*Intro to Gases and The Early Gas Laws

Bx Shawn P. Shhieldse, Ph. B.

*Introduction to Gases

* Gases are a phase of matter without a fixed volume nor a fixed shape.
*Gases are described in terms of four macroscopic observables:
*Pressure
*Temperature
*Volume
*Moles of gas

*Introduction to Gases

*The early gas laws described these macroscopic observables or characteristics relative to each other.
*Boyle's law describes the relationship between pressure and volume of a gas at a fixed temperature and amount of gas.
*Charles's law describes the relationship between temperature and volume of a gas at a constant pressure and amount of gas.
*Avogadro's law says one mole of any gas at STP (Standard Temperature and Pressure; $0^{\circ} \mathrm{C}$ and 1 atm) will take up a volume of 22.4 L .

*Pressure Units

*These are the pressure units that we will focus on in this course:
$1 \mathrm{~atm}=760 \mathrm{torr}=760 \mathrm{mmHg}=1.01325 \times 10^{5} \mathrm{~Pa}$
*You should especially practice with these: $1 \mathrm{~atm}=760$ torr $=760 \mathrm{mmHg}$
*Practice: Pressure Unit Conversions
*Convert 0.378 atm to torr.
*Convert 6.4×10^{-2} torr to atmospheres.
*Convert 106.9 Pa to torr.

*Practice: Pressure Unit Conversions (Solutions)

*Convert 0.378 atm to torr.

Use the relationship 760 torr $=1 \mathrm{~atm}$

We need to cancel out atm, so put that unit on the bottom in the conversion factor

$$
0.378 \mathrm{~atm}\left(\frac{760 \mathrm{torr}}{1 \mathrm{~atm}}\right)=287 \text { torr }
$$

*Practice: Pressure Unit Conversions (Solutions)

*Convert 6.4×10^{-2} torr to atmospheres.

We need to use the relationship 760 torr $=1 \mathrm{~atm}$ again

But this time we need to cancel out torr, so put that unit on the bottom in the conversion factor

$$
6.4 \times 10^{-2} \operatorname{torr}\left(\frac{1 \mathrm{~atm}}{760 \mathrm{torr}}\right)=8.4 \times 10^{-5} \mathrm{~atm}
$$

*Practice: Pressure Unit Conversions (Solutions)

*Convert 106.9 Pa to torr.

Use the equality 760 torr $=1.01325 \times 10^{5} \mathrm{~Pa}$

This time we need to cancel out Pascals, so put that unit on the bottom in the conversion factor with torr in the numerator

$$
\text { 106.9 Pa }\left(\frac{760 \text { torr }}{1.01325 \times 10^{5} \mathrm{~Pa}}\right)=0.8018 \text { torr }
$$

*The Early Gas Laws

*Boyle's Law

*Charles Law
*Avogadro's Law

Boyle's law states that

-the pressure of a gas is inversely related to its volume when the temperature and the amount of gas are held constant (or unchanged)

- So, when the volume decreases, the pressure increases, and vice-versa

$$
P_{1} V_{1}=P_{2} V_{2}
$$

*Mini Quiz

* A gas has a pressure of 560 torr when it is held in a 3.5 L cylinder. Calculate the pressure of the gas (in torr) when the volume of the cylinder is increased to 6.3 L .

*Mini Quiz Solution (ptI)

* A gas has a pressure of 560 torr when it is held in a 3.5 L cylinder. Calculate the pressure of the gas (in torr) when the volume of the cylinder is increased to 6.3 L .
*Use Boyle's law:

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Step 1: Identify what you are given and what you are calculating:
${ }^{*} P_{1}=560$ torr $\quad P_{2}=$?
${ }^{*} V_{1}=3.5 L \quad V_{2}=6.3 L$

*Mini Quiz Solution (R† II)

Step 2: Solve for the unknown quantity (in this case P_{f}):

$$
\begin{array}{ll}
{ }^{*} P_{1}=560 \text { torr } & P_{2}=? \\
{ }^{*} V_{1}=3.5 \mathrm{~L} & V_{2}=6.3 \mathrm{~L} \\
& P_{1} V_{1}=P_{2} V_{2}
\end{array}
$$

$(560$ torr $)(3.5 L)=P_{f}(6.3 L)$

$$
P_{2}=311 \text { torr }
$$

* Charolesis L@w

In Charles's law,
-the Kelvin (K) temperature of a gas is directly related to the volume

- The pressure and amount of gas are constant
- when the temperature of a gas increases, its volume increases

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

*Mini Quiz

${ }^{*} A$ gas has a temperature of $15.0^{\circ} \mathrm{C}$ when it is held in a 2.36 L cylinder. Calculate the new temperature of the gas (in ${ }^{\circ} \mathrm{C}$) when the volume is expanded to 8.32 L .

*Mini Quiz Solution (pI)

* A gas has a temperature of $15.0^{\circ} \mathrm{C}$ when it is held in a 2.36 L cylinder. Calculate the new temperature of the gas (in ${ }^{\circ} \mathrm{C}$) when the volume is expanded to 8.32 L .
- Use Charles' law:

$$
\underline{V}_{1}=\frac{\underline{V}_{2}}{T_{2}}
$$

Step 1: Identify what you are given and what you are calculating:
${ }^{*} T_{1}=15.0^{\circ} \mathrm{C} \quad \mathrm{T}_{2}=$?
${ }^{*} V_{1}=2.36 \mathrm{~L} \quad V_{2}=8.32 \mathrm{~L}$

*Mini Quiz Solution (pt II)

Step 2: Convert given temperatures from ${ }^{\circ} \mathrm{C}$ to K : ${ }^{*} T_{1}=15.0^{\circ} \mathrm{C}+273=288 \mathrm{~K}$
*NOTE: Temperatures in gas laws are ALWAYS in Kelvin (K)!

${ }^{*}$ Mini Quiz Solution (pt III)

Step 3: Solve for the unknown quantity (in this case T_{2} and convert to ${ }^{\circ} \mathrm{C}$):

$$
\begin{array}{ll}
{ }^{*} \mathrm{~T}_{1}=288 \mathrm{~K} & \mathrm{~T}_{2}=? \\
{ }^{*} \mathrm{~V}_{1}=2.36 \mathrm{~L} & \mathrm{~V}_{2}=8.32 \mathrm{~L} \\
& \underline{\mathrm{~V}}_{1}=\frac{\mathrm{V}_{2}}{T_{1}}
\end{array}
$$

$$
\underline{2.36 \mathrm{~L}}=8.32 \mathrm{~L}
$$

$$
288 \mathrm{~K} \quad \mathrm{~T}_{2}
$$

$$
T_{2}=8.32 \mathrm{~L}\binom{288 \mathrm{~K}}{2.36 \mathrm{~L}}
$$

$$
T_{2}=1015 \mathrm{~K}=742^{\circ} \mathrm{C}
$$

* Avogadro's Law

*The volume and pressure of a gas at constant temperature is directly proportional to the number of moles of the gas.
*When the gas is under standard conditions, 1 mole of any ideal gas has a volume of 22.4 L .

*standard conditions: pressure is 1 atm and the temperature is $0^{\circ} \mathrm{C}$.

