Unit 5

Gases

Objectives

- Discuss the properties of gases (especially in terms of SI units).
- O Define and identify the gas laws.
- O Perform calculations using the ideal gas law.
- Define conditions of STP (Standard Temperature and Pressure).
- O Apply the gas laws to stoichiometric calculations.
- O Calculate the molar mass of a gas using laboratory data and the ideal gas law.
- Explain the properties of ideal gases as defined by the Kinetic Molecular Theory.
- O Define effusion and diffusion.
- O Explain how real gases differ from ideal gases.

Outline

- I. Properties of Gases
 - A. Properties of Ideal Gases
 - B. SI Units of Pressure
 - 1. Barometer
- II> The Gas Laws
 - A. Relationships Between Properties
 - B. Boyle's Law
 - C. Charles' Law
 - D. Gay Lussac's Law
 - E. Avogadro's Law
 - F. Ideal Gas Law
 - G. The Combined Gas Law
 - H. Dalton's Law of Partial Pressures
- III. Gas Stoichiometry
- IV. Kinetic Molecular Theory
 - A. Ideal Gases
 - B. Gas Diffusion and Effusion
- V. Real Gases
 - A. Properties of Real Gases
 - B. Intermolecular Forces
 - C. Van der Waals Equation
 - D. Examples of Real Gases

- O Remember from Unit 1 that gases:
 - O Take up the shape AND volume of a container.
 - O Are in constant, rapid, and random motion.
 - O Are easily compressed
 - Exert force on their surroundings

- O Gases provide instant observations.
- O Provide a way to evaluate real world issues.

Pressure

O The amount of force applied over a given area.

$$\frac{Force}{Area} = Pressure$$

Units of Pressure

- OSI Units: Pascal (Pa) contains units $\frac{Newton}{Meter^2}$
- O More commonly used
 - O Atmosphere (atm)
 - O Millimeter Mercury (mmHg)
 - O Torr

101,325 Pa = 1 atm 1 atm = 760 mmHg1 atm = 760 torr

- Barometers are used to measure atmospheric pressure
- O Tube with a vacuum inverted in a petri dish of Hg. Height of Hg rises until the pressure from atmosphere and Hg in tube are equal.
- O Height measured in mmHg.

- O Same concept used on
 - O Tire gauges
 - O Blood pressure cuffs
 - O Etc.

O The local weather station reports the pressure as 30.59 in Hg. Convert to mmHg, torr and atm.

The Gas Laws

- O Gas behavior allows us to observe:
 - O What happens in a situation.
- O We want to convert that to WHY something happens.
 - O Scientists developed the gas laws.

The Gas Laws

- O Relate the properties of gases to one another.
 - O Boyle's Law
 - O Charles' Law
 - O Gay Lussac's Law
 - O Avogadro's Law
 - O Ideal Gas Law
 - O Combined Gas Law
 - O Dalton's Law of Partial Pressures.

O Pressure is inversely proportional to volume (if temperature and mol are held constant).

$$P_1V_1 = P_2V_2$$
 Mass

O Graph of P vs $\frac{1}{V}$ will give a straight line.

O A balloon occupies 5.4 L and has a pressure of 1.04 atm. If the pressure drops to 0.856 atm, what will the new volume be? Assume temperature and mol are held constant.

O A gas inside a balloon occupies 325 mL and exerts a pressure of 4.56 atm. If the pressure drops to 2.26 atm, what will the new volume be? (Assume temperature and mol are held constant.)

O Temperature (in Kelvin) is directly proportional to volume (if pressure and mol are held constant).

$$\frac{T_1}{V_1} = \frac{T_2}{V_2}$$

O Graph of T (K) vs V will give straight line.

"Charles and Gay-Lussac's Law animated" by NASA's Glenn Research Center - http://www.grc.nasa.gov/WWW/K-

O A balloon occupies 15.4 L at 25°C. What volume would the gas occupy at 35°C. Assume pressure and mol are held constant.

O Temperature (in Kelvin) is directly related to pressure (if volume and mol are held constant).

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

O Graph of P vs T will give a straight line.

Temperature T

Temperature 3T

O A gas in a closed container (fixed volume and mol) exerts a pressure of 8.64 atm at 50 °C. What would the temperature be (in °C) if the pressure was suddenly raised to 17.2 atm?

Avogadro's Law

O Volume is directly proportional to mol (if pressure and temperature are held constant).

$$\frac{n_1}{V_1} = \frac{n_2}{V_2}$$

O Graph of n vs V will give a straight line.

Concept Check

O 4.15 mol of He occupy a 75 L balloon. What volume will 3.75 mol occupy (at the same temperature and pressure.

Ideal Gas Law

O We can combine the gas laws into one equation:

$$PV = nRT$$

P = pressure (atm)

V = volume(L)

n = amount (mol)

R = Constant 0.08206 $\frac{L \ atm}{mol \ K}$

T = temperature (K)

O What volume will a 82.6 g sample of N₂ exerting 7.25 atm at 62.1 °C fill?

Combined Gas Law

Oldeal Gas law can be rearranged to give

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

OR and n are left out because they cancel.

O A sample of He at 37 °C exerts 15.1 atm in a 2425 mL container. If the temperature suddenly cools to 20.1 °C and the volume adjusts to 1815 mL, what will the new pressure be?

- O The pressure of a mixture of gases is equal to the partial pressure of all the individual components.
- O A gas exerts the same pressure whether alone or in a mixture.

- O Scuba divers use various mixtures of gases depending on the depth of their dive.
 - O Mixtures may be Nitrox, Trimix, Oxygne or Heliox

O For very deep dives, they use a mixture called Heliox which contains He and O₂.

- O 22.1 L of oxygen gas originally at 25°C and 1.75 atm and 9.20 L of He gas originally at 25 °C and 17.84 atm are pumped into a single scuba tank with a volume of 10.0 L.
- O Calculate the partial pressure oxygen:

O Calculate the partial pressure of helium:

O Calculate the pressure in the scuba tank.

3.87 atm Oxygen 16.41 atm He 20.28 atm total

Gas Stoichiometry

O Can use the gas laws to perform stoichiometric calculations.

STP

- O Standard conditions allow scientists to communicate worldwide.
- O STP = Standard Temperature and Pressure
- 00°C and 1 atm

Molar Volume of a Gas

O At STP 1 mol of ANY gas occupies 22.41 L.

$$V = \frac{1.00mol \times 0.08206_{mol \ K}^{Latm} \times 273 \ K}{1.00 \ atm} = 22.41 \ L$$

Solution Stoichiometry

O At STP, a balloon containing 4.92 mol of gas has a volume of 15.1 L. If the balloon has a leak and eventually contained only 3.14 mol, what volume would the balloon occupy?

Molar Mass of a Gas

- Can use the ideal gas law to solve for n (mol)
- O If you also know the mass of the gas, can solve for molar mass.

O A laboratory group measures an excess of a volatile liquid. They add this to an empty flask with a volume of 257.6 mL. They heat the sample to 76.8 degrees C until all the liquid is vaporized. The pressure in the lab is 0.924 atm. How many mol of gas are present?

O If the volatile liquid had a mass of 0.142 g, what was the molar mass of the unknown liquid?

8.29 x 10⁻³ mol 17.1 g/mol

- O Explains the properties of gases and why the gas laws are accurate.
- O Contains 4 postulates.

O 1. The volume of gas particles is negligible compared to the volume which they occupy.

O 2. Gas particles are in constant, rapid, and random motion.

- O 3. Gas particles have no (attractive or repulsive) intermolecular interactions.
- O All collisions between gas particles are elastic so that all kinetic energy is conserved during collisions.

O 4. The kinetic energy of a gas is directly proportional to the K temperature.

O Using the Kinetic Molecular Theory, consider two balloons...

- If you had two balloons of exactly the same volume. One contains H₂, the other Ne...
- O Do the balloons have the same or different pressure?

- If you had two balloons of exactly the same volume. One contains H₂, the other Ne...
- O Do the balloons have the same or different temperature?

- If you had two balloons of exactly the same volume. One contains H₂, the other Ne...
- O Do the balloons have the same or different mol?

- If you had two balloons of exactly the same volume. One contains H₂, the other Ne...
- O Do the balloons have the same or different grams?

O Diffusion:

O The movement of particles from an area of high concentration to an area of low concentration... spreading out until the concentration is consistent throughout.

Gas Diffusion and Effusion

O Effusion:

O The process where a gas escapes through a small hole from one chamber to another.

Gas Diffusion and Effusion

O Root Mean Square Velocity

$$v_{\rm rms} = \sqrt{\frac{3RT}{M_m}}$$

O Graham's Law of Effusion:

$$\frac{\text{Rate of effusion of gas}_1}{\text{Rate of effusion of gas}_2} = \sqrt{\frac{M_2}{M_1}}$$

- O The Kinetic Molecular Theory assumes ideal behavior.
- Only holds at high temperature and low pressure. Under these conditions gas particles are moving rapidly and very far apart so intermolecular forces are negligible.

- O Have Intermolecular forces that reduce observed pressure.
 - O Small for Noble Gases and nonpolar molecules.
 - O Large for ionic and polar compounds.
 - O Include
 - O London Dispersion Forces
 - O Dipole-Dipole Interactions
 - O Hydrogen Bonding
 - O Ionic Interactions

- O Take up volume.
 - O Increases with molecular mass.
 - Observed volume will be too low since molecules take up some of the volume measured.

O Graph shows how increasing pressure affects the PV/nRT value.

Van der Waals Equation

- O Ideal gas law can be corrected for volume and pressure using the van der waals equation. Observed pressure is always lower, observed volume is always higher than actual.
 - O The higher the value of <u>a</u> the greater the attraction between molecules and the more easily the gas will compress.
 - O The \underline{b} term represents the volume occupied by the gas particles.

$$\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

Air Pollution

- One of the best places to observe gases.
- O Primary sources emitted directly into the atmosphere.
 - O NO_x
 - O SO_x
 - **O** VOCs
 - O Particulates
 - O Free Radicals

Air Pollution

- O Secondary sources are derived (or reacted) from primary sources.
 - O Smog
 - OO_3

Ozone Depletion

- O Depleted through free radicals.
- O Some reactions include:

$$O + O_3 \rightarrow 2 O_2$$

$$CI + O_3 \rightarrow CIO^- + O_2$$

 $CIO^- + O_3 \rightarrow CI^- + 2O_2$

 A single CI froma CFCs can regenerate and continue reacting with ozone for ~ 2 years.

Unit 5 Review Activity

- O This is NOT meant to replace homework questions or studying.
- o Unit 5 Review Problems