Unit 5

Gases

Objectives

o Discuss the properties of gases (especially in terms of SI units).
o Define and identify the gas laws.
o Perform calculations using the ideal gas law.
O Define conditions of STP (Standard Temperature and Pressure).
O Apply the gas laws to stoichiometric calculations.
o Calculate the molar mass of a gas using laboratory data and the ideal gas law.
o Explain the properties of ideal gases as defined by the Kinetic Molecular Theory.
o Define effusion and diffusion.
o Explain how real gases differ from ideal gases.

Outline

I. Properties of Gases
A. Properties of Ideal Gases
B. SI Units of Pressure

1. Barometer

II> The Gas Laws
A. Relationships Between Properties
B. Boyle's Law
C. Charles' Law
D. Gay Lussac's Law
E. Avogadro's Law
F. Ideal Gas Law
G. The Combined Gas Law
H. Dalton's Law of Partial Pressures
III. Gas Stoichiometry
IV. Kinetic Molecular Theory
A. Ideal Gases
B. Gas Diffusion and Effusion
V. Real Gases
A. Properties of Real Gases
B. Intermolecular Forces
C. Van der Waals Equation
D. Examples of Real Gases

An Introduction to Gases

o Remember from Unit 1 that gases:
o Take up the shape AND volume of a container.
o Are in constant, rapid, and random motion.
o Are easily compressed
o Exert force on their surroundings

An Introduction to Gases

o Gases provide instant observations.
o Provide a way to evaluate real world issues.

Pressure

O The amount of force applied over a given area.

$$
\frac{\text { Force }}{\text { Area }}=\text { Pressure }
$$

Units of Pressure

O SI Units: Pascal (Pa) contains units Newton
Meter 2
O More commonly used
o Atmosphere (atm)
O Millimeter Mercury (mmHg)
o Torr

$101,325 \mathrm{~Pa}=1 \mathrm{~atm}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=760 \mathrm{torr}$

Barometers

o Barometers are used to measure atmospheric pressure
o Tube with a vacuum inverted in a petri dish of Hg . Height of Hg rises until the pressure from atmosphere and Hg in tube are equal.
O Height measured in mmHg .

Other Pressure Gauges

o Same concept used on
o Tire gauges

- Blood pressure cuffs

O Etc.

"Tire pressure gauge" by (U.S. Air Force photo by Airman Frank Snider) - USAF photo archive. Licensed under Public Domain via Wikimedia Commons

Concept Check

o The local weather station reports the pressure as 30.59 inHg . Convert to mmHg , torr and atm.

The Gas Laws

o Gas behavior allows us to observe:
o What happens in a situation.
o We want to convert that to WHY something happens.

- Scientists developed the gas laws.

The Gas Laws

o Relate the properties of gases to one another.
o Boyle's Law
o Charles' Law
o Gay Lussac's Law
o Avogadro’s Law
o Ideal Gas Law
o Combined Gas Law
o Dalton's Law of Partial Pressures.

Boyle's Law

o Pressure is inversely proportional to volume (if temperature and mol are held constant).

$$
P_{1} V_{1}=P_{2} V_{2}
$$

O Graph of P vs $\frac{1}{V}$ will give a straight line.

Boyle's Law

Concept Check

- A balloon occupies 5.4 L and has a pressure of 1.04 atm . If the pressure drops to 0.856 atm, what will the new volume be? Assume temperature and mol are held constant.

Concept Check

o A gas inside a balloon occupies 325 mL and exerts a pressure of 4.56 atm . If the pressure drops to 2.26 atm, what will the new volume be? (Assume temperature and mol are held constant.)

Charles' Law

o Temperature (in Kelvin) is directly proportional to volume (if pressure and mol are held constant).

"Charles and Gay-Lussac's Law animated" by NASA's Glenn Research Center - http://www.grc.nasa.gov/WWW/K-

Charles' Law

Concept Check

O A balloon occupies 15.4 L at $25^{\circ} \mathrm{C}$. What volume would the gas occupy at $35^{\circ} \mathrm{C}$. Assume pressure and mol are held constant.

Gay-Lussac's Law

o Temperature (in Kelvin) is directly related to pressure (if volume and mol are held constant).

Gay-Lussac's Law

Concept Check

O A gas in a closed container (fixed volume and mol) exerts a pressure of 8.64 atm at $50^{\circ} \mathrm{C}$. What would the temperature be (in ${ }^{\circ} \mathrm{C}$) if the pressure was suddenly raised to 17.2 atm ?

Avogadro's Law

o Volume is directly proportional to mol (if pressure and temperature are held constant).

$$
\frac{n_{1}}{V_{1}}=\frac{n_{2}}{V_{2}}
$$

O Graph of n vs V will give a straight line.

Concept Check

04.15 mol of He occupy a 75 L balloon. What volume will 3.75 mol occupy (at the same temperature and pressure.

Ideal Gas Law

o We can combine the gas laws into one equation:

$$
P V=n R T
$$

$\mathrm{P}=$ pressure (atm)
$\mathrm{V}=$ volume (L)
$\mathrm{n}=$ amount (mol)
$\mathrm{R}=$ Constant $0.08206 \frac{\mathrm{Latm}}{\mathrm{mol} \mathrm{K}}$
T = temperature (K)

Concept Check

O What volume will a 82.6 g sample of N_{2} exerting 7.25 atm at $62.1^{\circ} \mathrm{C}$ fill?

Combined Gas Law

O Ideal Gas law can be rearranged to give

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$O R$ and n are left out because they cancel.

Concept Check

O A sample of He at $37^{\circ} \mathrm{C}$ exerts 15.1 atm in a 2425 mL container. If the temperature suddenly cools to $20.1^{\circ} \mathrm{C}$ and the volume adjusts to 1815 mL , what will the new pressure be?

Dalton's Law of Partial

 PressuresO The pressure of a mixture of gases is equal to the partial pressure of all the individual components.
o A gas exerts the same pressure whether alone or in a mixture.

Real World Application

o Scuba divers use various mixtures of gases depending on the depth of their dive.
o Mixtures may be Nitrox, Trimix, Oxygne or Heliox

O For very deep dives, they use a mixture called Heliox which contains He and O_{2}.

concerteres

O 22.1 L of oxygen gas originally at $25^{\circ} \mathrm{C}$ and 1.75 atm and 9.20 L of He gas originally at $25^{\circ} \mathrm{C}$ and 17.84 atm are pumped into a single scuba tank with a volume of 10.0 L .
o Calculate the partial pressure oxygen:
o Calculate the partial pressure of helium:

O Calculate the pressure in the scuba tank.

Gas Stoichiometry

o Can use the gas laws to perform stoichiometric calculations.

STP

o Standard conditions allow scientists to communicate worldwide.
o STP = Standard Temperature and Pressure
$00^{\circ} \mathrm{C}$ and 1 atm

Molar Volume of a Gas

O At STP 1 mol of ANY gas occupies 22.41 L.

$$
V=\frac{\mathrm{PV}=\mathrm{nRT}}{1.00 \mathrm{~mol} x 0.08206_{\text {mol } K}^{\text {Latm }} \times 273 \mathrm{~K}} .1 .00 \mathrm{~atm} \quad 22.41 \mathrm{~L}
$$

Solution Stoichiometry

Concept Check

O At STP, a balloon containing 4.92 mol of gas has a volume of 15.1 L . If the balloon has a leak and eventually contained only 3.14 mol, what volume would the balloon occupy?

Molar Mass of a Gas

o Can use the ideal gas law to solve for n (mol)
O If you also know the mass of the gas, can solve for molar mass.

Concept Check

O A laboratory group measures an excess of a volatile liquid. They add this to an empty flask with a volume of 257.6 mL . They heat the sample to 76.8 degrees C until all the liquid is vaporized. The pressure in the lab is 0.924 atm. How many mol of gas are present?

O If the volatile liquid had a mass of 0.142 g , what was the molar mass of the unknown liquid?

$$
\begin{aligned}
& 8.29 \times 10^{-3} \mathrm{~mol} \\
& 17.1 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Kinetic Molecular Theory

o Explains the properties of gases and why the gas laws are accurate.
o Contains 4 postulates.

Kinetic Molecular Theory

O 1. The volume of gas particles is negligible compared to the volume which they occupy.

Kinetic Molecular Theory

O 2. Gas particles are in constant, rapid, and random motion.

Kinetic Molecular Theory

O 3. Gas particles have no (attractive or repulsive) intermolecular interactions.
o All collisions between gas particles are elastic so that all kinetic energy is conserved during collisions.

Kinetic Molecular Theory

o 4. The kinetic energy of a gas is directly proportional to the K temperature.

Concept Check

O Using the Kinetic Molecular Theory, consider two balloons...

Kristin_A. Mergingue Bakeshop. Bit Balloons. 2012. https://flic.kr/p/bzbZkW

Concept Check

O If you had two balloons of exactly the same volume. One contains H_{2}, the other $\mathrm{Ne} \ldots$
o Do the balloons have the same or different pressure?

Kristin_A. Mergingue Bakeshop. Bit Balloons. 2012. https://flic.kr/p/bzbZkW

Concept Check

O If you had two balloons of exactly the same volume. One contains H_{2}, the other $\mathrm{Ne} \ldots$
o Do the balloons have the same or different temperature?

Kristin_A. Mergingue Bakeshop. Bit Balloons. 2012. https://flic.kr/p/bzbZkW

Concept Check

O If you had two balloons of exactly the same volume. One contains H_{2}, the other $\mathrm{Ne} \ldots$
o Do the balloons have the same or different mol ?

Kristin_A. Mergingue Bakeshop. Bit Balloons. 2012. https://flic.kr/p/bzbZkW

Concept Check

O If you had two balloons of exactly the same volume. One contains H_{2}, the other $\mathrm{Ne} \ldots$
o Do the balloons have the same or different grams?

Kristin_A. Mergingue Bakeshop. Bit Balloons. 2012. https://flic.kr/p/bzbZkW

Gas Diffusion and Effusion

o Diffusion:
O The movement of particles from an area of high concentration to an area of low concentration... spreading out until the concentration is consistent throughout.

Gas Diffusion and Effusion

o Effusion:
O The process where a gas escapes through a small hole from one chamber to another.

"Effusion" by Astrang13 - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons -

Gas Diffusion and Effusion

o Root Mean Square Velocity

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M_{m}}}
$$

O Graham's Law of Effusion:

$$
\frac{\text { Rate of effusion of } \text { gas }_{1}}{\text { Rate of effusion of } \text { gas }_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

"Effusion" by Astrang13 - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons -

Real Gases

O The Kinetic Molecular Theory assumes ideal behavior.
o Only holds at high temperature and low pressure. Under these conditions gas particles are moving rapidly and very far apart so intermolecular forces are negligible.

Real Gases

o Have Intermolecular forces that reduce observed pressure.
o Small for Noble Gases and nonpolar molecules.
O Large for ionic and polar compounds.
o Include
o London Dispersion Forces

- Dipole-Dipole Interactions
- Hydrogen Bonding

O lonic Interactions

Real Gases

o Take up volume.
o Increases with molecular mass.
o Observed volume will be too low since molecules take up some of the volume measured.

Real Gases

O Graph shows how increasing pressure affects the PV/nRT value.

Real Gases. 2015. CC-BY-SA.

Van der Waals Equation

O Ideal gas law can be corrected for volume and pressure using the van der waals equation. Observed pressure is always lower, observed volume is always higher than actual.
O The higher the value of \underline{a} the greater the attraction between molecules and the more easily the gas will compress.
O The \underline{b} term represents the volume occupied by the gas particles.

$$
\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

Air Pollution

O One of the best places to observe gases.
o Primary sources emitted directly into the atmosphere.
o NO_{x}

- SO_{x}
- VOCs
- Particulates
o Free Radicals

Air Pollution

o Secondary sources are derived (or reacted) from primary sources.

- Smog
$-\mathrm{O}_{3}$

Ozone Depletion

o Depleted through free radicals.
o Some reactions include:

$$
\mathrm{O}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}
$$

$$
\mathrm{Cl}^{+}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}^{-}+\mathrm{O}_{2}
$$

$$
\mathrm{ClO}^{-}+\mathrm{O}_{3} \rightarrow \mathrm{Cl}^{-}+2 \mathrm{O}_{2}
$$

O A single Cl froma CFCs can regenerate and continue reacting with ozone for ~ 2 years.

Unit 5 Review Activity

O This is NOT meant to replace homework questions or studying.
o Unit 5 Review Problems

