | | | | | | | | | | [223] | [226] | | [262] | [261] | [262] | | [264] | [269] | [268] | [271] | [272] | [277] | | | | | | | *Lanthanide series | | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |---|------------------------|----------------------|--------------------|----------------------|------------------|------------------------|------------------------|-------------------------|------------------------|-------------------|--------------------------|---------------------|----------------------|-----------------| | | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | - | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | Ī | actinium
89 | thorium
90 | protactinium
91 | uranium
92 | neptunium
93 | plutonium
94 | americium
95 | curium
96 | berkelium
97 | californium
98 | einsteinium
99 | fermium
100 | mendelevium
101 | nobelium
102 | | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | L | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | #### Metalloids Metalloids (generally) form covalent as opposed to ionic bonds in compounds. In particular, compounds composed from a nonmetal and a metalloid contain covalent bonds. ## Summary - Metals form cations in ionic compounds. - **■** Cations are positively-charged ions. - → When a cation is formed, the atom loses electrons. - Nonmetals form anions in ionic compounds. - ► Anions are negatively-charged ions. - When an anion is formed, the atom gains electrons. - Ionic compounds form between metals and nonmetals. - ► An ionic bond is an electrostatic attraction between oppositely-charged particles (ions).