Acid Nomenclature

(Naming Acids)

By Dr. Shawn P. Shields

Acid Overview

- Acids can easily be identified (most of the time) because the molecular formula begins with "H".
- Examples:
 - HBr (hydrobromic acid)
 - H₂SO₄ (sulfuric acid)
 - H₂CO₃ (carbonic acid)
 - HIO (hyperiodic acid)
- There are two types of acids that we will learn to name; those that include oxygen and those that do not.
- · Different naming rules apply to each case.

Naming Acids With Oxygen

 Many acids are formed from an oxyanion bonded to hydrogen

- Some common examples are
 - H₂SO₄ (sulfuric acid)
 - H₂CO₃ (carbonic acid)
 - HIO₃ (iodic acid)

Naming Acids: Rule 1

• If the oxyanion in the acid ends in -ate, change the ending to -ic, then add the word "acid."

· Examples:

- $HClO_3$: The anion is ClO_3^- (chlorate) Name the acid by removing -ate and adding -ic, then add the word "acid" \longrightarrow chloric acid
- $HClO_4$: The anion is ClO_4^- (perchlorate) Name the acid by removing -ate and adding -ic, then add the word "acid" \longrightarrow perchloric acid

Naming Acids: Rule 2

• If the oxyanion in the acid ends in -ite, change the ending to -ous, then add the word "acid."

Examples:

- $HClO_2$: The anion is ClO_2^- (chlorite) Name the acid by removing -ite and adding -ous, then add the word "acid" \longrightarrow chlorous acid

Naming Acids Without Oxygen (Rule 3)

- Acids also form from anions with -ide ending (monatomic or polyatomic anions, such as cyanide CN-)
- Examples of monatomic anions:
 - Chloride (Cl-)
 - Sulfide (S²⁻)
 - Iodide (I-)
- The corresponding acids would be
 - HCI: Hydrochloric acid
 - H₂S: Hydrosulfuric acid
 - HT: Hydroindic acid

Naming Acids (Rule 3)

- Name acids formed from monatomic anions (or polyatomics without oxygen) with -ide ending using the following guidelines:
 - a) Change the -ide ending on the anion to -ic
 - b) Add the prefix hydro- (to the beginning of the name)
 - c) Add the word "acid" to the end of the name.

· Examples:

- For an acid made form chloride (Cl-):
 - remove the -ide ending and add -ic
 - Add the prefix hydro-
 - · Add the word "acid"

hydrochloric acid

Examples: Naming Acids (Rule 3)

- More examples:
 - For an acid made form sulfide (S^{2-}) :
 - remove the -ide ending and add -ic
 - Add the prefix hydro-
 - Add the word "acid"

hydrosulfuric acid

- For an acid made form fluoride (F-):
 - remove the -ide ending and add -ic
 - Add the prefix hydro-
 - · Add the word "acid"

hydrofluoric acid

Mini Quiz

Name the following acids:

- · HBrO₂
- · HCN
- · H₃PO₄
- \cdot H₂CO₃

Name the following acids:

· HBrO2

The anion name is bromite; an oxyanion. Remove the -ite and add the -ous ending Now add the word "acid"

Bromous acid

Name the following acids:

· HCN

The anion name is cyanide; a polyatomic ion that does not contain oxygen.

Remove the -ide and add the -ic ending Add the prefix hydro-Now add the word "acid"

hydrocyanic acid

Name the following acids:

· H₃PO₄

The anion name is phosphate; an oxyanion.

Remove the -ate and add the -ic ending Add the word "acid"

Phosphoric acid

Name the following acids:

· H₂CO₃

The anion name is carbonate; an oxyanion.

Remove the -ate and add the -ic ending Add the word "acid"

Carbonic acid