Enthalpy and Internal Energy

By Shawn P. Shields, Ph.D.

Introduction to Enthalpy

When a reaction occurs under constant pressure (which is the usual situation), the energy changes in the reaction are described using Enthalpy (H) instead of the Internal Energy (U).

Enthalpy

Enthalpy (H) is the sum of the Internal Energy (U) plus a PV term. The equation used in chemistry is

$$\Delta H_{rxn} = \Delta U_{rxn} + P\Delta V_{rxn}$$

Change in internal energy of the system (reaction)

Pressure-volume work

Enthalpy

The big difference between ΔH and ΔU is the little bit of PV work that the reaction does to expand against atmospheric pressure.

$$\Delta H = \Delta U + P\Delta V$$

Enthalpy is a state function.

Constant P versus Constant V Conditions

ΔH is the heat (of reaction) under constant pressure conditions.

(This means the volume can change).

$$\Delta H = \Delta U + P\Delta V$$

$$\Delta H = q_p$$

Constant P versus Constant V Conditions

 ΔU is the heat under constant volume conditions. The volume can't change, so no PV work is done during the reaction. ($\Delta V = 0$)

$$\Delta H = \Delta U + P\Delta V$$
$$= \Delta U + P(0) = \Delta U$$

$$\Delta U = q_v$$

Thermochemistry and Enthalpy

Thermochemistry is the study of heat (q) given off or absorbed during the course of a chemical reaction.

Under constant pressure (the usual situation in a lab)...

$$\Delta H_{rxn} = \Delta U_{rxn} + P\Delta V_{rxn} = q_p$$

Enthalpy of Reaction (ΔH_{rxn})

When Δ Hrxn is negative, heat is released in the reaction.

This is an exothermic reaction.

When Δ Hrxn is positive, heat is absorbed in the reaction.

This is an endothermic reaction.

Is the Reaction Exothermic or Endothermic?

Is this reaction endo or exothermic?

2 C16H34(I) + 49 O2(g) \rightarrow 32 CO2(g) + 34 H2O(I)

Is the Reaction Exothermic or Endothermic?

Is this reaction endo or exothermic?

$$2 C_{16}H_{34}(I) + 49 O_{2}(g) \rightarrow 32 CO_{2}(g) + 34 H_{2}O(I)$$

What type of reaction is it? A combustion reaction!

$$\Delta H_{rxn}$$
 = -10700 kJ/mol Endo or exothermic?

Combustion Reactions are Exothermic Reactions

"Wildfire in the Pacific Northwest (8776249150)" by Bureau of Land Management - Wildfire in the Pacific NorthwestUploaded by russavia. Licensed under Creative Commons Attribution 2.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Wildfire_in_the_Pacific_Northwest_(8776249150).jpg#mediaviewer/File:Wildfire_in_the_Pacific_Northwest_(8776249150).jpg

What You Should Be Able to Do (so far)

Define Enthalpy and use the equation in calculations.

Define the heat at constant volume (ΔU).

Define the heat at constant pressure (ΔH).

Determine whether a reaction is exo- or endothermic from the sign of ΔH .