Density

By Shawn P. Shields, Ph. D.

This work is licensed by Shawn P. Shields-Maxwell under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

First, A Bit About Units...

- Mass is generally defined as the amount of matter contained in an object.
- Mass can be thought of as "weight," although they are not technically the same. See the link below for a discussion of the difference.*
- The SI unit for mass is the kilogram (kg)
- In this course, we will often use "grams" (g). ($1 \mathrm{~kg}=1000 \mathrm{~g}$)
- Volume is the 3D space occupied by an object.
- The SI unit for volume is the liter (L)
- *NOTE: This concept will not be tested.

Density (d)

- Defined as the mass per unit volume of a substance
- Units commonly used in density calculations are
- Mass (m) in grams
- Volume (V) in mL or "cubic centimeters $\left(\mathrm{cm}^{3}\right)$ " or "cc"
- $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
- The equation for density is

$$
d=\frac{\text { mass }}{\text { volume }}
$$

Practice rearranging this equation to solve for density, mass, or volume ;)

Density Calculation Example

- Calculate the density of a piece of graphite with a mass of 50.0 grams and a volume of $22.4 \mathrm{~cm}^{3}$. Be sure to include the units in your answer! ©

Density Calculation Solution

- Calculate the density of a piece of graphite with a mass of 50.0 grams and a volume of $22.4 \mathrm{~cm}^{3}$. Be sure to include the units in your answer! ©
- Solution:
- First, identify what information you are given in the problem.

$$
d=\frac{\text { mass }}{\text { volume }}
$$

Density Calculation Solution

- Calculate the density of a piece of graphite with a mass of 50.0 grams and a volume of $22.4 \mathrm{~cm}^{3}$. Be sure to include the units in your answer! ©
- Solution:
- First, identify what information you are given in the problem.
- Then, plug in the given values into the density equation and solve.

$$
d=\frac{\text { mass }}{\text { volume }}=\frac{50.0 \mathrm{~g}}{22.4 \mathrm{~cm}^{3}}=2.23 \mathrm{~g} / \mathrm{cm}^{3}
$$

Density Calculation Example 2

- Isopropyl alcohol has a density of $0.785 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$. How much mass is contained in a 150 mL sample of this alcohol? Be sure to include the units in your answer! ©

Density Calculation Solution

- Isopropyl alcohol has a density of $0.785 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$. How much mass is contained in a 150 mL sample of this alcohol? Be sure to include the units in your answer! ©
- Solution:
- First, identify what information you are given in the problem.

$$
d=\frac{\text { mass }}{\text { volume }}
$$

Density Calculation Solution

- Isopropyl alcohol has a density of $0.785 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$. How much mass is contained in a 150 mL sample of this alcohol? Be sure to include the units in your answer! ©
- Solution:
- First, identify what information you are given in the problem.
- Next, rearrange the density equation to solve for mass (m). (Use the triangle)

$$
d=\frac{\text { mass }}{\text { volume }}
$$

$\mathrm{m}=$ density \times volume

Density Calculation Solution

- Isopropyl alcohol has a density of $0.785 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$. How much mass is contained in a 150 mL sample of this alcohol? Be sure to include the units in your answer! ©
- Solution:
- First, identify what information you are given in the problem.
- Next, rearrange the density equation to solve for mass (m).
- Then, plug in the given values into the rearranged density equation and solve.

$$
\mathrm{m}=\text { density } \times \text { volume }=\left(0.785^{\mathrm{g}} / \mathrm{mL}\right) \times 150 \mathrm{~mL}
$$

$$
\mathrm{m}=\left(0.785^{\mathrm{g}} / \mathrm{mL}\right) \times 150 \mathrm{~mL}=117.75 \mathrm{~g}
$$

Density Calculation Mini Quiz

- A tablet of aspirin has a density of $1.40 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$. What is the volume of a 3.90 g aspirin tablet? Be sure to include the units in your answer! ©

Density Calculation Mini Quiz Solution

- A tablet of aspirin has a density of $1.40 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$. What is the volume of a 3.90 g aspirin tablet? Be sure to include the units in your answer! ©
- Solution:
- First, identify what information you are given in the problem.

$$
d=\frac{\text { mass }}{\text { volume }}
$$

Density Calculation Mini Quiz Solution

- A tablet of aspirin has a density of $1.40 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$. What is the volume of a 3.90 g aspirin tablet? Be sure to include the units in your answer! ©
- Solution:
- First, identify what information you are given in the problem.
- Next, rearrange the density equation to solve for volume (V). (Use the triangle)

$$
\begin{aligned}
& d=\frac{\text { mass }}{\text { volume }} \\
& \text { volume }=\frac{\text { mass }}{d}
\end{aligned}
$$

Density Calculation Mini Quiz Solution

- A tablet of aspirin has a density of $1.40 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$. What is the volume of a 3.90 g aspirin tablet? Be sure to include the units in your answer! ©
- Solution:
- First, identify what information you are given in the problem.
- Next, rearrange the density equation to solve for mass (m).
- Then, plug in the given values into the rearranged density equation and solve.

$$
\text { volume }=\frac{\text { mass }}{d}=\frac{3.90 \mathrm{~g}}{1.40^{\mathrm{g}} / \mathrm{cm}^{3}}=2.7857 \mathrm{~cm}^{3}
$$

