Dimensional Analysis

This work is licensed by Shawn P. Shields-Maxwell under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Equivalent Units

- When two quantities with different units can be related to each other by an "equal" sign, they are called equivalent units.
- Some examples are:
- 12 eggs = 1 dozen
- 1000 millimeters (mm) $=1$ meter (m)
- $1 \mathrm{lb}=0.454 \mathrm{~kg}$
- $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$ Note: $1 \mathrm{~cm}^{3}$ is also known as a "cc"

Equivalent Units

- Equivalent units can be used as a conversion factor to convert from one unit to another unit.
- Examples of conversion factors are:
- 12 eggs = 1 dozen

$$
\frac{12 \text { eggs }}{1 \text { dozen }} \text { or } \frac{1 \text { dozen }}{12 \text { eggs }}
$$

$-1 \mathrm{lb}=0.454 \mathrm{~kg}$

$$
\frac{0.454 \mathrm{~kg}}{1 \mathrm{lb}} \text { or } \frac{1 \mathrm{lb}}{0.454 \mathrm{~kg}}
$$

Conversion Factors

- Conversion factors are used to convert a quantity from one unit to another unit.
- Example: A sample of eggs contains 189 eggs. How many dozen eggs are in the sample?
- Recall: 12 eggs = 1 dozen
- The conversion factors are

$$
\frac{12 \text { eggs }}{1 \text { dozen }} \text { or } \frac{1 \text { dozen }}{12 \text { eggs }}
$$

- Begin by writing the number given (that you want to convert)

$$
189 \text { eggs }
$$

- Next slide...

Conversion Factors

- Example: A sample of eggs contains 189 eggs. How many dozen eggs are in the sample?
- After writing the number given (that you want to convert), multiply it by the conversion factor that has that unit (eggs) on the bottom.

$$
189 \operatorname{eggs}\left(\frac{1 \text { dozen }}{12 \text { eggs }}\right)=
$$

- Notice how the "eggs" unit cancels out, since it is found on both the top and the bottom of the fraction! ();
- The only unit left is "dozen", which is just what we want.
- Now, do the math by multiplying numbers on the top of the fraction (numerator) and divide by numbers on the bottom of the fraction (denominator).

Conversion Factors

- Example: A sample of eggs contains 189 eggs. How many dozen eggs are in the sample?

$$
189 \operatorname{eggs}\left(\frac{1 \text { dozen }}{12 \text { ggss }^{5}}\right)=
$$

- Multiply numbers on the top of the fraction (numerator) and divide by numbers on the bottom of the fraction (denominator)...

$$
189 \times 1 \div 12=15.75 \text { dozen }
$$

(3 sig figs... 15.8 dozen)

Mini Quiz

- A certain human weighs 195 lbs . How much does this human weigh in kilograms (kg)?

Mini Quiz Solution

- A certain human weighs 195 lbs . How much does this human weigh in kilograms (kg)?
- Recall: $1 \mathrm{lb}=0.454 \mathrm{~kg}$
- The conversion factors are

$$
\frac{0.454 \mathrm{~kg}}{1 \mathrm{lb}} \text { or } \frac{1 \mathrm{lb}}{0.454 \mathrm{~kg}}
$$

- Begin by writing the number given (that you want to convert)

$$
195 \text { lbs }
$$

- Next slide...

Conversion Factors

Example: A certain human weighs 195 lbs. How much does this human weigh in kilograms (kg)?

- After writing the number given (that you want to convert), multiply it by the conversion factor that has that unit (lbs) on the bottom.

$$
195 \mathrm{lbs}\left(\frac{0.454 \mathrm{~kg}}{1 \mathrm{l} / \mathrm{J}}\right)=
$$

- Notice how the "lbs" unit cancels out, since it is found on both the top and the bottom of the fraction! ©
- The only unit left is "kg", which is just what we want.
- Now, do the math by multiplying numbers on the top of the fraction (numerator) and divide by numbers on the bottom of the fraction (denominator).

Conversion Factors

- Example: A certain human weighs 195 lbs . How much does this human weigh in kilograms (kg)?

$$
195 \mathrm{bs}\left(\frac{0.454 \mathrm{~kg}}{1 \mathrm{l}}\right)=
$$

- Multiply numbers on the top of the fraction (numerator) and divide by numbers on the bottom of the fraction (denominator)...

$$
195 \div 1 \times 0.454=88.53 \mathrm{~kg}
$$

(3 sig figs... 88.5 kg)

