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		Basic Functions and Graphs: Background You’ll Need 1

								

	
				 	Apply set and interval notation to describe ranges of values 
 
  Applying Set and Interval Notation
 Set notation and interval notation are crucial tools in mathematics for describing ranges of values precisely and concisely. These notations assist in expressing solutions to equations, defining function domains and ranges, and setting up integration and summation intervals.
 Set Notation generally refers to a way of describing sets with a list of elements or a rule that the elements must follow, often expressed in the form [image: \{x | \text{ property of } x\}]. This can include descriptions of sets that are not continuous, such as [image: \{1, 2, 3, 4\}] or [image: \{x | x \text{ is an even integer}\}].
 Interval Notation focuses on describing continuous intervals on the real number line, often using parentheses and brackets, such as [image: (a, b)] or [image: [c, d)]. In interval notation:
 	We use parentheses ( ) for intervals to indicate that the endpoint is not included, known as an open interval.
 	We use brackets [ ] for intervals to indicate that the endpoint is included, known as a closed interval.
 	The union symbol [image: \cup] is used to combine disjoint sets or intervals that are part of the domain or range but do not directly connect.
 	Infinity (∞) is always accompanied by a parenthesis because infinity is not a number but rather a concept of endlessness.
 
 set and interval notation
 	Set Notation: Uses curly braces [image: \{\}] to list elements explicitly or to describe them with conditions.
 	Interval Notation: Efficient for describing continuous ranges, using brackets [image: []]for closed intervals and parentheses [image: ( )] for open intervals.
 
  Some examples of set and interval notation being used are:
 	Describing a Domain: The domain of [image: f(x)=\sqrt{x−3}] is all [image: x] such that [image: x−3≥0]. In interval notation, this is [image: [3,∞)].
 	Solution Sets: For the inequality [image: x^2−4<12], solve to find [image: x<4] and [image: x>−4], described as [image: (−4,4)].
 	Defining Function Ranges: If a function [image: f] maps real numbers to their squares, the range can be set as [image: [0,∞)], representing all non-negative real numbers.
 
  Always determine whether the interval should include the endpoints based on the conditions given.
  Write the following sets using interval notation.
 	The set of all real numbers greater than [image: 5]
 	[image: {x∣x≤−2}]
 	[image: {x∣x≤−3 \text{ or } x≥3}]
 
 
 Show Answer 
 	This set includes every real number greater than [image: 5], but not [image: 5] itself. In interval notation, you represent this as [image: (5,∞)].
 	The set describes all real numbers less than or equal to [image: -2]. In interval notation, this is written as [image: (−∞,−2]].
 	This set includes all real numbers less than or equal to [image: -3] and all real numbers greater than or equal to [image: 3]. In interval notation, these two conditions are represented as two separate intervals combined using the union symbol. Thus, the notation for this set is [image: (−∞,−3]∪[3,∞)].

  [ohm_question]287041[/ohm_question]
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		Basic Functions and Graphs: Background You’ll Need 2

								

	
				 	Calculate and interpret the slope of a linear function
 
  Linear Functions
 Linear functions have the form [image: f(x)=ax+b], where [image: a] and [image: b] are constants. In Figure 1, we see examples of linear functions when [image: a] is positive, negative, and zero. Note that if [image: a>0], the graph of the line rises as [image: x] increases. In other words, [image: f(x)=ax+b] is increasing on [image: (−\infty, \infty)]. If [image: a<0], the graph of the line falls as [image: x] increases. In this case, [image: f(x)=ax+b] is decreasing on [image: (−\infty, \infty)]. If [image: a=0], the line is horizontal.
 [image: An image of a graph. The y axis runs from -2 to 5 and the x axis runs from -2 to 5. The graph is of the 3 functions. The first function is “f(x) = 3x + 1”, which is an increasing straight line with an x intercept at ((-1/3), 0) and a y intercept at (0, 1). The second function is “g(x) = 2”, which is a horizontal line with a y intercept at (0, 2) and no x intercept. The third function is “h(x) = (-1/2)x”, which is a decreasing straight line with an x intercept and y intercept both at the origin. The function f(x) is increasing at a higher rate than the function h(x) is decreasing.]Figure 1. These linear functions are increasing or decreasing on [image: (-\infty, \infty)] and one function is a horizontal line. Slope
 The graph of any linear function is a line. One of the distinguishing features of a line is its slope. The slope is the change in [image: y] for each unit change in [image: x]. The slope measures both the steepness and the direction of a line.
 To calculate the slope of a line, we need to determine the ratio of the change in [image: y] versus the change in [image: x]. To do so, we choose any two points [image: (x_1,y_1)] and [image: (x_2,y_2)] on the line and calculate [image: \dfrac{y_2-y_1}{x_2-x_1}]. In Figure 2, we see this ratio is independent of the points chosen.
 [image: An image of a graph. The y axis runs from -1 to 10 and the x axis runs from -1 to 6. The graph is of a function that is an increasing straight line. There are four points labeled on the function at (1, 1), (2, 3), (3, 5), and (5, 9). There is a dotted horizontal line from the labeled function point (1, 1) to the unlabeled point (3, 1) which is not on the function, and then dotted vertical line from the unlabeled point (3, 1), which is not on the function, to the labeled function point (3, 5). These two dotted have the label “(y2 - y1)/(x2 - x1) = (5 -1)/(3 - 1) = 2”. There is a dotted horizontal line from the labeled function point (2, 3) to the unlabeled point (5, 3) which is not on the function, and then dotted vertical line from the unlabeled point (5, 3), which is not on the function, to the labeled function point (5, 9). These two dotted have the label “(y2 - y1)/(x2 - x1) = (9 -3)/(5 - 2) = 2”.]Figure 2. or any linear function, the slope [image: (y_2-y_1)/(x_2-x_1)] is independent of the choice of points [image: (x_1,y_1)] and [image: (x_2,y_2)] on the line. slope of a linear line
 Consider line [image: L] passing through points [image: (x_1,y_1)] and [image: (x_2,y_2)]. Let [image: \Delta y=y_2-y_1] and [image: \Delta x=x_2-x_1] denote the changes in [image: y] and [image: x], respectively. The slope of the line is[image: m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{\Delta y}{\Delta x}]

  If the slope is positive, the line points upward when moving from left to right. If the slope is negative, the line points downward when moving from left to right. If the slope is zero, the line is horizontal.
  Slope-Intercept Form
 The linear equation [image: f(x)=ax+b] encapsulates two crucial pieces of information about its graph: the slope and the [image: y]-intercept. The coefficient ‘[image: a]‘ is the slope, dictating the angle and direction of the line, while ‘[image: b]‘ gives us the [image: y]-intercept, the point where the line crosses the [image: y]-axis. This equation is the essence of the slope-intercept form, commonly written as [image: f(x)=mx+b], with ‘[image: m]‘ signifying the slope. It succinctly represents the linear function, offering a clear view of its gradient and starting point on a graph.
 slope-intercept form
 Consider a line with slope [image: m] and [image: y]-intercept [image: (0,b)]. The equation
 [image: y=mx+b]
  
 is an equation for that line in slope-intercept form.
  Consider the line passing through the points [image: (11,-4)] and [image: (-4,5)], as shown in Figure 3.
 [image: An image of a graph. The x axis runs from -5 to 12 and the y axis runs from -5 to 6. The graph is of the function that is a decreasing straight line. The function has two points plotted, at (-4, 5) and (11, 4).]Figure 3. Finding the equation of a linear function with a graph that is a line between two given points.  
 	Find the slope of the line.
 	Find an equation for this linear function in slope-intercept form.
 
 Show Solution 
 	The slope of the line is [image: m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{5-(-4)}{-4-11}=-\dfrac{9}{15}=-\dfrac{3}{5}]. 
 
 	To find the equation in slope-intercept form, we need the slope and the [image: y]-intercept of the line. Since we know the slope to be [image: -\dfrac{3}{5}],we need to calculate the y-intercept using the slope and one of the points. 
 Using the point [image: (11, -4)], with the line equation [image: y=mx+b]. We have:
 [image: \begin{array}{rl} & -4 = \frac{3}{5}(11) + b \\ & -4 = \frac{33}{5} + b \\ \text{To find } b, \text{ we add } \frac{33}{5} \text{ to both sides:} & \\ & b = -4 + \frac{33}{5} \\ & b = \frac{-20}{5} + \frac{33}{5} \\ & b = \frac{13}{5} \end{array}]Hence, the equation of the line in slope-intercept form is:
 [image: f(x)=-\frac{3}{5}x+\frac{13}{5}].
 
 
   Aisha leaves her house at 5:50 a.m. and goes for a [image: 9]-mile run. She returns to her house at 7:08 a.m. Answer the following questions, assuming Aisha runs at a constant pace.
 	Describe the distance [image: D] (in miles) Aisha runs as a linear function of her run time [image: t] (in minutes).
 	Sketch a graph of [image: D].
 	Interpret the meaning of the slope.
 
 Show Solution 
 	At time [image: t=0], Aisha is at her house, so [image: D(0)=0]. At time [image: t=78] minutes, Aisha has finished running [image: 9] mi, so [image: D(78)=9]. The slope of the linear function is [image: m=\dfrac{9-0}{78-0}=\dfrac{3}{26}]
 The [image: y]-intercept is [image: (0,0)], so the equation for this linear function is
 [image: D(t)=\frac{3}{26}t]
 
 	To graph [image: D], use the fact that the graph passes through the origin and has slope [image: m=\frac{3}{26}].
 [image: An image of a graph. The y axis is labeled “y, distance in miles”. The x axis is labeled “t, time in minutes”. The graph is of the function “D(t) = 3t/26”, which is an increasing straight line that starts at the origin. The function ends at the plotted point (78, 9).]Figure 4. Graph of function [image: D] – Aisha ‘s distance from home in miles vs. minutes spent running. 
 	The slope [image: m=\dfrac{3}{26} \approx 0.115] describes the distance (in miles) Aisha runs per minute, or her average velocity.
 
   [ohm_question hide_question_numbers=1]288195[/ohm_question]
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		Review of Functions: Learn It 1

								

	
				 	Determine the set of all possible inputs (domain) and outputs (range) for a function from its graph or equation
 	Find where functions cross the x-axis and y-axis by looking at equations, graphs, and data tables
 	Interpret graphs and tables to describe function behaviors, including symmetry
 	Combine two or more functions to create a new function
 
  Functions
 Given two sets [image: A] and [image: B], a set with elements that are ordered pairs [image: (x,y)], where [image: x] is an element of [image: A] and [image: y] is an element of [image: B], is a relation from [image: A] to [image: B]. A relation from [image: A] to [image: B] defines a relationship between those two sets.
 A function is a special type of relation in which each element of the first set is related to exactly one element of the second set. The element of the first set is called the input; the element of the second set is called the output. Functions are used all the time in mathematics to describe relationships between two sets. For any function, when we know the input, the output is determined, so we say that the output is a function of the input.
 The area of a square is determined by its side length, so we say that the area (the output) is a function of its side length (the input). The velocity of a ball thrown in the air can be described as a function of the amount of time the ball is in the air. The cost of mailing a package is a function of the weight of the package. Since functions have so many uses, it is important to have precise definitions and terminology to study them.
  functions
 A function [image: f] consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output.
  For a general function [image: f] with domain [image: D], we often use [image: x] to denote the input and [image: y] to denote the output associated with [image: x]. When doing so, we refer to [image: x] as the independent variable and [image: y] as the dependent variable, because it depends on [image: x]. Using function notation, we write [image: y=f(x)], and we read this equation as “[image: y] equals [image: f] of [image: x].” 
 The concept of a function can be visualized using Figure 1.
 [image: An image with three items. The first item is text that reads “Input, x”. An arrow points from the first item to the second item, which is a box with the label “function”. An arrow points from the second item to the third item, which is text that reads “Output, f(x)”.]Figure 1. A function can be visualized as an input/output device. Evaluating a Function
 Evaluating a function is like finding out what the function does when you give it a specific input. Think of a function as a machine in a factory: you put something in, the machine works on it, and then it gives you something back. In the case of a function, you give it a number, and it gives you another number according to a specific rule.
 How to: Evaluate a Function:
 	Identify the input: This is the value that you will put into the function, often represented as ‘[image: x]‘.
 	Plug the input into the function: Replace the ‘[image: x]‘ in the function’s formula with the value of your input.
 	Follow the operations: Perform the mathematical operations in the formula with your input value. This means you’ll do any addition, subtraction, multiplication, division, exponentiation, etc., that the function tells you to do with that input.
 	Simplify: If the function’s rule has more than one operation, follow the order of operations (parentheses, exponents, multiplication and division, addition and subtraction) to simplify the expression down to a single number.
 	Find the output: The number you end up with after doing all the operations is the output of the function, often represented as ‘[image: f(x)]‘ or ‘[image: y]‘.
 
  For the function [image: f(x)=3x^2+2x-1], evaluate, 	[image: f(-2)]
 	[image: f(\sqrt{2})]
 	[image: f(a+h)]
 
 Show Solution 
 Substitute the given value for [image: x] in the formula for [image: f(x)].
 	 [image: f(-2)=3(-2)^2+2(-2)-1=12-4-1=7]
  
 
 	 [image: f(\sqrt{2})=3(\sqrt{2})^2+2\sqrt{2}-1=6+2\sqrt{2}-1=5+2\sqrt{2}]
  
 
 	 [image: \begin{array}{cc}\hfill f(a+h)=3(a+h)^2+2(a+h)-1& =3(a^2+2ah+h^2)+2a+2h-1\hfill \\ & =3a^2+6ah+3h^2+2a+2h-1\hfill \end{array}]
  
 
 
 Watch the following video to see the worked solution to this example.For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “1.1 Review of Functions” using this link (opens in new window). 
  Representing Functions
 Typically, a function is represented using one or more of the following tools:
 	A table
 	A graph
 	A formula
 
 We can identify a function in each form, but we can also use them together. For instance, we can plot on a graph the values from a table or create a table from a formula.
 Tables
 Functions described using a table of values arise frequently in real-world applications. Consider the following simple example.
 We can describe temperature on a given day as a function of time of day. Suppose we record the temperature every hour for a 24-hour period starting at midnight. We let our input variable [image: x] be the time after midnight, measured in hours, and the output variable [image: y] be the temperature [image: x] hours after midnight, measured in degrees Fahrenheit. We record our data in Table 1.
 Table 1. Temperature as a Function of Time of Day 	Hours after Midnight 	Temperature [image: (\text{°}F)] 	Hours after Midnight 	Temperature [image: (\text{°}F)] 
  	[image: 0] 	[image: 58] 	[image: 12] 	[image: 84] 
 	[image: 1] 	[image: 54] 	[image: 13] 	[image: 85] 
 	[image: 2] 	[image: 53] 	[image: 14] 	[image: 85] 
 	[image: 3] 	[image: 52] 	[image: 15] 	[image: 83] 
 	[image: 4] 	[image: 52] 	[image: 16] 	[image: 82] 
 	[image: 5] 	[image: 55] 	[image: 17] 	[image: 80] 
 	[image: 6] 	[image: 60] 	[image: 18] 	[image: 77] 
 	[image: 7] 	[image: 64] 	[image: 19] 	[image: 74] 
 	[image: 8] 	[image: 72] 	[image: 20] 	[image: 69] 
 	[image: 9] 	[image: 75] 	[image: 21] 	[image: 65] 
 	[image: 10] 	[image: 78] 	[image: 22] 	[image: 60] 
 	[image: 11] 	[image: 80] 	[image: 23] 	[image: 58] 
  
 We can see from the table that temperature is a function of time, and the temperature decreases, then increases, and then decreases again. However, we cannot get a clear picture of the behavior of the function without graphing it.
  [ohm_question hide_question_numbers=1]218414[/ohm_question]
  Graphs
 Given a function [image: f] described by a table, we can provide a visual picture of the function in the form of a graph. Graphing the temperatures listed in Table 1 can give us a better idea of their fluctuation throughout the day. Figure 5 shows the plot of the temperature function.
 [image: An image of a graph. The y axis runs from 0 to 90 and has the label “Temperature in Fahrenheit”. The x axis runs from 0 to 24 and has the label “hours after midnight”. There are 24 points on the graph, one at each increment of 1 on the x-axis. The first point is at (0, 58) and the function decreases until x = 4, where the point is (4, 52) and is the minimum value of the function. After x=4, the function increases until x = 13, where the point is (13, 85) and is the maximum of the function along with the point (14, 85). After x = 14, the function decreases until the last point on the graph, which is (23, 58).]Figure 5. The graph of the data from Table 1 shows temperature as a function of time.  
 From the points plotted on the graph in Figure 5, we can visualize the general shape of the graph. It is often useful to connect the dots in the graph, which represent the data from the table. 
 [image: An image of a graph. The y axis runs from 0 to 90 and has the label “Temperature in Fahrenheit”. The x axis runs from 0 to 24 and has the label “hours after midnight”. There are 24 points on the graph, one at each increment of 1 on the x-axis. The first point is at (0, 58) and the function decreases until x = 4, where the point is (4, 52) and is the minimum value of the function. After x=4, the function increases until x = 13, where the point is (13, 85) and is the maximum of the function along with the point (14, 85). After x = 14, the function decreases until the last point on the graph, which is (23, 58). A line connects all the points on the graph.]Figure 6. Connecting the dots in Figure 5 shows the general pattern of the data. In this example, although we cannot make any definitive conclusion regarding what the temperature was at any time for which the temperature was not recorded, given the number of data points collected and the pattern in these points, it is reasonable to suspect that the temperatures at other times followed a similar pattern.
 
 Algebraic Formulas
 Sometimes we are not given the values of a function in table form, rather we are given the values in an explicit formula. Formulas arise in many applications. 
 The area of a circle of radius [image: r] is given by the formula [image: A(r)=\pi r^2]. When an object is thrown upward from the ground with an initial velocity [image: v_{0}] ft/s, its height above the ground from the time it is thrown until it hits the ground is given by the formula [image: s(t)=-16t^2+v_{0}t]. When [image: P] dollars are invested in an account at an annual interest rate [image: r] compounded continuously, the amount of money after [image: t] years is given by the formula [image: A(t)=Pe^{rt}]. Algebraic formulas are important tools to calculate function values. Often we also represent these functions visually in graph form.
  Given an algebraic formula for a function [image: f], the graph of [image: f] is the set of points [image: (x,f(x))], where [image: x] is in the domain of [image: f] and [image: f(x)] is in the range. To graph a function given by a formula, it is helpful to begin by using the formula to create a table of inputs and outputs. If the domain of [image: f] consists of an infinite number of values, we cannot list all of them, but because listing some of the inputs and outputs can be very useful, it is often a good way to begin.
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				The Domain and Range of a Function
 The domain of a function is the complete set of values that can be input into the function. It answers the question, “What values am I allowed to put into this function?” To identify the domain, we look for values that will make the function work without causing mathematical errors such as division by zero or taking the square root of a negative number.
 The range of a function, conversely, is the complete set of all output values that the function can produce. When we ask, “What values can come out of this function?” we are essentially inquiring about the range. The range is determined by taking all the possible values of the domain and observing what outputs are produced by the function.
 domain and range of a function
 The set of inputs is called the domain of the function.
  
 The set of outputs is called the range of the function.
  How to: Determine the Domain and Range of a Function
 Determining the Domain:
 	Examine the function for any mathematical restrictions (like division by zero or even roots of negative numbers).
 	Exclude these restricted values from the domain.
 	Express the domain using set notation or interval notation based on what the question is asking for, considering whether the endpoints are included (closed interval) or not (open interval)
 
 Determining the Range:
 	Use the domain to calculate possible outputs.
 	Consider the nature of the function: Is it linear, quadratic, exponential? What behavior do these types of functions typically exhibit?
 	Determine if there are any maximum or minimum values the outputs cannot exceed.
 	Express the range using set notation or interval notation based on what the question is asking for, including endpoints where appropriate.
 
  When describing domains and ranges, both “set notation” and “interval notation” are commonly used.
 For the functions [image: f(x)=x^2] and [image: f(x)=\sqrt{x}], the domains are sets with an infinite number of elements. Clearly we cannot list all these elements. When describing a set with an infinite number of elements, it is often helpful to use set-builder or interval notation. When using set-builder notation to describe a subset of all real numbers, denoted [image: ℝ], we write
 [image: \{x|x \, \text{has some property}\}]
 We read this as the set of real numbers [image: x] such that [image: x] has some property. For example, if we were interested in the set of real numbers that are greater than one but less than five, we could denote this set using set-builder notation by writing
 [image: \{x|1 < x < 5\}]
 A set such as this, which contains all numbers greater than [image: a] and less than [image: b], can also be denoted using the interval notation [image: (a,b)]. Therefore,
 [image: (1,5)=\{x|1 < x < 5\}]
 The numbers 1 and 5 are called the endpoints of this set. If we want to consider the set that includes the endpoints, we would denote this set by writing
 [image: [1,5]=\{x|1\le x\le 5\}]
 We can use similar notation if we want to include one of the endpoints, but not the other. To denote the set of nonnegative real numbers, we would use the set-builder notation
 [image: \{x|0\le x\}]
 The smallest number in this set is zero, but this set does not have a largest number. Using interval notation, we would use the symbol [image: \infty], which refers to positive infinity, and we would write the set as
 [image: [0,\infty)=\{x|0\le x\}]
 It is important to note that [image: \infty] is not a real number. It is used symbolically here to indicate that this set includes all real numbers greater than or equal to zero. Similarly, if we wanted to describe the set of all nonpositive numbers, we could write
 [image: (−\infty ,0]=\{x|x\le 0\}]
 Here, the notation [image: −\infty] refers to negative infinity, and it indicates that we are including all numbers less than or equal to zero, no matter how small. The set
 [image: (−\infty ,\infty)=\{x|x \, \text{is any real number}\}]
 refers to the set of all real numbers.
 Using the union symbol allows us to describe the domain and range of functions that aren’t continuous across all numbers and have breaks or gaps in between.
 Consider a function [image: h(x)] that represents the reciprocal squared, defined as [image: h(x) = \frac{1}{(x-1)^2}].
 For the function [image: h(x)], the domain excludes [image: x=1] because the denominator becomes zero at this point, which is undefined in real number arithmetic.
 Domain of [image: h(x)]: [image: (−\infty,1)\cup(1,\infty)]
 The domain notation here, using the union symbol [image: \cup] communicates that [image: h(x)] is defined for all real numbers except [image: x=1].
  For each of the following functions, determine the domain and range.
 	[image: f(x)=(x-4)^2+5]
 	[image: f(x)=\sqrt{3x+2}-1]
 	[image: f(x)=\dfrac{3}{x-2}]
 
 Show Solution 
 	Consider [image: f(x)=(x-4)^2+5]. 	Since [image: f(x)=(x-4)^2+5] is a real number for any real number [image: x], the domain of [image: f] is the interval [image: (−\infty ,\infty)].
 	Since [image: (x-4)^2\ge 0], we know [image: f(x)=(x-4)^2+5\ge 5]. Therefore, the range must be a subset of [image: \{y|y\ge 5\}]. To show that every element in this set is in the range, we need to show that for a given [image: y] in that set, there is a real number [image: x] such that [image: f(x)=(x-4)^2+5=y]. Solving this equation for [image: x], we see that we need [image: x] such that [image: (x-4)^2=y-5].
 This equation is satisfied as long as there exists a real number [image: x] such that
 [image: x-4=±\sqrt{y-5}].
 Since [image: y\ge 5], the square root is well-defined. We conclude that for [image: x=4±\sqrt{y-5}], [image: f(x)=y], and therefore the range is [image: \{y|y\ge 5\}]  in set notation or [image: [5,\infty)] in interval notation.
 
 
 
 	Consider [image: f(x)=\sqrt{3x+2}-1]. 	To find the domain of [image: f], we need the expression [image: 3x+2\ge 0]. Solving this inequality, we conclude that the domain is [image: \{x|x\ge -\frac{2}{3}\}] in set notation or [image: [−\frac{2}{3},\infty)] in interval notation.
 	To find the range of [image: f], we note that since [image: \sqrt{3x+2}\ge 0], [image: f(x)=\sqrt{3x+2}-1\ge -1]. Therefore, the range of [image: f] must be a subset of the set [image: \{y|y\ge -1\}]. To show that every element in this set is in the range of [image: f], we need to show that for all [image: y] in this set, there exists a real number [image: x] in the domain such that [image: f(x)=y]. Let [image: y\ge -1]. Then, [image: f(x)=y] if and only if
 [image: \sqrt{3x+2}-1=y]. Solving this equation for [image: x], we see that [image: x] must solve the equation
 [image: \sqrt{3x+2}=y+1].
 Since [image: y\ge -1], such an [image: x] could exist. Squaring both sides of this equation, we have [image: 3x+2=(y+1)^2].
 Therefore, we need
 [image: 3x=(y+1)^2-2],
 which implies
 [image: x=\frac{1}{3}(y+1)^2-\frac{2}{3}].
 We just need to verify that [image: x] is in the domain of [image: f]. Since the domain of [image: f] consists of all real numbers greater than or equal to [image: -\frac{2}{3}], and
 [image: \frac{1}{3}(y+1)^2-\frac{2}{3}\ge -\frac{2}{3}],
 there does exist an [image: x] in the domain of [image: f]. We conclude that the range of [image: f] is [image: \{y|y\ge -1\}] in set notation or [image: [−1,\infty)] in interval notation.
 
 
 
 	Consider [image: f(x)=\dfrac{3}{x-2}]. 	Since [image: \frac{3}{x-2}] is defined when the denominator is nonzero, the domain is [image: \{x|x\ne 2\}] in set notation or [image: (−\infty,2)\cup(2,\infty)] in interval notation.
 	To find the range of [image: f], we need to find the values of [image: y] such that there exists a real number [image: x] in the domain with the property that
 [image: \dfrac{3}{x-2}=y]. Solving this equation for [image: x], we find that
 [image: x=\dfrac{3}{y}+2].
 Therefore, as long as [image: y\ne 0], there exists a real number [image: x] in the domain such that [image: f(x)=y]. Thus, the range is [image: \{y|y\ne 0\}] in set notation or [image: (−\infty,0)\cup(0,\infty)] in interval notation.
 
 
 
 
   [ohm_question hide_question_numbers=1]201644[/ohm_question] 
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				Intercepts of a Function
 Intercepts are a key feature when graphing and analyzing functions because they provide critical points at which the graph intersects the axes.
 The points where the graph of the function intersects the [image: x]-axis are known as the [image: x]-intercept. The [image: x]-intercept indicates where the output [image: f(x)] is [image: 0].
 These intercepts are also known as the zeros or roots of the function because they satisfy the equation [image: f(x)=0]. The [image: x]-intercepts determine where the graph of [image: f] intersects the [image: x]-axis, which gives us more information about the shape of the graph of the function. The graph of a function may never intersect the [image: x]-axis, or it may intersect multiple (or even infinitely many) times.
 Another point of interest is the [image: y]-intercept, if it exists. The [image: y]-intercept of a function is the point where the graph of the function crosses the [image: y]-axis. It represents the output value when the input value [image: x] is [image: 0]. In other words, it’s the value of the function [image: f(x)] at [image: x=0], given by [image: (0,f(0))].
 How to: Given a Function [image: f\left(x\right)], Find the [image: y]– and [image: x]-intercepts
 Finding the [image: y]-intercept:
 	Plug in zero for the [image: x]-value in the function and solve for [image: f(0)].
 	The y-intercept will be at the point [image: (0,f(0))].
 
 Finding the [image: x]-intercept:
 	Set the function equal to zero,[image: f(x)=0], and solve for [image: x] to find the roots of the function.
 	The solutions are the [image: x]-intercepts, and they’ll be in the form [image: (x,0)], where [image: x] represents each root.
 
  Since a function has exactly one output for each input, the graph of a function can have, at most, one [image: y]-intercept. If [image: x=0] is in the domain of a function [image: f], then [image: f] has exactly one [image: y]-intercept. If [image: x=0] is not in the domain of [image: f], then [image: f] has no [image: y]-intercept.
  Consider the function [image: f(x)=-4x+2].
 	Find all zeros of [image: f].
 	Find the [image: y]-intercept (if any).
 
 Show Solution 
 	To find the zeros, solve [image: f(x)=-4x+2=0]. We discover that [image: f] has one zero at [image: x=\frac{1}{2}].
 	The [image: y]-intercept is given by [image: (0,f(0))=(0,2)].
 
   [ohm_question hide_question_numbers=1]218410[/ohm_question]
 [ohm_question hide_question_numbers=1]287051[/ohm_question]
 [ohm_question hide_question_numbers=1]287050[/ohm_question]
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				Symmetry of Functions
 Function graphs often exhibit symmetry, a feature that can simplify understanding their behavior.
 Symmetry about the [image: y]-axis means that mirroring the graph over the [image: y]-axis results in the same graph, indicating an even function where [image: f(x)=f(−x)]. For instance, [image: f(x)=x^4−2x^2−3] is even because both sides of the [image: y]-axis mirror each other.
 Symmetry about the origin implies that rotating the graph [image: 180] degrees around the origin leaves the graph unchanged. This is characteristic of odd functions, satisfying [image: f(−x)=−f(x)]. Take [image: f(x)=x^3−4x] as an example; it’s odd because rotating its graph doesn’t alter it.
 Algebraically, you can check for y-axis symmetry by seeing if [image: f(−x)] equals [image: f(x)], and for origin symmetry by checking if [image: f(−x)] equals [image: −f(x)].
  [image: An image of two graphs. The first graph is labeled “(a), symmetry about the y-axis” and is of the curved function “f(x) = (x to the 4th) - 2(x squared) - 3”. The x axis runs from -3 to 4 and the y axis runs from -4 to 5. This function decreases until it hits the point (-1, -4), which is minimum of the function. Then the graph increases to the point (0,3), which is a local maximum. Then the the graph decreases until it hits the point (1, -4), before it increases again. The second graph is labeled “(b), symmetry about the origin” and is of the curved function “f(x) = x cubed - 4x”. The x axis runs from -3 to 4 and the y axis runs from -4 to 5. The graph of the function starts at the x intercept at (-2, 0) and increases until the approximate point of (-1.2, 3.1). The function then decreases, passing through the origin, until it hits the approximate point of (1.2, -3.1). The function then begins to increase again and has another x intercept at (2, 0).]
 Figure 13. (a) A graph that is symmetric about the [image: y]-axis. (b) A graph that is symmetric about the origin.
 If we are given the graph of a function, it is easy to see whether the graph has one of these symmetry properties. But without a graph, how can we determine algebraically whether a function [image: f] has symmetry? It becomes straightforward to identify symmetry in functions once we determine if they are even or odd. Even functions are symmetric about the y-axis, whereas odd functions exhibit symmetry about the origin.
 even and odd functions
 	If [image: f(-x)=f(x)] for all [image: x] in the domain of [image: f], then [image: f] is an even function. An even function is symmetric about the [image: y]-axis.
 	If [image: f(−x)=−f(x)] for all [image: x] in the domain of [image: f], then [image: f] is an odd function. An odd function is symmetric about the origin.
 
  Determine whether each of the following functions is even, odd, or neither.
 	[image: f(x)=-5x^4+7x^2-2]
 	[image: f(x)=2x^5-4x+5]
 	[image: f(x)=\dfrac{3x}{x^2+1}]
 
 Show Solution 
 To determine whether a function is even or odd, we evaluate [image: f(−x)] and compare it to [image: f(x)] and [image: −f(x)].
 	[image: f(−x)=-5(−x)^4+7(−x)^2-2=-5x^4+7x^2-2=f(x)]. Therefore, [image: f] is even.
 	[image: f(−x)=2(−x)^5-4(−x)+5=-2x^5+4x+5]. Now, [image: f(−x)\ne f(x)]. Furthermore, noting that [image: −f(x)=-2x^5+4x-5], we see that [image: f(−x)\ne −f(x)]. Therefore, [image: f] is neither even nor odd.
 	[image: f(−x)=\frac{3(−x)}{((−x)^2+1)}=\frac{-3x}{(x^2+1)}=−\left[\frac{3x}{(x^2+1)}\right]=−f(x)]. Therefore, [image: f] is odd.
 
 Watch the following video to see the worked solution this example.https://youtube.com/watch?v=qL2tyJhmrkg%3Fcontrols%3D0%26start%3D1906%26end%3D2032%26autoplay%3D0  For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end. You can view the transcript for this segmented clip using this link (opens in new window).
   [ohm_question hide_question_numbers=1]197087[/ohm_question]
  Absolute Value Function
 One symmetric function that arises frequently is the absolute value function, written as [image: |x|]. The absolute value function is defined as
 [image: f(x)=\begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}]
  
 Some students describe this function by stating that it “makes everything positive.” By the definition of the absolute value function, we see that if [image: x<0], then [image: |x|=−x>0], and if [image: x>0], then [image: |x|=x>0]. However, for [image: x=0, \, |x|=0]. Therefore, it is more accurate to say that for all nonzero inputs, the output is positive, but if [image: x=0], the output [image: |x|=0]. We can conclude that the range of the absolute value function is [image: \{y|y\ge 0\}].
 In Figure 14, we see that the absolute value function is symmetric about the [image: y]-axis and is therefore an even function.
 [image: An image of a graph. The x axis runs from -3 to 3 and the y axis runs from -4 to 4. The graph is of the function “f(x) = absolute value of x”. The graph starts at the point (-3, 3) and decreases in a straight line until it hits the origin. Then the graph increases in a straight line until it hits the point (3, 3).]Figure 14. The graph of [image: f(x)=|x|] is symmetric about the [image: y]-axis. Find the domain and range of the function [image: f(x)=2|x-3|+4].
 
 Show Solution 
 Since the absolute value function is defined for all real numbers, the domain of this function is [image: (−\infty ,\infty )]. Since [image: |x-3|\ge 0] for all [image: x], the function [image: f(x)=2|x-3|+4\ge 4]. Therefore, the range is, at most, the set [image: \{y|y\ge 4\}]. To see that the range is, in fact, this whole set, we need to show that for [image: y\ge 4] there exists a real number [image: x] such that
 [image: 2|x-3|+4=y].
 A real number [image: x] satisfies this equation as long as
 [image: |x-3|=\frac{1}{2}(y-4)].
 Since [image: y\ge 4], we know [image: y-4\ge 0], and thus the right-hand side of the equation is nonnegative, so it is possible that there is a solution. Furthermore,
 [image: |x-3|= \begin{cases} x-3, & \text{ if } \, x \ge 3 \\ -(x-3), & \text{ if } \, x < 3 \end{cases}]
 Therefore, we see there are two solutions:
 [image: x=\pm\frac{1}{2}(y-4)+3].
 The range of this function is [image: \{y|y\ge 4\}].
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=qL2tyJhmrkg%3Fcontrols%3D0%26start%3D2035%26end%3D2093%26autoplay%3D0  For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
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				Combining and Composing Functions
 In mathematics, we often build upon basic functions by combining them with operations such as addition and multiplication or by creating composite functions. This process forms new functions that can better describe and analyze complex relationships.
 Combining Functions with Mathematical Operators
 To combine functions using mathematical operators, we simply write the functions with the operator and simplify. Given two functions [image: f] and [image: g,] we can define four new functions:
 [image: \begin{array}{cccc}(f+g)(x)=f(x)+g(x)\hfill & & & \text{Sum}\hfill \\ (f-g)(x)=f(x)-g(x)\hfill & & & \text{Difference}\hfill \\ (f·g)(x)=f(x)g(x)\hfill & & & \text{Product}\hfill \\ \Big(\frac{f}{g}\Big)(x)=\frac{f(x)}{g(x)} \, \text{for} \, g(x)\ne 0\hfill & & & \text{Quotient}\hfill \end{array}]
  
 Often these functions have more than one term, so when you perform operations on them you will need to remember how to work with polynomials.
 When given multiple polynomials, you can simplify expressions by adding or subtracting them, ensuring you combine like terms and rearrange the resulting polynomial into standard form, which is organized by descending powers.  Multiplying binomials requires a different approach. Use the FOIL method to multiply the first, outer, inner, and last terms, and then combine like terms in the resulting expression.
 Here’s a concise recap of both processes:
 	Adding/Subtracting Polynomials:
 	Combine like terms.
 	When subtracting, distribute the negative sign across the second polynomial.
 	Rearrange and combine terms into standard form.
 
 
 
 Be particularly cautious when subtracting polynomials to distribute the negative sign correctly.
 [image: Two quantities in parentheses are being multiplied, the first being: a times x plus b and the second being: c times x plus d. This expression equals ac times x squared plus ad times x plus bc times x plus bd. The terms ax and cx are labeled: First Terms. The terms ax and d are labeled: Outer Terms. The terms b and cx are labeled: Inner Terms. The terms b and d are labeled: Last Terms.]
 	Multiplying Binomials (FOIL):
 	Multiply the first terms of each binomial.
 	Multiply the outer terms.
 	Multiply the inner terms.
 	Multiply the last terms.
 	Combine like terms and simplify the product.
 
 
 
  
 Given the functions [image: f(x)=2x-3] and [image: g(x)=x^2-1], find each of the following functions and state its domain.
 	[image: (f+g)(x)]
 	[image: (f-g)(x)]
 	[image: (f·g)(x)]
 	[image: \Big(\frac{f}{g}\Big)(x)]
 
 Show Solution 
 	[image: (f+g)(x)=(2x-3)+(x^2-1)=x^2+2x-4]. The domain of this function is the interval [image: (−\infty ,\infty )].
 	[image: (f-g)(x)=(2x-3)-(x^2-1)=−x^2+2x-2]. The domain of this function is the interval [image: (−\infty ,\infty)].
 	[image: (f·g)(x)=(2x-3)(x^2-1)=2x^3-3x^2-2x+3]. The domain of this function is the interval [image: (−\infty ,\infty )].
 	[image: \Big(\frac{f}{g}\Big)(x)=\dfrac{2x-3}{x^2-1}]. The domain of this function is [image: \{x|x\ne \text{±}1\}].
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=qL2tyJhmrkg%3Fcontrols%3D0%26start%3D1025%26end%3D1238%26autoplay%3D0  For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end. You can view the transcript for this segmented clip of “1.1 Review of Functions” using this link(opens in new window).
   
 Composite Functions
 Composite functions merge two functions into one by using the output of one function as the input of another.
 For example, given the functions [image: f(x)=x^2] and [image: g(x)=3x+1], the composite function [image: f\circ g] is defined such that
 [image: (f\circ g)(x)=f(g(x))=(g(x))^2=(3x+1)^2]
  
 This composition is unique because [image: f\circ g] is not the same as [image: g\circ f].
 [image: (g\circ f)(x)=g(f(x))=3f(x)+1=3x^2+1]
  
 The order in which functions are composed matters
 composite functions
 A composite function, denoted as [image: f\circ g], is created when the output of one function, [image: g(x)], becomes the input for another, [image: f(x)]. The resulting function [image: f(g(x))] has the domain of [image: g] and the range of [image: f], provided that the range of [image: g] is contained within the domain of [image: f].[image: (f\circ g)(x)=f(g(x))]
 It is important to understand the order of operations in evaluating a composite function. We follow the usual convention with parentheses by starting with the innermost parentheses first, and then working to the outside.
 [image: Explanation of the composite function. g(x), the output of g is the input of f. X is the input of g.]
  Consider the functions [image: f(x)=x^2+1] and [image: g(x)=\frac{1}{x}].
 	Find [image: (f\circ g)(x)] and state its domain and range.
 	Evaluate [image: (f\circ g)(4)] and [image: (f\circ g)\left(-\frac{1}{2}\right)].
 
 Show Solution 
 	We can find a formula for [image: (f\circ g)(x)] in two ways. First, we could write [image: (f\circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\left(\frac{1}{x}\right)^2+1]
  
 Alternatively, we could write
 [image: (f\circ g)(x)=f(g(x))=(g(x))^2+1=\left(\frac{1}{x}\right)^2+1]
  
 The domain of [image: f\circ g] is the set of all real numbers [image: x] such that [image: x\ne 0]. To find the range of [image: f], we need to find all values [image: y] for which there exists a real number [image: x\ne 0] such that
 [image: \left(\frac{1}{x}\right)^2+1=y]
  
 Solving this equation for [image: x], we see that we need [image: x] to satisfy
 [image: \left(\frac{1}{x}\right)^2=y-1],
  
 which simplifies to
 [image: \frac{1}{x}=±\sqrt{y-1}]
  
 Finally, we obtain
 [image: x=±\frac{1}{\sqrt{y-1}}]
  
 Since [image: \frac{1}{\sqrt{y-1}}] is a real number if and only if [image: y>1], the range of [image: f] is the set [image: \{y|y\ge 1\}].
 
 	[image: (f\circ g)(4)=f(g(4))=f\left(\frac{1}{4}\right)=\left(\frac{1}{4}\right)^2+1=\frac{17}{16}]
 [image: (f\circ g)\left(-\frac{1}{2}\right)=f\left(g\left(-\frac{1}{2}\right)\right)=f(-2)=(-2)^2+1=5]
 
   Remember that [image: (f\circ g)(x)\ne (g\circ f)(x)].
  Consider the functions [image: f] and [image: g] described below.
 	[image: x] 	[image: -3] 	[image: -2] 	[image: -1] 	[image: 0] 	[image: 1] 	[image: 2] 	[image: 3] 	[image: 4] 
 	[image: f(x)] 	[image: 0] 	[image: 4] 	[image: 2] 	[image: 4] 	[image: -2] 	[image: 0] 	[image: -2] 	[image: 4] 
  
  
 	[image: x] 	[image: -4] 	[image: -2] 	[image: 0] 	[image: 2] 	[image: 4] 
 	[image: g(x)] 	[image: 1] 	[image: 0] 	[image: 3] 	[image: 0] 	[image: 5] 
  
 	Evaluate [image: (g\circ f)(3)] and [image: (g\circ f)(0)].
 	State the domain and range of [image: (g\circ f)(x)].
 
 Show Solution 
 	[image: (g\circ f)(3)=g(f(3))=g(-2)=0]
 [image: (g\circ f)(0)=g(4)=5]
 	The domain of [image: g\circ f] is the set [image: \{-3,-2,-1,0,1,2,3,4\}]. Since the range of [image: f] is the set [image: \{-2,0,2,4\}], the range of [image: g\circ f] is the set [image: \{0,3,5\}].
 
   A store is advertising a sale of [image: 20\%] off all merchandise. Caroline has a coupon that entitles her to an additional [image: 15\%] off any item, including sale merchandise. If Caroline decides to purchase an item with an original price of [image: x] dollars, how much will she end up paying if she applies her coupon to the sale price? Solve this problem by using a composite function.
 Show Solution 
 Since the sale price is [image: 20\%] off the original price, if an item is [image: x] dollars, its sale price is given by [image: f(x)=0.80x]. Since the coupon entitles an individual to [image: 15\%] off the price of any item, if an item is [image: y] dollars, the price, after applying the coupon, is given by [image: g(y)=0.85y]. Therefore, if the price is originally [image: x] dollars, its sale price will be [image: f(x)=0.80x] and then its final price after the coupon will be [image: g(f(x))=0.85(0.80x)=0.68x].
   [ohm_question hide_question_numbers=1]33467[/ohm_question] 
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				 	Determine the set of all possible inputs (domain) and outputs (range) for a function from its graph or equation
 	Find where functions cross the x-axis and y-axis by looking at equations, graphs, and data tables
 	Interpret graphs and tables to describe function behaviors, including symmetry
 	Combine two or more functions to create a new function
 
  Market Mechanics: Understanding Functions Through Data
 Kai, a data analyst, is preparing a report on market trends for a large retail company. They need to use various functions to predict sales growth, analyze customer behavior, and optimize inventory management. Your task is to assist Kai by applying your knowledge of functions and their graphs to real-world data scenarios.
 [image: A tablet with various graphs and data]
  
 Kai’s first challenge involves ensuring the correct representation of data. They show you a series of graphs and asks you to identify which ones represent functions.
 [ohm_question hide_question_numbers=1]289933[/ohm_question]
  Having identified which graphs represent functions, Kai turns to the practical application of this knowledge. His company has collected data on customer purchases and wants to represent this data accurately using function notation.
 [ohm_question hide_question_numbers=1]289934[/ohm_question]
  After establishing the function notation for customer purchases, Kai moves on to analyze the impact of the advertising budget on sales. This requires evaluating a function that models this relationship.
 [ohm_question hide_question_numbers=1]289935[/ohm_question]
  With your assistance, Kai has successfully prepared the report, ensuring that all graphs represent functions and are described accurately using function notation. You’ve helped identify the types of functions and evaluated them for specific values, which is crucial for accurate data analysis and prediction. Great job!
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		Basic Classes of Functions: Learn It 1

								

	
				 	Identify polynomial degrees and solutions, and graph basic odd and even polynomials
 	Graph a piecewise-defined function
 	Describe how algebraic functions, like polynomials, differ from transcendental functions, like sine and exponential functions
 	Draw the graph of a function after it has been moved up or down, stretched or shrunk, or flipped across an axis
 
  Polynomial Functions
  A polynomial function is any function that can be written in the form
 [image: f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0]
  
 Polynomials are defined by their degree, which is the highest exponent of the variable x with a non-zero coefficient. The leading coefficient is the coefficient of the term with the highest power.
 The simplest polynomial, the zero function [image: f(x)=0], has a degree of [image: 0]. A polynomial of degree [image: 1] is known as a linear function and can be written as [image: f(x)=mx+b], where [image: m] is non-zero. If a polynomial’s highest degree term is [image: 2], it’s called a quadratic function, such as [image: f(x)=ax^2+bx+c], with [image: a] being non-zero. A polynomial with a degree of 3 is termed cubic, and so forth.
 terminology of polynomial functions
 [image: Diagram to show what the components of the leading term in a function are. The leading coefficient is a_n and the degree of the variable is the exponent in x^n. Both the leading coefficient and highest degree variable make up the leading term. So the function looks like f(x)=a_nx^n +…+a_2x^2+a_1x+a_0.]
  
 The degree of the polynomial is the highest power of the variable that occurs in the polynomial; it is the power of the first variable if the function is in general form.
  
 The leading term is the term containing the variable with the highest power, also called the term with the highest degree.
  
 The leading coefficient is the coefficient of the leading term.
  How To: Given a Polynomial Function, Identify the Degree and Leading Coefficient
 	Find the highest power of [image: x] to determine the degree of the function.
 	Identify the term containing the highest power of [image: x] to find the leading term.
 	The leading coefficient is the coefficient of the leading term.
 
  Identify the degree, leading term, and leading coefficient of the following polynomial functions.
 [image: \begin{array}{l} f\left(x\right)=3+2{x}^{2}-4{x}^{3} \\g\left(t\right)=5{t}^{5}-2{t}^{3}+7t\\h\left(p\right)=6p-{p}^{3}-2\end{array}]
 Show Solution 
 For the function [image: f\left(x\right)], the highest power of [image: x] is [image: 3], so the degree is [image: 3]. The leading term is the term containing that degree, [image: -4{x}^{3}]. The leading coefficient is the coefficient of that term, [image: –4].
 For the function [image: g\left(t\right)], the highest power of [image: t] is [image: 5], so the degree is [image: 5]. The leading term is the term containing that degree, [image: 5{t}^{5}]. The leading coefficient is the coefficient of that term, [image: 5].
 For the function [image: h\left(p\right)], the highest power of [image: p] is [image: 3], so the degree is [image: 3]. The leading term is the term containing that degree, [image: -{p}^{3}]; the leading coefficient is the coefficient of that term, [image: –1].
   [ohm_question hide_question_numbers=1]284045[/ohm_question]  
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				Zeros of Polynomial Functions
 To determine where a function [image: f] intersects the [image: x]-axis, we need to solve the equation [image: f(x)=0] for [image: x].
 In the case of the linear function [image: f(x)=mx+b], the [image: x]-intercept is given by solving the equation [image: mx+b=0]. Which can be found by [image: (−\frac{b}{m},0)].
 In the case of a quadratic function, finding the [image: x]-intercept(s) requires finding the zeros of a quadratic equation: [image: ax^2+bx+c=0]. In some cases, it is easy to factor the polynomial [image: ax^2+bx+c] to find the zeros. If not, we make use of the quadratic formula.
 The Quadratic Formula
 Consider the quadratic equation
 [image: ax^2+bx+c=0],
  
 where [image: a\ne 0]. The solutions of this equation are given by the quadratic formula
 [image: x=\dfrac{−b \pm \sqrt{b^2-4ac}}{2a}]
  
  The discriminant, given by, [image: b^2-4ac], determines the nature of a quadratic equation’s solutions. A positive discriminant indicates two distinct real solutions, a discriminant of zero results in exactly one real solution, and a negative discriminant means the equation has no real solutions.
  In the case of higher-degree polynomials, it may be more complicated to determine where the graph intersects the [image: x]-axis. For this content, we will only focus on finding the zeros of quadratic polynomials.
 Consider the quadratic function [image: f(x)=3x^2-6x+2]. Find the zeros of [image: f(x)].
 Show Solution 
 To find the zeros of the function [image: f(x)=3x^2−6x+2], we need to solve for when [image: f(x)] is equal to zero. This gives us the quadratic equation [image: 3x^2−6x+2=0]. Using the quadratic formula:[image: \begin{array}{l} x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3} \\ x = \frac{6 \pm \sqrt{36 - 24}}{6} \\ x = \frac{6 \pm \sqrt{12}}{6} \\ x = \frac{6 \pm 2\sqrt{3}}{6} \\ x = 1 \pm \frac{\sqrt{3}}{3} \end{array}]Therefore, the zeros of the function are [image: x=1−\frac{\sqrt{3}}{3}] and [image: x=1+\frac{\sqrt{3}}{3}].
   [ohm_question hide_question_numbers=1]33476[/ohm_question]
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				Graphs of Polynomial Functions Basics
 Knowing the degree of a polynomial function is useful in helping us predict what its graph will look like. Because the power of the leading term is the highest, that term will grow significantly faster than the other terms as [image: x] gets very large or very small, so its behavior will dominate the graph.
 For any polynomial, the graph of the polynomial will match the end behavior of the term of highest degree.
  There are two other important features of polynomials that influence the shape of its graph. The first is whether the degree is even or odd, and the second is whether the leading term is negative.
 Even Degree Polynomials
 In the figure below, we show the graphs of [image: f\left(x\right)={x}^{2},g\left(x\right)={x}^{4}], and [image: h\left(x\right)={x}^{6}] which all have even degrees. Notice that these graphs have similar shapes, very much like that of a quadratic function. However, as the power increases, the graphs flatten somewhat near the origin and become steeper away from the origin.
 [image: Graph of three functions, h(x)=x^2 in green, g(x)=x^4 in orange, and f(x)=x^6 in blue.]
 Odd Degree Polynomials
 The next figure shows the graphs of [image: f\left(x\right)={x}^{3},g\left(x\right)={x}^{5}], and [image: h\left(x\right)={x}^{7}] which all have odd degrees.
 [image: Graph of three functions, f(x)=x^3 in green, g(x)=x^5 in orange, and h(x)=x^7 in blue.]
  
 Notice that one arm of the graph points down and the other points up. This is because when your input is negative, you will get a negative output if the degree is odd. The following table of values shows this.
 	[image: x] 	[image: f(x)=x^4] 	[image: h(x)=x^5] 
 	[image: -1] 	[image: 1] 	[image: -1] 
 	[image: -2] 	[image: 16] 	[image: -32] 
 	[image: -3] 	[image: 81] 	[image: -243] 
  
  
 Now you try it.
 Identify whether each graph represents a polynomial function that has a degree that is even or odd.
 	[image: Graph of f(x)=5x^4+2x^3-x-4.]
 	[image: Graph of f(x)=3x^5-4x^4+2x^2+1.]
 
 Show Solution 		Both arms of this polynomial point upward, similar to a quadratic polynomial, therefore the degree must be even.  If you apply negative inputs to an even degree polynomial, you will get positive outputs back.
 	As the inputs of this polynomial become more negative the outputs also become negative. The only way this is possible is with an odd degree polynomial. Therefore, this polynomial must have an odd degree.
 
 
 
    The Sign of the Leading Term
 What would happen if we change the sign of the leading term of an even degree polynomial?  For example, let us say that the leading term of a polynomial is [image: -3x^4].  We will use a table of values to compare the outputs for a polynomial with leading term [image: -3x^4] and [image: 3x^4].
 	[image: x] 	[image: -3x^4] 	[image: 3x^4] 
 	[image: -2] 	[image: -48] 	[image: 48] 
 	[image: -1] 	[image: -3] 	[image: 3] 
 	[image: 0] 	[image: 0] 	[image: 0] 
 	[image: 1] 	[image: -3] 	[image: 3] 
 	[image: 2] 	[image: -48] 	[image: 48] 
  
  
 The grid below shows a plot with these points. The red points indicate a negative leading coefficient, and the blue points indicate a positive leading coefficient:
 [image: Grid with 8 points on the graph from the given table]
  
 The negative sign creates a reflection of [image: 3x^4] across the [image: x]-axis.  The arms of a polynomial with a leading term of [image: -3x^4] will point down, whereas the arms of a polynomial with leading term [image: 3x^4] will point up.
 The table below summarizes all four cases mentioned.
 	Even Degree 	Odd Degree 
  	[image: 11] 	[image: 12] 
 	[image: 13] 	[image: 14] 
  
 Identify whether the leading term is positive or negative and whether the degree is even or odd for the following graphs of polynomial functions.
 	[image: Graph of f(x)=-2x^6-x^5+3x^4+x^3.]
 	[image: Graph of f(x)=-6x^3+7x^2+3x+1.]
 
 Show Solution 	Both arms of this polynomial point in the same direction so it must have an even degree.  The leading term of the polynomial must be negative since the arms are pointing downward.
 	The arms of this polynomial point in different directions, so the degree must be odd. As the inputs get really big and positive, the outputs get really big and negative, so the leading coefficient must be negative.
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				Piecewise-Defined Functions
 Sometimes a function is defined by different formulas on different parts of its domain. A function with this property is known as a piecewise-defined function.
 piecewise-defined function
 A piecewise-defined function is composed of several sub-functions, each with its own formula and domain. These segments work together to form a complete function.
  The absolute value function is an example of a piecewise-defined function because the formula changes with the sign of [image: x]:
 [image: f(x)=\begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}]
  
 Other piecewise-defined functions may be represented by completely different formulas, depending on the part of the domain in which a point falls.
 Graphing Piecewise-Defined Functions
 To graph a piecewise-defined function, we graph each part of the function in its respective domain, on the same coordinate system. If the formula for a function is different for [image: x < a] and [image: x > a], we need to pay special attention to what happens at [image: x=a] when we graph the function. Sometimes the graph needs to include an open or closed circle to indicate the value of the function at [image: x=a].
 How to: Given a Piecewise Function, Sketch a Graph.
 	Split the function into its parts, one for each interval.
 	Plot each section on the graph within its designated interval.
 	Use open or closed circles to indicate whether the endpoints are included (closed) or excluded (open) for each interval.
 	Check for smooth transitions or intentional breaks between the function’s pieces. Make sure the points where the function changes are correct and that the graph matches the function’s rules for those spots.
 
  Sketch a graph of the following piecewise-defined function:
 [image: f(x)=\begin{cases} x+3, & x < 1 \\ (x-2)^2 & x \ge 1 \end{cases}]
 Show Solution 
 Graph the linear function [image: y=x+3] on the interval [image: (-\infty,1)] and graph the quadratic function [image: y=(x-2)^2] on the interval [image: [1,\infty )]. Since the value of the function at [image: x=1] is given by the formula [image: f(x)=(x-2)^2], we see that [image: f(1)=1]. To indicate this on the graph, we draw a closed circle at the point [image: (1,1)]. The value of the function is given by [image: f(x)=x+2] for all [image: x<1], but not at [image: x=1]. To indicate this on the graph, we draw an open circle at [image: (1,4)].
 [image: "An]
  
   In a big city, drivers are charged variable rates for parking in a parking garage. They are charged [image: $10] for the first hour or any part of the first hour and an additional [image: $2] for each hour or part thereof up to a maximum of [image: $30] for the day. The parking garage is open from 6 a.m. to 12 midnight.
 	Write a piecewise-defined function that describes the cost [image: C] to park in the parking garage as a function of hours parked [image: x].
 	Sketch a graph of this function [image: C(x)].
 
 Show Solution 
 	Since the parking garage is open [image: 18] hours each day, the domain for this function is [image: \{x|0 < x \le 18\}]. The cost to park a car at this parking garage can be described piecewise by the function [image: C(x)=\begin{cases} \\ 10, & 0 < x \le 1 \\ 12, & 1 < x \le 2 \\ 14, & 2 < x \le 3 \\ 16, & 3 < x \le 4 \\ & \vdots \\ 30, & 10 < x \le 18 \end{cases}]
 
 	The graph of the function consists of several horizontal line segments.
 [image: An image of a graph. The x axis runs from 0 to 18 and is labeled “x, hours”. The y axis runs from 0 to 32 and is labeled “y, cost in dollars”. The function consists 11 pieces, all horizontal line segments that begin with an open circle and end with a closed circle. The first piece starts at x = 0 and ends at x = 1 and is at y = 10. The second piece starts at x = 1 and ends at x = 2 and is at y = 12. The third piece starts at x = 2 and ends at x = 3 and is at y = 14. The fourth piece starts at x = 3 and ends at x = 4 and is at y = 16. The fifth piece starts at x = 4 and ends at x = 5 and is at y = 18. The sixth piece starts at x = 5 and ends at x = 6 and is at y = 20. The seventh piece starts at x = 6 and ends at x = 7 and is at y = 22. The eighth piece starts at x = 7 and ends at x = 8 and is at y = 24. The ninth piece starts at x = 8 and ends at x = 9 and is at y = 26. The tenth piece starts at x = 9 and ends at x = 10 and is at y = 28. The eleventh piece starts at x = 10 and ends at x = 18 and is at y = 30.]Figure 14. Graph of parking fees vs. hours spent parked in garage. 
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=iiBBHtVIk9U%3Fcontrols%3D0%26start%3D1535%26end%3D1630%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   [ohm_question hide_question_numbers=1]287053[/ohm_question]
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		Basic Classes of Functions: Learn It 5

								

	
				Algebraic Functions
 By allowing for quotients and fractional powers in polynomial functions, we create a larger class of functions. An algebraic function is one that involves addition, subtraction, multiplication, division, rational powers, and roots. Two types of algebraic functions are rational functions and root functions.
 Just as rational numbers are quotients of integers, rational functions are quotients of polynomials. In particular, a rational function is any function of the form [image: f(x)=p(x)/q(x)], where [image: p(x)] and [image: q(x)] are polynomials. The following are some examples of rational functions.
 [image: f(x)=\dfrac{3x-1}{5x+2}]  and   [image: g(x)=\dfrac{4}{x^2+1}]
 A root function is a power function of the form [image: f(x)=x^{1/n}], where [image: n] is a positive integer greater than one. For example, [image: f(x)=x^{1/2}=\sqrt{x}] is the square-root function and [image: g(x)=x^{1/3}=\sqrt[3]{x}] is the cube-root function. By allowing for compositions of root functions and rational functions, we can create other algebraic functions. For example, [image: f(x)=\sqrt{4-x^2}] is an algebraic function.
 algebraic functions
 Algebraic functions are mathematical expressions combining constants and variables through operations like addition, multiplication, division, and taking roots. They encompass both rational functions, ratios of polynomials, and root functions, involving nth roots of the variable. Th
  Transcendental Functions
 Some functions, however, cannot be described by basic algebraic operations. These functions are known as transcendental functions because they are said to “transcend,” or go beyond, algebra. The most common transcendental functions are trigonometric, exponential, and logarithmic functions.
 A trigonometric function relates the ratios of two sides of a right triangle. They are [image: \sin x,\, \cos x, \, \tan x, \, \cot x,\, \sec x], and [image: \csc x]. 
 An exponential function is a function of the form [image: f(x)=b^x], where the base [image: b>0, \, b \ne 1].
 A logarithmic function is a function of the form [image: f(x)=\log_b(x)] for some constant [image: b>0, \, b \ne 1], where [image: \log_b(x)=y] if and only if [image: b^y=x]. 
 transcendental functions
 Transcendental functions, including trigonometric, exponential, and logarithmic functions, are those which cannot be defined by a finite number of algebraic operations.
  Classify each of the following functions, as algebraic or transcendental.
 	[image: f(x)= \dfrac{\sqrt{x^3+1}}{4x+2}]
 	[image: f(x)=2^{x^2}]
 	[image: f(x)=\sin (2x)]
 
 Show Solution 
 	Since this function involves basic algebraic operations only, it is an algebraic function.
 	This function cannot be written as a formula that involves only basic algebraic operations, so it is transcendental. (Note that algebraic functions can only have powers that are rational numbers.)
 	As in part (b), this function cannot be written using a formula involving basic algebraic operations only; therefore, this function is transcendental.
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=iiBBHtVIk9U%3Fcontrols%3D0%26start%3D1378%26end%3D1454%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   [ohm_question hide_question_numbers=1]284054[/ohm_question]
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		Basic Classes of Functions: Learn It 6

								

	
				Transformations of Functions 
 Understanding how to transform the graph of a function is essential in visualizing mathematical concepts. Transformations include shifting, stretching, or reflecting the graph. Shifting moves the graph up, down, left, or right, stretching alters its width or height, and reflecting flips it over an axis.
 Vertical Shift
 Vertical shifts in graphs occur when each point on the graph moves up or down by the same amount. This shift is the result of adding or subtracting a constant to the function’s output value [image: y].
 For a positive constant [image: c], adding it to a function [image: f(x)] results in [image: f(x)+c], raising the graph up [image: c] units. Conversely, subtracting [image: c] from [image: f(x)] to get [image: f(x)-c] lowers the graph by [image: c] units. These shifts do not affect the shape of the graph; they simply reposition it along the [image: y]-axis.
 vertical shift
 Vertical shifts do not alter the shape of a function’s graph, only its position along the [image: y]-axis. Adding a positive constant lifts the graph upwards, while subtracting it pushes the graph downwards.
  The graph of the function [image: f(x)=x^3+4] is the graph of [image: y=x^3] shifted up 4 units; the graph of the function [image: f(x)=x^3-4] is the graph of [image: y=x^3] shifted down [image: 4] units (Figure 15).
 [image: An image of two graphs. The first graph is labeled “a” and has an x axis that runs from -4 to 4 and a y axis that runs from -1 to 10. The graph is of two functions. The first function is “f(x) = x squared”, which is a parabola that decreases until the origin and then increases again after the origin. The second function is “f(x) = (x squared) + 4”, which is a parabola that decreases until the point (0, 4) and then increases again after the origin. The two functions are the same in shape, but the second function is shifted up 4 units. The second graph is labeled “b” and has an x axis that runs from -4 to 4 and a y axis that runs from -5 to 6. The graph is of two functions. The first function is “f(x) = x squared”, which is a parabola that decreases until the origin and then increases again after the origin. The second function is “f(x) = (x squared) - 4”, which is a parabola that decreases until the point (0, -4) and then increases again after the origin. The two functions are the same in shape, but the second function is shifted down 4 units.]Figure 15. (a) For [image: c>0], the graph of [image: y=f(x)+c] is a vertical shift up [image: c] units of the graph of [image: y=f(x)]. (b) For [image: c>0], the graph of [image: y=f(x)-c] is a vertical shift down [image: c] units of the graph of [image: y=f(x)].  Horizontal Shift
 Horizontal shifts in function graphs reflect the influence of adding or subtracting a constant from each input value [image: x].
 For a positive constant [image: c], subtracting it from [image: x] to form [image: f(x-c)] shifts the graph to the right by [image: c] units. In contrast, adding [image: c] to [image: x], resulting in  [image: f(x+c)], moves the graph to the left by [image: c] units.
 horizontal shift
 Horizontal shifts alter the position of a function’s graph along the [image: x]-axis but do not change its shape. Subtracting a positive constant from the input moves the graph to the right, while adding it shifts the graph to the left
  Why does the graph shift left when adding a constant and shift right when subtracting a constant? To answer this question, let’s look at an example.
 Consider the function [image: f(x)=|x+3|] and evaluate this function at [image: x-3.] Since [image: f(x-3)=|x|] and [image: x-3 < x], the graph of [image: f(x)=|x+3|] is the graph of [image: y=|x|] shifted left [image: 3] units. Similarly, the graph of [image: f(x)=|x-3|] is the graph of [image: y=|x|] shifted right [image: 3] units (Figure 16).
 [image: An image of two graphs. The first graph is labeled “a” and has an x axis that runs from -8 to 5 and a y axis that runs from -3 to 5. The graph is of two functions. The first function is “f(x) = absolute value of x”, which decreases in a straight line until the origin and then increases in a straight line again after the origin. The second function is “f(x) = absolute value of (x + 3)”, which decreases in a straight line until the point (-3, 0) and then increases in a straight line again after the point (-3, 0). The two functions are the same in shape, but the second function is shifted left 3 units. The second graph is labeled “b” and has an x axis that runs from -5 to 8 and a y axis that runs from -3 to 5. The graph is of two functions. The first function is “f(x) = absolute value of x”, which decreases in a straight line until the origin and then increases in a straight line again after the origin. The second function is “f(x) = absolute value of (x - 3)”, which decreases in a straight line until the point (3, 0) and then increases in a straight line again after the point (3, 0). The two functions are the same in shape, but the second function is shifted right 3 units.]Figure 16. (a) For [image: c>0], the graph of [image: y=f(x+c)] is a horizontal shift left [image: c] units of the graph of [image: y=f(x)]. (b) For [image: c>0], the graph of [image: y=f(x-c)] is a horizontal shift right [image: c] units of the graph of [image: y=f(x)].  Vertical Scaling (Stretched/Compressed)
 A vertical scaling of a graph occurs if we multiply all outputs [image: y] of a function by the same positive constant [image: c].
 If [image: c>1], the graph of the function [image: cf(x)] appears vertically stretched, as the outputs are proportionally larger than those of the original function [image: f(x)]. If [image: 0 < c <1], then the outputs of the function [image: cf(x)] are smaller, so the graph has been compressed, resulting in a graph that is closer to the [image: x]-axis.
 vertical scaling
 Vertical scaling changes the steepness of a function’s graph. Multiplying by a constant greater than [image: 1] stretches the graph away from the [image: x]-axis, while multiplying by a constant between [image: 0] and [image: 1] compresses it towards the [image: x]-axis.
  The graph of the function [image: f(x)=3x^2] is the graph of [image: y=x^2] stretched vertically by a factor of [image: 3], whereas the graph of [image: f(x)=\frac{x^2}{3}] is the graph of [image: y=x^2] compressed vertically by a factor of [image: 3] (Figure 17).
 [image: An image of two graphs. The first graph is labeled “a” and has an x axis that runs from -3 to 3 and a y axis that runs from -2 to 9. The graph is of two functions. The first function is “f(x) = x squared”, which is a parabola that decreases until the origin and then increases again after the origin. The second function is “f(x) = 3(x squared)”, which is a parabola that decreases until the origin and then increases again after the origin, but is vertically stretched and thus increases at a quicker rate than the first function. The second graph is labeled “b” and has an x axis that runs from -4 to 4 and a y axis that runs from -2 to 9. The graph is of two functions. The first function is “f(x) = x squared”, which is a parabola that decreases until the origin and then increases again after the origin. The second function is “f(x) = (1/3)(x squared)”, which is a parabola that decreases until the origin and then increases again after the origin, but is vertically compressed and thus increases at a slower rate than the first function.]Figure 17. (a) If [image: c>1], the graph of [image: y=cf(x)] is a vertical stretch of the graph of [image: y=f(x)]. (b) If [image: 0 < c <1], the graph of [image: y=cf(x)] is a vertical compression of the graph of [image: y=f(x)].  Horizontal Scaling (Stretched/Compressed)
 Horizontal scaling modifies the width of a function’s graph by stretching or compressing it along the [image: x]-axis. This effect is achieved by multiplying the input, [image: x], by a constant [image: c].
 When [image: c>0], the function [image: f(cx)] is the graph of [image: f(x)] is compressed, as each input value is effectively scaled down, bringing the points closer together horizontally. If [image: 0 < c <1], the function [image: f(cx)] is stretched, because the input values are scaled up, spreading the points further apart on the [image: x]-axis.
 horizontal scaling
 Horizontal scaling affects the horizontal spread of a function’s graph. Multiplying the input by a constant greater than [image: 1] compresses the graph, while a constant between [image: 0] and [image: 1] stretches it.
  Consider the function [image: f(x)=\sqrt{2x}] and evaluate [image: f] at [image: \dfrac{x}{2}.] Since [image: f(\frac{x}{2})=\sqrt{x}], the graph of [image: f(x)=\sqrt{2x}] is the graph of [image: y=\sqrt{x}] compressed horizontally. The graph of [image: y=\sqrt{\frac{x}{2}}] is a horizontal stretch of the graph of [image: y=\sqrt{x}] (Figure 18).
 [image: An image of two graphs. Both graphs have an x axis that runs from -2 to 4 and a y axis that runs from -2 to 5. The first graph is labeled “a” and is of two functions. The first graph is of two functions. The first function is “f(x) = square root of x”, which is a curved function that begins at the origin and increases. The second function is “f(x) = square root of 2x”, which is a curved function that begins at the origin and increases, but increases at a faster rate than the first function. The second graph is labeled “b” and is of two functions. The first function is “f(x) = square root of x”, which is a curved function that begins at the origin and increases. The second function is “f(x) = square root of (x/2)”, which is a curved function that begins at the origin and increases, but increases at a slower rate than the first function.]Figure 18. (a) If [image: c < 1], the graph of [image: y=f(cx)] is a horizontal compression of the graph of [image: y=f(x)]. (b) If [image: 0 < c <1], the graph of [image: y=f(cx)] is a horizontal stretch of the graph of [image: y=f(x)].  Reflection
 Reflections of a function’s graph across an axis create a mirror image. When we multiply the outputs of a function, [image: f(x)], by [image: -1] we achieve a reflection across the [image: x]-axis, turning every point to its opposite position vertically. Similarly, multiplying the inputs by [image: -1] before applying the function, as in [image: f(-x)], reflects the graph across the y-axis, flipping it horizontally. 
 reflections of functions
 Reflecting a function’s graph across an axis is accomplished by multiplying by[image: -1]. To mirror across the [image: x]-axis, multiply the outputs by [image: -1]. To reflect across the [image: y]-axis, multiply the inputs by [image: -1].
  The graph of [image: f(x)=−(x^3+1)] is the graph of [image: y=(x^3+1)] reflected about the [image: x]-axis. The graph of [image: f(x)=(−x)^3+1] is the graph of [image: y=x^3+1] reflected about the [image: y]-axis (Figure 19).
 [image: An image of two graphs. Both graphs have an x axis that runs from -3 to 3 and a y axis that runs from -5 to 6. The first graph is labeled “a” and is of two functions. The first graph is of two functions. The first function is “f(x) = x cubed + 1”, which is a curved increasing function that has an x intercept at (-1, 0) and a y intercept at (0, 1). The second function is “f(x) = -(x cubed + 1)”, which is a curved decreasing function that has an x intercept at (-1, 0) and a y intercept at (0, -1). The second graph is labeled “b” and is of two functions. The first function is “f(x) = x cubed + 1”, which is a curved increasing function that has an x intercept at (-1, 0) and a y intercept at (0, 1). The second function is “f(x) = (-x) cubed + 1”, which is a curved decreasing function that has an x intercept at (1, 0) and a y intercept at (0, 1). The first function increases at the same rate the second function decreases for the same values of x.]Figure 19. (a) The graph of [image: y=−f(x)] is the graph of [image: y=f(x)] reflected about the [image: x]-axis. (b) The graph of [image: y=f(−x)] is the graph of [image: y=f(x)] reflected about the [image: y]-axis.  Multiple Transformations
 If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the correct order. Given a function [image: f(x)], the graph of the related function [image: y=cf(a(x+b))+d] can be obtained from the graph of [image: y=f(x)] by performing the transformations in the following order.
 	Horizontal shift of the graph of [image: y=f(x)]. If [image: b>0], shift left. If [image: b<0], shift right.
 	Horizontal scaling of the graph of [image: y=f(x+b)] by a factor of [image: |a|]. If [image: a<0], reflect the graph about the [image: y]-axis.
 	Vertical scaling of the graph of [image: y=f(a(x+b))] by a factor of [image: |c|]. If [image: c<0], reflect the graph about the [image: x]-axis.
 	Vertical shift of the graph of [image: y=cf(a(x+b))]. If [image: d>0], shift up. If [image: d<0], shift down.
 
 We can summarize the different transformations and their related effects on the graph of a function in the following table.
 Transformations of Functions 	Transformation of [image: f(c>0)] 	Effect on the graph of[image: f] 
  	[image: f(x)+c] 	Vertical shift up [image: c] units 
 	[image: f(x)-c] 	Vertical shift down [image: c] units 
 	[image: f(x+c)] 	Shift left by [image: c] units 
 	[image: f(x-c)] 	Shift right by [image: c] units 
 	[image: cf(x)] 	Vertical stretch if [image: c>1]; vertical compression if [image: 0 < c < 1] 
 	[image: f(cx)] 	Horizontal stretch if [image: 0 < c < 1]; horizontal compression if [image: c>1] 
 	[image: −f(x)] 	Reflection about the [image: x]-axis 
 	[image: f(−x)] 	Reflection about the [image: y]-axis 
  
  Describe how the function [image: f(x)=−(x+1)^2-4] can be graphed using the graph of [image: y=x^2] and a sequence of transformations.
 Show Solution 
 To graph the function [image: f(x)=−(x+1)^2-4] using transformations, start with the base function [image: g(x)=x^2] and follow these steps:
 	Horizontal Shift: The term [image: (x+1)] within [image: (x+1)^2] indicates a horizontal shift of the graph of [image: g(x)] one unit to the left. 
 	Vertical Shift: The [image: −4] at the end of [image: (x+1)^2−4] indicates a vertical shift downward by [image: 4] units. This is a result of subtracting [image: 4] from the entire squared term.
 	Reflection: The negative sign in front of the function indicates that the graph will be a reflection of [image: g(x)=x^2] across the [image: x]-axis. This means that the parabola, which normally opens upwards, will now open downwards.
 
 To graph [image: f(x)]:
 	Begin with the graph of [image: g(x)=x^2], which is a parabola with its vertex at the origin [image: (0,0)].
 	Reflecting it across the x-axis due to the negative sign, which will flip the parabola to open downwards.
 	Move this graph one unit left to accommodate the [image: +1] within the squared term, shifting the vertex to [image: (−1,0)].
 	Then, shift the graph down four units for the [image: −4], placing the vertex at [image: (−1,−4)].
 
 The transformed graph of [image: f(x)] will be a downward-opening parabola with its vertex at [image: (−1,−4)].
   It is beneficial when working with transformations to remember the basic toolkit functions. These will be your starting points when trying to identify how the function has been transformed.
 	Toolkit Functions 
 	Name 	Function 	Graph 
  	Constant 	[image: f\left(x\right)=c], where [image: c] is a constant 	[image: Graph of a constant function.] 
 	Identity/Linear 	[image: f\left(x\right)=x] 	[image: Graph of a straight line.] 
 	Absolute value 	[image: f\left(x\right)=|x|] 	[image: Graph of absolute function.] 
 	Quadratic 	[image: f\left(x\right)={x}^{2}] 	[image: Graph of a parabola.] 
 	Cubic 	[image: f\left(x\right)={x}^{3}] 	[image: Graph of f(x) = x^3.] 
 	Reciprocal 	[image: f\left(x\right)=\frac{1}{x}] 	[image: Graph of f(x)=1/x.] 
 	Reciprocal squared 	[image: f\left(x\right)=\frac{1}{{x}^{2}}] 	[image: Graph of f(x)=1/x^2.] 
 	Square root 	[image: f\left(x\right)=\sqrt{x}] 	[image: Graph of f(x)=sqrt(x).] 
 	Cube root 	[image: f\left(x\right)=\sqrt[3]{x}] 	[image: Graph of f(x)=x^(1/3).] 
  
  For each of the following functions, sketch a graph by using a sequence of transformations of a toolkit function.
 	[image: f(x)=−|x+2|-3]
 	[image: f(x)=3\sqrt{−x}+1]
 
 Show Solution 
 	Starting with the graph of [image: y=|x|], shift [image: 2] units to the left, reflect about the [image: x]-axis, and then shift down [image: 3] units.
 [image: An image of a graph. The x axis runs from -7 to 7 and a y axis runs from -7 to 7. The graph contains four functions. The first function is “f(x) = absolute value of x” and is labeled starting function. It decreases in a straight line until the origin and then increases in a straight line again after the origin. The second function is “f(x) = absolute value of (x + 2)”, which decreases in a straight line until the point (-2, 0) and then increases in a straight line again after the point (-2, 0). The second function is the same shape as the first function, but is shifted left 2 units. The third function is “f(x) = -(absolute value of (x + 2))”, which increases in a straight line until the point (-2, 0) and then decreases in a straight line again after the point (-2, 0). The third function is the second function reflected about the x axis. The fourth function is “f(x) = -(absolute value of (x + 2)) - 3” and is labeled “transformed function”. It increases in a straight line until the point (-2, -3) and then decreases in a straight line again after the point (-2, -3). The fourth function is the third function shifted down 3 units.]Figure 20. The function [image: f(x)=−|x+2|-3] can be viewed as a sequence of three transformations of the function [image: y=|x|]. 
 	Starting with the graph of [image: y=\sqrt{x}], reflect about the [image: y]-axis, stretch the graph vertically by a factor of [image: 3], and move up [image: 1] unit.
 [image: An image of a graph. The x axis runs from -7 to 7 and a y axis runs from -2 to 10. The graph contains four functions. The first function is “f(x) = square root of x” and is labeled starting function. It is a curved function that begins at the origin and increases. The second function is “f(x) = square root of -x”, which is a curved function that decreases until it reaches the origin, where it stops. The second function is the first function reflected about the y axis. The third function is “f(x) = 3(square root of -x)”, which is a curved function that decreases until it reaches the origin, where it stops. The third function decreases at a quicker rate than the second function. The fourth function is “f(x) = 3(square root of -x) + 1” and is labeled “transformed function”. Itis a curved function that decreases until it reaches the point (0, 1), where it stops. The fourth function is the third function shifted up 1 unit.]Figure 21. The function [image: f(x)=3\sqrt{−x}+1] can be viewed as a sequence of three transformations of the function [image: y=\sqrt{x}]. 
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=iiBBHtVIk9U%3Fcontrols%3D0%26start%3D1635%26end%3D1821%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
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		Basic Classes of Functions: Apply It

								

	
				 	Identify polynomial degrees and solutions, and graph basic odd and even polynomials
 	Graph a piecewise-defined function
 	Describe how algebraic functions, like polynomials, differ from transcendental functions, like sine and exponential functions
 	Draw the graph of a function after it has been moved up or down, stretched or shrunk, or flipped across an axis
 
  Quadratic Quest: Ecosystem Equilibrium
 Aria, an environmental scientist, is studying the population dynamics of a species of butterfly in a local ecosystem. The population’s growth and decline over time can be modeled using quadratic functions, which will help Aria understand the factors affecting the species and predict future population changes.
 [image: Blue butterflies in their ecosystem]
  
 Aria presents a quadratic function that models the butterfly population over time: [image: P(t)=−kt^2+mt+b], where [image: t] is time in years, [image: P(t)] is the population, [image: k] is the rate of population decline due to limiting factors, [image: m] is the initial population growth rate, and [image: b] is the initial population.
 [ohm_question hide_question_numbers=1]289936[/ohm_question]
  Having identified how the coefficients of our quadratic function mirror the dynamics of the butterfly population, we can broaden our perspective to understand the full scope of the population’s potential over time. This requires us to examine the domain and range of our function.
 [ohm_question hide_question_numbers=1]289937[/ohm_question]
  Now that we’ve established the theoretical limits of the butterfly population, it’s time to visualize these dynamics. A graph will not only illustrate the population’s trajectory over time but also highlight key moments and values that are particularly relevant for the conservation board’s strategy planning.
 [ohm_question hide_question_numbers=1]289938[/ohm_question]
  After graphing the population trends and understanding the key features of our quadratic model, let’s challenge ourselves further. Can we predict when the butterfly population will return to its initial size? This insight is crucial for Aria to evaluate the long-term impact of environmental changes on the species.
 [ohm_question hide_question_numbers=1]289939[/ohm_question]
  Having determined when the population will return back to its starting number, let’s consider how environmental factors might alter this course. Suppose the rate of population decline is reduced by half due to successful conservation measures. What would our new population model look like under these improved conditions?
 [ohm_question hide_question_numbers=1]289940[/ohm_question]
  Finally, with a new model reflecting a slower decline in the butterfly population, let’s delve into the effects of a successful conservation effort on the population’s growth rate and maximum size. By transforming our original function, we can uncover the new face of the population graph and interpret the implications of these positive changes for the ecosystem.
 [ohm_question hide_question_numbers=1]289941[/ohm_question]
  By engaging with these tasks, Aria can effectively communicate the population dynamics to the conservation board, facilitating the development of protective measures. This activity illustrates the practical application of quadratic functions in environmental science, underscoring their importance in ecological analysis and prediction. Excellent work today!
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		More Basic Functions and Graphs: Background You’ll Need 1

								

	
				 	Evaluate trigonometric functions using the unit circle
 
  Trigonometric Functions and the Unit Circle
 When evaluating trigonometric functions, the unit circle is an invaluable tool. It is a circle with a radius of one unit, centered at the origin of a coordinate plane. Each point on the unit circle corresponds to a right triangle, where the hypotenuse is the radius of the circle, and the [image: x] and [image: y] coordinates of the point represent the lengths of the other two sides.
 [image: f-d-43392176e093fa07f39e1f3687226d4d751b809be928c16abac5dcb3+IMAGE+IMAGE]Figure 1. Unit Circle The unit circle provides the sine and cosine values for any given angle measure. For each angle, the [image: x]-coordinate represents its cosine value, and the [image: y]-coordinate stands for its sine value. The tangent of an angle is the ratio of the sine to the cosine:
 [image: \tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)}=\frac{y}{x}]
 unit circle
 The unit circle allows us to evaluate trigonometric functions by using the coordinates of points on the circle.
 	The [image: x]-coordinate gives the cosine value
 	The [image: y]-coordinate gives the sine value
 	The ratio of [image: y] to [image: x] gives the tangent value for any given angle.
 
  Remember, every angle in quadrant two, three, or four has a reference angle that lies in quadrant one. The quadrant of the original angle only affects the sign (positive or negative) of a trigonometric function’s value at a given angle.
  Certain angles have coordinates that can be easily remembered:
 	At [image: 0] degrees (or [image: 0] radians), the coordinates are ([image: 1, 0]), so [image: \cos(0) = 1] and [image: \sin(0) = 0].
 	At [image: 90] degrees (or [image: \frac{\pi}{2}] radians), the coordinates are ([image: 0, 1]), so [image: \cos\left(\frac{\pi}{2}\right) = 0] and [image: \sin\left(\frac{\pi}{2}\right) = 1].
 	At [image: 180] degrees (or [image: \pi] radians), the coordinates are ([image: -1, 0]), so [image: \cos(\pi) = -1] and [image: \sin(\pi) = 0].
 	At [image: 270] degrees (or [image: \frac{3\pi}{2}] radians), the coordinates are ([image: 0, -1]), so [image: \cos\left(\frac{3\pi}{2}\right) = 0] and [image: \sin\left(\frac{3\pi}{2}\right) = -1].
 
 How To: Evaluate at Any Angle using the Unit Circle
 For any angle [image: \theta], you can determine its corresponding point on the unit circle by:
 	Start with your given angle [image: \theta]. Position it so that it starts at the positive [image: x]-axis and opens counterclockwise for positive angles, or clockwise for negative angles.
 	Extend the angle’s terminal side until it intersects the unit circle at a point [image: P].
 	The coordinates of point [image: P(x,y)] on the unit circle give you the cosine and sine of [image: \theta] respectively. 	[image: \cos(\theta)] is the [image: x]-coordinate of point [image: P].
 	[image: \sin(\theta)] is the [image: y]-coordinate of point [image: P]. 
 
 
 	Remember that the signs of the sine and cosine are determined by the quadrant in which point [image: P] lies: 		In Quadrant I, both sine and cosine are positive.
 	In Quadrant II, sine is positive and cosine is negative.
 	In Quadrant III, both sine and cosine are negative.
 	In Quadrant IV, sine is negative and cosine is positive. 
 
 
 
 
 
  The terminal side of an angle is the side that moves or rotates from the initial side to form the angle. The position of the terminal side after this rotation determines the magnitude of the angle.
 [image: Illustration of an angle with labels for initial side, terminal side, and vertex.]
 Find the coordinates of the point on the unit circle at an angle of [image: \frac{5\pi }{3}].
 Show Solution 
 [image: \left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)]
   [ohm_question hide_question_numbers=1]173155-16024[/ohm_question]
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				 	Convert between radical and rational exponent notations
 
  Radical and Rational Exponent Notations
 Radical equations are equations that contain variables in the radicand (the expression under a radical symbol), such as
 [image: \begin{array}{ccc} \sqrt{3y+18}=x & \\ \sqrt{x+3}=y-3 & \\ \sqrt{x+5}-\sqrt{y - 3}=2\end{array}]
 Radical equations are manipulated by eliminating each radical, one at a time until you have solved for the indicated variable.
 radical equation
 An equation containing terms with a variable in the radicand is called a radical equation.
  Rational exponents are exponents that are fractions, where the numerator is a power and the denominator is a root. For example, [image: {16}^{\frac{1}{2}}] is another way of writing [image: \sqrt{16}] and [image: {8}^{\frac{2}{3}}] is another way of writing [image: \left(\sqrt[3]{8}\right)^2].
 We can solve equations in which a variable is raised to a rational exponent by raising both sides of the equation to the reciprocal of the exponent. The reason we raise the equation to the reciprocal of the exponent is because we want to eliminate the exponent on the variable term, and a number multiplied by its reciprocal equals [image: 1].
 rational exponent
 A rational exponent indicates a power in the numerator and a root in the denominator. There are multiple ways of writing an expression, a variable, or a number with a rational exponent:
 [image: {a}^{\frac{m}{n}}={\left({a}^{\frac{1}{n}}\right)}^{m}={\left({a}^{m}\right)}^{\frac{1}{n}}=\sqrt[n]{{a}^{m}}={\left(\sqrt[n]{a}\right)}^{m}]
 To convert a radical to an exponent notation, remember that the [image: n]th root of a number can be written as a power with a fractional exponent. The denominator of the fraction is the root’s index ([image: n]), and the numerator is the power to which the radicand is raised.
 The square root of [image: a], written as [image: \sqrt{a}], can be expressed as [image: a^{\frac{1}{2}}].
 The cube root of [image: a], written as  [image: \sqrt[3]{a}]​, can be expressed as [image: a^{\frac{1}{3}}]. Conversely, to convert an expression from exponent notation to radical notation, use the denominator of the exponent’s fraction as the index of the radical, and the numerator as the power inside the radical.
 [image: a^{\frac{3}{2}}] can be written as [image: \sqrt[2]{a^3}]​ or [image: \sqrt[3]{a^3}]​.
 [image: a^{\frac{2}{5}}] can be written as [image: \sqrt[5]{a^2}]​. Convert the fifth root of [image: x^3], written as [image: \sqrt[5]{a^3}]​, to exponent notation. Show Answer 	Identify the index of the root, which is [image: 5] in this case.
 	Write the radicand (the number under the radical) with an exponent that represents the power it is raised to, which is 3 here.
 	Combine the root and the power into a single exponent using the rule [image: {a}^{\frac{m}{n}}=\sqrt[n]{{a}^{m}}]​
 	Apply the rule to get [image: x^{\frac{3}{5}}].
 
 The exponent notation for [image: \sqrt[5]{a^3}]​ is [image: x^{\frac{3}{5}}]. 
  Convert [image: y^{\frac{4}{3}}] into radical notation. Show Answer 	The denominator of the fraction in the exponent ([image: 3]) is the index of the radical.
 	The numerator ([image: 4]) will be the power to which the radicand is raised inside the radical.
 	Write the radical with the index and raise the radicand to the power of the numerator.
 	The conversion is then written as [image: \sqrt[3]{y^4}].
 
 The radical notation for [image: y^{\frac{4}{3}}] is [image: \sqrt[3]{y^4}]. 
  [ohm_question hide_question_numbers=1]284086-287002[/ohm_question]
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				 	Explain the difference between exponential growth and decay
 
  Identify Exponential Growth and Decay
 In real-world applications, we need to model the behavior of a function. In mathematical modeling, we choose a familiar general function with properties that suggest that it will model the real-world phenomenon we wish to analyze. In the case of rapid growth (or decay), we may choose to model the given scenario using the following function:
 [image: y={A}_{0}{b}^{x}]
 where [image: {A}_{0}] is equal to the value at [image: x=0], [image: b] is the base, and [image: x] is the exponent. Note that the variable is in the exponent which makes the function exponential.
 exponential function
 For any real number [image: x], an exponential function is a function with the form
 [image: y={A}_{0}{b}^{x}]
 where
 	[image: a] is a non-zero real number called the initial value and
 	[image: b] is any positive real number such that [image: b≠1].
 	The domain is [image: \left(-\infty , \infty \right)], or all real numbers
 	The range is all positive real numbers if [image: a > 0]
 	The range is all negative real numbers if [image: a < 0]
 	The y-intercept is  [image: \left(0,{A}_{0}\right)], and the horizontal asymptote is [image: y=0]
 
 An exponential function models exponential growth when [image: b > 1] and exponential decay when [image: b < 1].
  When [image: b>1], the exponential function represents exponential growth. Common applications of exponential growth include doubling time, the time it takes for a quantity to double. Such phenomena as wildlife populations, financial investments, biological samples, and natural resources may exhibit growth based on a doubling time.
 When [image: b<1], the exponential function represents exponential decay. One common application of exponential decay includes calculating half-life, or the time it takes for a substance to exponentially decay to half of its original quantity. We use half-life in applications involving radioactive isotopes.
 Exponential growth and decay graphs have a distinctive shape, as we can see in the graphs below. It is important to remember that, although parts of each of the two graphs seem to lie on the [image: x]-axis, they are really a tiny distance above the [image: x]-axis.
 [image: Graph of y=2e^(3x) with the labeled points (-1/3, 2/e), (0, 2), and (1/3, 2e) and with the asymptote at y=0.]A graph showing exponential growth. The equation is [image: y=2{e}^{3x}]. [image: Graph of y=3e^(-2x) with the labeled points (-1/2, 3e), (0, 3), and (1/2, 3/e) and with the asymptote at y=0.]A graph showing exponential decay. The equation is [image: y=3{e}^{-2x}]. [ohm_question hide_question_numbers=1]218951[/ohm_question]
  [ohm_question hide_question_numbers=1]218952[/ohm_question]
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				 	Switch between degree and radian measurements for angles
 	Understand and use the basic rules and relationships in trigonometry
 	Analyze trigonometric functions by examining their graphs, identifying cycles, and describing shifts in sine and cosine graphs
 
  Degrees versus Radians
 Probably the most familiar unit of angle measurement is the degree. One degree is [image: \frac{1}{360}] of a circular rotation, so a complete circular rotation contains [image: 360] degrees. An angle measured in degrees should always include the unit “degrees” after the number, or include the degree symbol [image: °].
 You will use degrees a lot as you learn geometry but you may see it in other areas of life as well. Degrees are used in:
 	Navigation – navigation systems, such as compasses and GPS devices, use degrees to indicate directions.
 	Construction – degrees are used in construction and engineering to measure and specify angles when building structures. Architects, carpenters, and engineers use degrees to determine the angle of roof slopes, the inclination of ramps, or the angles of intersecting beams.
 	Astronomy – astronomers use degrees to describe the positions of celestial objects, angular separations between stars or planets, and the size of apparent motions of celestial bodies
 	Sports – in golf, angles are used to calculate the direction and trajectory of shots. In basketball, the angle of a player’s jump shot can affect the ball’s path to the basket
 	Art and design – when creating perspective drawings or determining the tilt and angles of lines in graphic design, degrees are used to ensure accurate proportions and compositions
 
  Radians provide an alternative to degrees for measuring angles and are often preferred in mathematics because they have a natural relationship with circle geometry. Radians are based on the concept of using the radius of a circle to measure angles.
 One radian is the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle. A central angle is an angle formed at the center of a circle by two radii. Because the total circumference equals [image: 2π] times the radius, a full circular rotation is 2[image: π] radians. The symbol for radians is [image: \text{rad}]. 
 Pi ([image: π]) is a mathematical constant approximately equal to [image: 3.14]. It represents the ratio of a circle’s circumference to its diameter.
  Since there are [image: 360] degrees in a circle and [image: 2π] radians in a circle, the conversion factor between degrees and radians is [image: \frac{180}{π}]. It is expected to keep the [image: π] symbol when discussing radians, not converting to decimals, in order to maintain precision.
 [image: \begin{array}{rcl} 2\pi \text{ radians} & = & 360^\circ \\ \pi \text{ radians} & = & \frac{360^\circ}{2} = 180^\circ \\ 1 \text{ radian} & = & \frac{180^\circ}{\pi} \approx 57.3^\circ \end{array}]
 degrees versus radians
 	Degrees are the most common measurement of angles. A circle is divided into [image: 360^\circ]. The symbol for degrees is a small, raised circle: [image: ^\circ].
 	Radians are an alternative unit of angle measurement. In a circle, there are [image: 2π] radians. The symbol for radians is [image: \text{rad}].
 
 The conversion factor between degrees and radians is [image: \frac{180}{π}].
  
 [image: \text{Angle in Degrees} = \text{Angle in Radians }\times\frac{180}{π}]
  
 [image: \text{Angle in Radians} = \text{Angle in Degrees }\times\frac{π}{180}]
 
  Degrees are commonly used in everyday situations like navigation, construction, and basic geometry, while radians are more prevalent in advanced mathematics, physics, engineering, and other scientific fields.
  	Express [image: 225°] using radians.
 	Express [image: \dfrac{5\pi}{3}] rad using degrees.
 
 Show Solution 
 Use the fact that [image: 180°]is equivalent to [image: \pi] radians as a conversion factor: [image: 1=\dfrac{\pi \, \text{rad}}{180^{\circ}}=\dfrac{180^{\circ}}{\pi \, \text{rad}}].
 	[image: 225^{\circ}=225^{\circ}·\dfrac{\pi }{180^{\circ}}=\dfrac{5\pi }{4}\text{ rad}]
 	[image: \dfrac{5\pi }{3}\text{ rad}]= [image: \dfrac{5\pi }{3}·\dfrac{180^{\circ}}{\pi }=300^{\circ}]
 
   A Ferris wheel with a radius of [image: 20] meters makes one complete rotation every [image: 5] minutes. A passenger boards at the bottom of the wheel. After [image: 1] minute, what is the angle of rotation in:
 	degrees?
 	radians?
 
 
 Show Answer 
 Angle of rotation after [image: 1] minute:
 	Full rotation takes [image: 5] minutes
 	In [image: 1] minute, it rotates [image: \frac{1}{5}] of a full circle
 
 	In degrees: [image: (\frac{1}{5}) × 360° = 72°]
 	In radians: [image: (\frac{1}{5}) × 2π \text{ rad} = \frac{2π}{5} rad ≈ 1.26 \text{ rad}]
 
   [ohm_question hide_question_numbers=1]284090[/ohm_question]
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				The Six Basic Trigonometric Functions
 Figure 1 shows a right triangle with a vertical side of length [image: y] and a horizontal side has length [image: x]. Notice that the triangle is inscribed in a circle of radius [image: 1]. Such a circle, with a center at the origin and a radius of 1, is known as a unit circle.
 [image: Graph of quarter circle with radius of 1. Inscribed triangle with an angle of t. Point of (x,y) is at intersection of terminal side of angle and edge of circle.]Figure 1 We can define the trigonometric functions in terms an angle [image: t] and the lengths of the sides of the triangle. The adjacent side is the side closest to the angle, [image: x]. (Adjacent means “next to.”) The opposite side is the side across from the angle, [image: y]. The hypotenuse is the side of the triangle opposite the right angle, [image: 1]. These sides are labeled in the figure below.
 [image: A right triangle with hypotenuse, opposite, and adjacent sides labeled.]Figure 2 Given a right triangle with an acute angle of [image: t], the first three trigonometric functions are:
 [image: \begin{array}{ll} \text{Sine} & \sin t = \frac{\text{opposite}}{\text{hypotenuse}} \\ \text{Cosine} & \cos t = \frac{\text{adjacent}}{\text{hypotenuse}} \\ \text{Tangent} & \tan t = \frac{\text{opposite}}{\text{adjacent}} \\ \end{array}]
 A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of “Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent.” In addition to sine, cosine, and tangent, there are three more functions. These too are defined in terms of the sides of the triangle.
 [image: \begin{array}{ll} \text{Secant} & \sec t = \frac{\text{hypotenuse}}{\text{adjacent}} \\ \text{Cosecant} & \csc t = \frac{\text{hypotenuse}}{\text{opposite}} \\ \text{Cotangent} & \cot t = \frac{\text{adjacent}}{\text{opposite}} \\ \end{array}]
 Take another look at these definitions. These functions are the reciprocals of the first three functions.
 [image: \begin{array}{ll} \sin t = \frac{1}{\csc t} & \csc t = \frac{1}{\sin t} \\ \cos t = \frac{1}{\sec t} & \sec t = \frac{1}{\cos t} \\ \tan t = \frac{1}{\cot t} & \cot t = \frac{1}{\tan t} \\ \end{array}]
 the six basic trigonometric functions
 [image: \begin{array}{ll} \sin t = \frac{\text{opposite}}{\text{hypotenuse}} & \csc t = \frac{\text{hypotenuse}}{\text{opposite}} \\ \cos t = \frac{\text{adjacent}}{\text{hypotenuse}} & \sec t = \frac{\text{hypotenuse}}{\text{adjacent}} \\ \tan t = \frac{\text{opposite}}{\text{adjacent}} & \cot t = \frac{\text{adjacent}}{\text{opposite}} \\ \end{array}]
  
 If [image: x=0], then [image: \sec \theta] and [image: \tan \theta] are undefined. If [image: y=0], then [image: \cot \theta] and [image: \csc \theta] are undefined.
  How to: Given the side lengths of a right triangle, evaluate the six trigonometric functions of one of the acute angles.
 
 	If needed, draw the right triangle and label the angle provided.
 	Identify the angle, the adjacent side, the side opposite the angle, and the hypotenuse of the right triangle.
 	Find the required function: 	sine as the ratio of the opposite side to the hypotenuse
 	cosine as the ratio of the adjacent side to the hypotenuse
 	tangent as the ratio of the opposite side to the adjacent side
 	secant as the ratio of the hypotenuse to the adjacent side
 	cosecant as the ratio of the hypotenuse to the opposite side
 	cotangent as the ratio of the adjacent side to the opposite side 
 
 
 
  Using the triangle shown in the figure below, evaluate [image: \sin α],[image: \cos α],[image: \tan α],[image: \sec α],[image: \csc α],and [image: \cot α].
 [image: Right triangle with sides of 3, 4, and 5. Angle alpha is also labeled which is opposite the side labeled 4.]
 
 Show Answer [image: \begin{array}{ccc} \sin \alpha & = & \frac{\text{opposite to } \alpha}{\text{hypotenuse}} = \frac{4}{5} \\ \cos \alpha & = & \frac{\text{adjacent to } \alpha}{\text{hypotenuse}} = \frac{3}{5} \\ \tan \alpha & = & \frac{\text{opposite to } \alpha}{\text{adjacent to } \alpha} = \frac{4}{3} \\ \sec \alpha & = & \frac{\text{hypotenuse}}{\text{adjacent to } \alpha} = \frac{5}{3} \\ \csc \alpha & = & \frac{\text{hypotenuse}}{\text{opposite to } \alpha} = \frac{5}{4} \\ \cot \alpha & = & \frac{\text{adjacent to } \alpha}{\text{opposite to } \alpha} = \frac{3}{4} \end{array}]
  The real power of right-triangle trigonometry emerges when we look at triangles in which we know an angle but do not know all the sides. Sine, cosine, and tangent are crucial for calculating an unknown side length in a right triangle.
 How to: Use Trigonometric Functions to Find Unknown Side Lengths
 	Identify the Known Angles and Sides: Determine which sides of the triangle you know (adjacent, opposite, hypotenuse) in relation to the angle you are working with.
 	Choose the Appropriate Trigonometric Function: Depending on which sides you know and which side you need to find, select the trigonometric function that relates them: 	Sine (sin) for opposite and hypotenuse.
 	Cosine (cos) for adjacent and hypotenuse.
 	Tangent (tan) for opposite and adjacent.
 
 
 	Set Up the Equation: Use the trigonometric function to set up an equation that relates the known sides and the unknown side.
 	Solve for the Unknown: Rearrange the equation to solve for the unknown side length. 
 
  Find the unknown sides of the triangle in Figure 11. [image: A right triangle with sides a, c, and 7. Angle of 30 degrees is also labeled.]Figure 11 Show Solution We know the angle and the opposite side, so we can use the tangent to find the adjacent side.
 [image: \tan \left(30^\circ \right)=\frac{7}{a}]
 We rearrange to solve for [image: a].
 [image: \begin{align}a&=\frac{7}{\tan \left(30^\circ \right)} \\ a&=12.1\end{align}]
 We can use the sine to find the hypotenuse.
 [image: \sin \left(30^\circ \right)=\frac{7}{c}]
 Again, we rearrange to solve for [image: c].
 [image: \begin{align}c&=\frac{7}{\sin \left(30^\circ \right)} \\ c&=14 \end{align}]
   A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the top of the staircase is [image: 4] ft from the ground and the angle between the ground and the ramp is to be [image: 10^{\circ}], how long does the ramp need to be?
 Show Solution 
 Let [image: x] denote the length of the ramp. In the following image, we see that [image: x] needs to satisfy the equation [image: \sin(10^{\circ})=\dfrac{4}{x}]. Solving this equation for [image: x], we see that [image: x=\frac{4}{ \sin(10^{\circ})} \approx 23.035] ft.
 [image: An image of a ramp and a staircase. The ramp starts at a point and increases diagonally upwards and to the right at an angle of 10 degrees for x feet. At the end of the ramp, which is 4 feet off the ground, a staircase descends downwards and to the right.]Figure 8. Sketch of the ramp and staircase. Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=N1YoLqhe_pw%3Fcontrols%3D0%26start%3D583%26end%3D703%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window). 
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				Trigonometric Identities
 Trigonometric identities are the equalities that involve trigonometric functions and are true for any substitution of the variable where the sides of the equation are defined. Mastery of these identities is crucial for solving trigonometric equations, proving other mathematical statements, and is frequently necessary in calculus.
 The main trigonometric identities are listed below.
 Trigonometric Identities
 Reciprocal identities
 [image: \begin{array}{cccc}\tan \theta =\large \frac{\sin \theta}{\cos \theta} & & & \cot \theta =\large \frac{\cos \theta}{\sin \theta} \\ \csc \theta =\large \frac{1}{\sin \theta} & & & \sec \theta =\large \frac{1}{\cos \theta} \end{array}]
  
  
 Pythagorean identities
 [image: \sin^2 \theta +\cos^2 \theta =1\phantom{\rule{2em}{0ex}}1+\tan^2 \theta =\sec^2 \theta \phantom{\rule{2em}{0ex}}1+\cot^2 \theta =\csc^2 \theta]
  
  
 Addition and subtraction formulas
 [image: \sin(\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta]
 [image: \cos(\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta]
  
  
 Double-angle formulas
 [image: \sin(2\theta)=2\sin \theta \cos \theta]
 [image: \cos(2\theta)=2\cos^2 \theta -1=1-2\sin^2 \theta =\cos^2 \theta -\sin^2 \theta]
  Understanding and remembering these identities can seem daunting at first. However, with consistent practice and some mnemonic devices, they can become second nature. Below are some study tips:
 	Association: Link each identity with a visual cue or a part of the unit circle. For example, the sine function starts at zero and goes up, just like a sine wave starts at the middle and rises.
 	Mnemonics: Use phrases to remember relationships, like the mnemonic SOHCAHTOA.
 	Repetition: Regularly practice rewriting the identities from memory. Repetition is key to retention.
 	Flashcards: Create a set of flashcards with each identity on one side and its name or a key hint on the other.
 	Group Study: Discuss and solve problems with peers; explaining concepts to others can reinforce your memory.
 
  When facing a trigonometric identity, verification is key to ensuring the identity holds true for all permissible values of the variable. The process is a methodical one, where you manipulate one side of the equation until it matches the other.
 How to: Given a Trigonometric Identity, Verify that it is True.
 
 	Work on one side of the equation. It is usually better to start with the more complex side, as it is easier to simplify than to build.
 	Look for opportunities to factor expressions, square a binomial, or add fractions.
 	Noting which functions are in the final expression, look for opportunities to use the identities and make the proper substitutions.
 	If these steps do not yield the desired result, try converting all terms to sines and cosines.
 
  Verify [image: \tan{\theta} \cos{\theta} = \sin{\theta}].
 
 Show Answer We will start on the left side, as it is the more complicated side:
 [image: \begin{align*} \tan \theta \cos \theta &= (\frac{\sin \theta}{\cos \theta}) \cos \theta && \text{Rewrite} \tan \theta \text{ in terms of} \sin \theta \text{ and} \cos \theta \\ &= \frac{\sin \theta}{\cancel{\cos \theta}} \cancel{\cos \theta} && \text{Multiply by} \cos \theta\text{, then cancel} \\ &= \sin \theta && \text{Simplify} \end{align*}]
   Prove the trigonometric identity [image: 1+\tan^2 \theta =\sec^2 \theta].
 Show Solution 
 We start with the identity
 [image: \sin^2 \theta +\cos^2 \theta =1]
 Dividing both sides of this equation by [image: \cos^2 \theta], we obtain
 [image: \frac{\sin^2 \theta}{\cos^2 \theta}+1=\frac{1}{\cos^2 \theta}]
 Since [image: \frac{\sin \theta }{ \cos \theta} =\tan \theta] and [image: \frac{1}{ \cos \theta} =\sec \theta], we conclude that
 [image: \tan^2 \theta +1=\sec^2 \theta].
  Algebra is very important in verifying trigonometric identities, but it is just as critical in simplifying trigonometric expressions before solving. Being familiar with the basic properties and formulas of algebra, such as the difference of squares formula, the perfect square formula, or substitution, will simplify the work involved with trigonometric expressions and equations.
 The equation [image: (\sin x+1)(\sin x−1)=0] resembles the equation [image: (x+1)(x−1)=0], which uses the factored form of the difference of squares. Using algebra makes finding a solution straightforward and familiar. We can set each factor equal to zero and solve.  How to: Given a Trigonometric Equation, Solve using Algebra.
 	Spot Patterns: Look for familiar algebraic cues in the equation, like notable identities or factors.
 	Substitute Variables: Temporarily replace trig expressions with a single variable to simplify the equation.
 	Solve Algebraically: Treat the simplified equation as you would a standard algebraic one.
 	Back-Substitute: Once you’ve solved for the temporary variable, revert to the original trigonometric terms.
 	Find Angles: Use inverse functions to solve for the angle, considering the function’s period and domain.
 	Verify Solutions: Always check that your solutions satisfy the initial equation.
 
  Write the following trigonometric expression as an algebraic expression:
 [image: 2 \cos^2{\theta} + \cos{\theta} -1]
 Show Answer Notice that the pattern displayed has the same form as a standard quadratic expression, [image: ax^2+bx+c]. Letting [image: \cos{\theta}=x], we can rewrite the expression as follows:[image: 2x^2+x-1]This expression can be factored as [image: (2x-1)(x+1)]. If it were set equal to zero and we wanted to solve the equation, we would use the zero factor property and solve each factor for [image: x]. At this point, we would replace [image: x] with [image: \cos{\theta}] and solve for [image: \theta]. 
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				Graphs and Periods of the Trigonometric Functions
 We have seen that as we travel around the unit circle, the values of the trigonometric functions repeat. This repetition is evident in the functions’ graphs, showcasing their periodic nature. For any angle [image: \theta] on the unit circle, the function values at [image: \theta] and [image: \theta +2\pi] are identical, since these angles correspond to the same point. Consequently, the trigonometric functions are periodic functions.
 The sine, cosine, secant, and cosecant functions have a period of [image: 2\pi]. Since the tangent and cotangent functions repeat on an interval of length [image: \pi], their period is [image: \pi] (Figure 9).
 periods of the trigonometric functions
 Trigonometric functions are periodic, meaning they repeat their values over specific intervals. 
 Sine, cosine, and secant have a period of [image: 2\pi] radians, while tangent and cotangent have a period of [image: \pi] radians.
   
 [image: An image of six graphs. Each graph has an x axis that runs from -2 pi to 2 pi and a y axis that runs from -2 to 2. The first graph is of the function “f(x) = sin(x)”, which is a curved wave function. The graph of the function starts at the point (-2 pi, 0) and increases until the point (-((3 pi)/2), 1). After this point, the function decreases until the point (-(pi/2), -1). After this point, the function increases until the point ((pi/2), 1). After this point, the function decreases until the point (((3 pi)/2), -1). After this point, the function begins to increase again. The x intercepts shown on the graph are at the points (-2 pi, 0), (-pi, 0), (0, 0), (pi, 0), and (2 pi, 0). The y intercept is at the origin. The second graph is of the function “f(x) = cos(x)”, which is a curved wave function. The graph of the function starts at the point (-2 pi, 1) and decreases until the point (-pi, -1). After this point, the function increases until the point (0, 1). After this point, the function decreases until the point (pi, -1). After this point, the function increases again. The x intercepts shown on the graph are at the points (-((3 pi)/2), 0), (-(pi/2), 0), ((pi/2), 0), and (((3 pi)/2), 0). The y intercept is at the point (0, 1). The graph of cos(x) is the same as the graph of sin(x), except it is shifted to the left by a distance of (pi/2). On the next four graphs there are dotted vertical lines which are not a part of the function, but act as boundaries for the function, boundaries the function will never touch. They are known as vertical asymptotes. There are infinite vertical asymptotes for all of these functions, but these graphs only show a few. The third graph is of the function “f(x) = csc(x)”. The vertical asymptotes for “f(x) = csc(x)” on this graph occur at “x = -2 pi”, “x = -pi”, “x = 0”, “x = pi”, and “x = 2 pi”. Between the “x = -2 pi” and “x = -pi” asymptotes, the function looks like an upward facing “U”, with a minimum at the point (-((3 pi)/2), 1). Between the “x = -pi” and “x = 0” asymptotes, the function looks like an downward facing “U”, with a maximum at the point (-(pi/2), -1). Between the “x = 0” and “x = pi” asymptotes, the function looks like an upward facing “U”, with a minimum at the point ((pi/2), 1). Between the “x = pi” and “x = 2 pi” asymptotes, the function looks like an downward facing “U”, with a maximum at the point (((3 pi)/2), -1). The fourth graph is of the function “f(x) = sec(x)”. The vertical asymptotes for this function on this graph are at “x = -((3 pi)/2)”, “x = -(pi/2)”, “x = (pi/2)”, and “x = ((3 pi)/2)”. Between the “x = -((3 pi)/2)” and “x = -(pi/2)” asymptotes, the function looks like an downward facing “U”, with a maximum at the point (-pi, -1). Between the “x = -(pi/2)” and “x = (pi/2)” asymptotes, the function looks like an upward facing “U”, with a minimum at the point (0, 1). Between the “x = (pi/2)” and “x = (3pi/2)” asymptotes, the function looks like an downward facing “U”, with a maximum at the point (pi, -1). The graph of sec(x) is the same as the graph of csc(x), except it is shifted to the left by a distance of (pi/2). The fifth graph is of the function “f(x) = tan(x)”. The vertical asymptotes of this function on this graph occur at “x = -((3 pi)/2)”, “x = -(pi/2)”, “x = (pi/2)”, and “x = ((3 pi)/2)”. In between all of the vertical asymptotes, the function is always increasing but it never touches the asymptotes. The x intercepts on this graph occur at the points (-2 pi, 0), (-pi, 0), (0, 0), (pi, 0), and (2 pi, 0). The y intercept is at the origin. The sixth graph is of the function “f(x) = cot(x)”. The vertical asymptotes of this function on this graph occur at “x = -2 pi”, “x = -pi”, “x = 0”, “x = pi”, and “x = 2 pi”. In between all of the vertical asymptotes, the function is always decreasing but it never touches the asymptotes. The x intercepts on this graph occur at the points (-((3 pi)/2), 0), (-(pi/2), 0), ((pi/2), 0), and (((3 pi)/2), 0) and there is no y intercept.]Figure 9. The six trigonometric functions are periodic. [ohm_question hide_question_numbers=1]288261[/ohm_question]
  Transformations to Trigonometric Graphs
 Just as with algebraic functions, we can apply transformations to trigonometric functions. Transforming a trigonometric function like
 [image: f(x)=A \sin(B(x-\alpha))+C]
 adjusts its shape and position on a graph. 
 In this equation, the constant [image: A] affects the amplitude or height of the wave, [image: B] impacts the period or width of each cycle, [image: \alpha] controls the horizontal shift, and [image: C] shifts the graph up or down vertically.
 [image: An image of a graph. The graph is of the function “f(x) = Asin(B(x - alpha)) + C”. Along the y axis, there are 3 hash marks: starting from the bottom and moving up, the hash marks are at the values “C - A”, “C”, and “C + A”. The distance from the origin to “C” is labeled “vertical shift”. The distance from “C - A” to “A” and the distance from “A” to “C + A” is “A”, which is labeled “amplitude”. On the x axis is a hash mark at the value “alpha” and the distance between the origin and “alpha” is labeled “horizontal shift”. The distance between two successive minimum values of the function (in other words, the distance between two bottom parts of the wave that are next to each other) is “(2 pi)/(absolute value of B)” is labeled the period. The period is also the distance between two successive maximum values of the function.]Figure 10. A graph of a general sine function. Breaking Down Trigonometric Transformations
 	Amplitude Adjustment: Multiply the function by [image: A] to stretch or compress it vertically. If [image: A] is greater than [image: 1], the function stretches; if [image: A] is between [image: 0] and [image: 1], it compresses.
 	Period Modification: Multiply the input variable by [image: B]. If [image: B] is greater than [image: 1], the function’s period decreases, leading to more cycles in the same space. If [image: B] is between [image: 0] and [image: 1], the period increases, and the function stretches horizontally.
 	Horizontal Shift: Subtract [image: \alpha] from the input variable to shift the graph horizontally. If [image: \alpha] is positive, the shift is to the right; if negative, to the left.
 	Vertical Shift: Add [image: C] to the function to move the graph up or down. If [image: C] is positive, the graph shifts upwards; if negative, it shifts downwards.
 
  The transformations applied to the sine function can similarly be applied to the cosine function. In the general form of a cosine function [image: f(x)=A \cos(B(x-\alpha))+C], the constants [image: A], [image: B], [image: \alpha], and [image: C] cause the same types of transformations as they do with the sine function.
  Describe the relationship between the graph of [image: f(x)=3\sin(4x)-5] and the graph of [image: y=\sin x].
 Show Solution 
 To graph [image: f(x)=3\sin(4x)-5], the graph of [image: y=\sin x] needs to be compressed horizontally by a factor of [image: 4], then stretched vertically by a factor of [image: 3], then shifted down [image: 5] units. The function [image: f] will have a period of [image: \frac{\pi}{2}] and an amplitude of [image: 3].
   Sketch a graph of [image: f(x)=3\sin(2(x-\frac{\pi}{4}))+1].
 Show Solution 
 This graph is a phase shift of [image: y=\sin x] to the right by [image: \frac{\pi}{4}] units, followed by a horizontal compression by a factor of [image: 2], a vertical stretch by a factor of [image: 3], and then a vertical shift by [image: 1] unit. The period of [image: f] is [image: \pi].
 [image: An image of a graph. The x axis runs from -((3 pi)/2) to 2 pi and the y axis runs from -3 to 5. The graph is of the function “f(x) = 3sin(2(x-(pi/4))) + 1”, which is a curved wave function. The function starts decreasing from the point (-((3 pi)/2), 4) until it hits the point (-pi, -2). At this point, the function begins increasing until it hits the point (-(pi/2), 4). After this point, the function begins decreasing until it hits the point (0, -2). After this point, the function increases until it hits the point ((pi/2), 4). After this point, the function decreases until it hits the point (pi, -2). After this point, the function increases until it hits the point (((3 pi)/2), 4). After this point, the function decreases again.]Figure 12. Graph of transformed sine curve. Watch the following video to see the worked solution to this example.//plugin.3playmedia.com/show?mf=6239437&p3sdk_version=1.10.1&p=20361&pt=375&video_id=R1iGQXyjaAc&video_target=tpm-plugin-ewfny18n-R1iGQXyjaAcFor closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   [ohm_question hide_question_numbers=1]174884[/ohm_question]
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		Trigonometric Functions: Apply It

								

	
				 	Switch between degree and radian measurements for angles
 	Understand and use the basic rules and relationships in trigonometry
 	Analyze trigonometric functions by examining their graphs, identifying cycles, and describing shifts in sine and cosine graphs
 
  Trigonometric Analysis of a Ferris Wheel
 Trigonometric functions are periodic in nature, meaning they repeat over and over again. Consider riding in a large ferris wheel which slowly rotates around. You enter the ride on a raised platform and complete one full rotation on the Ferris wheel.
 [image: Ferris Wheel]
 Your height in feet on the ferris wheel after t minutes is described by the equation
  
 [image: h(t)=-90 \cos \left( \frac{\pi}{6}t \right)+100]
 [ohm_question hide_question_numbers=1]288224[/ohm_question]
  [ohm_question hide_question_numbers=1]288225[/ohm_question]
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				 	Check if a function can have an inverse by using the horizontal line test
 	Determine a function’s inverse and draw its mirrored graph
 	Calculate values using inverse trig functions like arcsine, arccosine, and arctangent
 
  Inverse Functions
 An inverse function reverses the operation done by a particular function. In other words, whatever a function does, the inverse function undoes it. If we have a function [image: f] that takes an input [image: x] and produces an output [image: f(x)], the inverse function, denoted as [image: f^{−1}], takes [image: f(x)] as its input and returns the original [image: x] as its output. 
 inverse functions
 An inverse function reverses the effect of the original function, effectively ‘undoing’ what the original function does. 
 The inverse of a function [image: f] is denoted by [image: f^{−1}].

  Note that [image: f^{-1}] is read as “f inverse.” Here, the [image: -1] is not used as an exponent and [image: f^{-1}(x) \ne \frac{1}{f(x)}].
  For instance, let’s consider the function [image: f(x)=x^3+4]. To find the inverse, we set [image: y= f(x)], which gives us [image: y=x^3+4]. We get the inverse function [image: f^{−1}(y)] by solving for [image: x].
 In this instance, subtract [image: 4] from both sides to get [image: t-4=x^3], and then take the cube root of both sides. This gives us [image: x=\sqrt[3]{y-4}].  This equation defines [image: x] as a function of [image: y].
 Denoting this function as [image: f^{-1}], and writing [image: x=f^{-1}(y)=\sqrt[3]{y-4}], we see that for any [image: x] in the domain of [image: f, \, f^{-1}(f(x))=f^{-1}(x^3+4)=x].
 Thus, this new function, [image: f^{-1}], “undid” what the original function [image: f] did. 
  Two functions are inverses of each other if the domain [image: D] of [image: f] becomes the range [image: R] of [image: f^{−1}] and vice versa. 
 In other words, for a function [image: f] and its inverse [image: f^{-1}],
 [image: f^{-1}(f(x))=x] for all [image: x] in [image: D], and [image: f(f^{-1}(y))=y] for all [image: y] in [image: R]
 Figure 1 shows the relationship between the domain and range of [image: f] and the domain and range of [image: f^{-1}].
 [image: An image of two bubbles. The first bubble is orange and has two labels: the top label is “Domain of f” and the bottom label is “Range of f inverse”. Within this bubble is the variable “x”. An orange arrow with the label “f” points from this bubble to the second bubble. The second bubble is blue and has two labels: the top label is “range of f” and the bottom label is “domain of f inverse”. Within this bubble is the variable “y”. A blue arrow with the label “f inverse” points from this bubble to the first bubble.]Figure 1. Given a function [image: f] and its inverse [image: f^{-1}, \, f^{-1}(y)=x] if and only if [image: f(x)=y]. The range of [image: f] becomes the domain of [image: f^{-1}] and the domain of [image: f] becomes the range of [image: f^{-1}]. [ohm_question hide_question_numbers=1]4062[/ohm_question]
  Horizontal Line Test
 Not all functions have inverses that are also functions, because for a function to have an inverse, each output must be linked to one and only one input. This unique pairing ensures that the inverse process can always match an output back to one specific input, fulfilling the definition of a function.
 For example, let’s try to find the inverse function for [image: f(x)=x^2]. Solving the equation [image: y=x^2] for [image: x], we arrive at the equation [image: x= \pm \sqrt{y}]. This equation does not describe [image: x] as a function of [image: y] because there are two solutions to this equation for every [image: y>0]. 
 The problem with trying to find an inverse function for [image: f(x)=x^2] is that two inputs are sent to the same output for each output [image: y>0]. The function [image: f(x)=x^3+4] discussed earlier did not have this problem. For that function, each input was sent to a different output. 
 A function that sends each input to a different output is called a one-to-one function.
 one-to-one
 A one-to-one function is a type of function in which each output value is paired with a unique input value. 
  One way to determine whether a function is one-to-one is by looking at its graph. If a function is one-to-one, then no two inputs can be sent to the same output. Therefore, if we draw a horizontal line anywhere in the [image: xy]-plane, it cannot intersect the graph more than once. This is known as the horizontal line test. 
 Horizontal Line Test
 A function [image: f] is one-to-one, if and only if, every horizontal line intersects the graph of [image: f] no more than once.
  [image: An image of two graphs. Both graphs have an x axis that runs from -3 to 3 and a y axis that runs from -3 to 4. The first graph is of the function “f(x) = x squared”, which is a parabola. The function decreases until it hits the origin, where it begins to increase. The x intercept and y intercept are both at the origin. There are two orange horizontal lines also plotted on the graph, both of which run through the function at two points each. The second graph is of the function “f(x) = x cubed”, which is an increasing curved function. The x intercept and y intercept are both at the origin. There are three orange lines also plotted on the graph, each of which only intersects the function at one point.]Figure 3. (a) The function [image: f(x)=x^2] is not one-to-one because it fails the horizontal line test. (b) The function [image: f(x)=x^3] is one-to-one because it passes the horizontal line test. Note that the horizontal line test is different from the vertical line test. The vertical line test determines whether a graph is the graph of a function. The horizontal line test determines whether a function is one-to-one (Figure 3).
  The Vertical Line Test
 
 The vertical line test confirms whether a relation is a function by checking that every vertical line crosses the graph at most once. 
 [image: A graph of a semicircle. Four vertical lines cross the semicircle at one point each.]Figure 2. Semicircle graph undergoing the vertical line test. When a vertical line is placed across the plot of this relation, it does not intersect the graph more than once for any values of [image: x]. This is a graph of a function.
 If, on the other hand, a graph shows two or more intersections with a vertical line, then an input ([image: x]-coordinate) can have more than one output ([image: y]-coordinate), and [image: y] is not a function of [image: x]. 
  For each of the following functions, use the horizontal line test to determine whether it is one-to-one.
 a.
 [image: An image of a graph. The x axis runs from -3 to 11 and the y axis runs from -3 to 11. The graph is of a step function which contains 10 horizontal steps. Each steps starts with a closed circle and ends with an open circle. The first step starts at the origin and ends at the point (1, 0). The second step starts at the point (1, 1) and ends at the point (1, 2). Each of the following 8 steps starts 1 unit higher in the y direction than where the previous step ended. The tenth and final step starts at the point (9, 9) and ends at the point (10, 9)]Figure 4. b.
 [image: An image of a graph. The x axis runs from -3 to 6 and the y axis runs from -3 to 6. The graph is of the function “f(x) = (1/x)”, a curved decreasing function. The graph of the function starts right below the x axis in the 4th quadrant and begins to decreases until it comes close to the y axis. The graph keeps decreasing as it gets closer and closer to the y axis, but never touches it due to the vertical asymptote. In the first quadrant, the graph of the function starts close to the y axis and keeps decreasing until it gets close to the x axis. As the function continues to decreases it gets closer and closer to the x axis without touching it, where there is a horizontal asymptote.]Figure 5. Show Solution 
 	Since the horizontal line [image: y=n] for any integer [image: n\ge 0] intersects the graph more than once, this function is not one-to-one.
 [image: An image of a graph. The x axis runs from -3 to 11 and the y axis runs from -3 to 11. The graph is of a step function which contains 10 horizontal steps. Each steps starts with a closed circle and ends with an open circle. The first step starts at the origin and ends at the point (1, 0). The second step starts at the point (1, 1) and ends at the point (1, 2). Each of the following 8 steps starts 1 unit higher in the y direction than where the previous step ended. The tenth and final step starts at the point (9, 9) and ends at the point (10, 9). There are also two horizontal orange lines plotted on the graph, each of which run through an entire step of the function.]Figure 6. This is not a one-to-one function. 
 	Since every horizontal line intersects the graph once (at most), this function is one-to-one.
 [image: An image of a graph. The x axis runs from -3 to 6 and the y axis runs from -3 to 6. The graph is of the function “f(x) = (1/x)”, a curved decreasing function. The graph of the function starts right below the x axis in the 4th quadrant and begins to decreases until it comes close to the y axis. The graph keeps decreasing as it gets closer and closer to the y axis, but never touches it due to the vertical asymptote. In the first quadrant, the graph of the function starts close to the y axis and keeps decreasing until it gets close to the x axis. As the function continues to decreases it gets closer and closer to the x axis without touching it, where there is a horizontal asymptote. There are also three horizontal orange lines plotted on the graph, each of which only runs through the function at one point.]Figure 7. This is a one-to-one function. 
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				Finding a Function’s Inverse
 To find the inverse of a function, you first ensure the function is one-to-one. 
 When given a one-to-one function, to find its inverse, solve the equation[image: y=f(x)] for [image: x], and then swap the roles of [image: x] and [image: y]. The new equation [image: x=f^{−1}(y)] represents the inverse function [image: f^{-1}], which switches the original function’s inputs and outputs. This process is essential when plotting both the function and its inverse on the same graph, as their coordinates are reflections of each other across the line [image: y=x].
 How to: Find an Inverse Function
 	Solve the equation [image: y=f(x)] for [image: x].
 	Interchange the variables [image: x] and [image: y] and write [image: y=f^{-1}(x)].
 
  To complete the first step to finding an inverse function, we must isolate a variable in a given equation.
 Recall Isolating a Variable in a Formula
 	Identify the variable you want to isolate and the terms it’s associated with.
 	Use inverse operations to ‘undo’ any arithmetic or algebraic actions applied to the variable (addition is undone by subtraction, multiplication by division, etc.).
 	Perform the same operation on both sides of the equation to maintain equality.
 	Repeat the process until the variable is by itself on one side of the equation.
 	Simplify the equation as needed to achieve the simplest form with the variable isolated.
 
  Find the inverse for the function [image: f(x)=3x-4]. State the domain and range of the inverse function. Verify that [image: f^{-1}(f(x))=x].
 Show Solution 
 Follow the steps outlined in the strategy.
 Step 1. If [image: y=3x-4], then [image: 3x=y+4] and [image: x=\frac{1}{3}y+\frac{4}{3}].
 Step 2. Rewrite as [image: y=\frac{1}{3}x+\frac{4}{3}] and let [image: y=f^{-1}(x)].
 Therefore, [image: f^{-1}(x)=\frac{1}{3}x+\frac{4}{3}].
 Since the domain of [image: f] is [image: (−\infty ,\infty)], the range of [image: f^{-1}] is [image: (−\infty ,\infty)]. Since the range of [image: f] is [image: (−\infty ,\infty)], the domain of [image: f^{-1}] is [image: (−\infty ,\infty)].
 You can verify that [image: f^{-1}(f(x))=x] by writing
 [image: f^{-1}(f(x))=f^{-1}(3x-4)=\frac{1}{3}(3x-4)+\frac{4}{3}=x-\frac{4}{3}+\frac{4}{3}=x].
  
 Note that for [image: f^{-1}(x)] to be the inverse of [image: f(x)], both [image: f^{-1}(f(x))=x] and [image: f(f^{-1}(x))=x] for all [image: x] in the domain of the inside function.
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=JFQ8maupdT8%3Fcontrols%3D0%26start%3D215%26end%3D405%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
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				Graphing Inverse Functions
 Let’s consider the relationship between the graph of a function [image: f] and the graph of its inverse.
 Consider the graph of [image: f] shown in Figure 9(a) and a point [image: (a,b)] on the graph. 
 [image: An image of two graphs. The first graph is of “y = f(x)”, which is a curved increasing function, that increases at a faster rate as x increases. The point (a, b) is on the graph of the function in the first quadrant. The second graph also graphs “y = f(x)” with the point (a, b), but also graphs the function “y = f inverse (x)”, an increasing curved function, that increases at a slower rate as x increases. This function includes the point (b, a). In addition to the two functions, there is a diagonal dotted line potted with the equation “y =x”, which shows that “f(x)” and “f inverse (x)” are mirror images about the line “y =x”.]Figure 9. (a) The graph of this function [image: f] shows point [image: (a,b)] on the graph of [image: f]. (b) Since [image: (a,b)] is on the graph of [image: f], the point [image: (b,a)] is on the graph of [image: f^{-1}]. The graph of [image: f^{-1}] is a reflection of the graph of [image: f] about the line [image: y=x]. Since [image: b=f(a)], then [image: f^{-1}(b)=a]. Therefore, when we graph [image: f^{-1}], the point [image: (b,a)] is on the graph. As a result, the graph of [image: f^{-1}] is a reflection of the graph of [image: f] about the line [image: y=x].
 How to: Graph the Inverse of a Function
 
 	Plot the Function: Graph the original function [image: f(x)] and plot a few key points.
 	Reflect Over Line: Reflect these points over the line [image: y=x] to find the corresponding points on [image: f^{-1}].
 	Draw the Inverse: Connect these reflected points to graph the inverse function.
 	Check: Ensure that each point [image: (a,b)] on the original function corresponds to the point [image: (b,a)] on the inverse function.
 	Line of Symmetry: The line [image: y=x] should act as a line of symmetry between the function and its inverse.
 
  For the graph of [image: f] in the following image, sketch a graph of [image: f^{-1}] by sketching the line [image: y=x] and using symmetry. Identify the domain and range of [image: f^{-1}].
 [image: An image of a graph. The x axis runs from -2 to 2 and the y axis runs from 0 to 2. The graph is of the function “f(x) = square root of (x +2)”, an increasing curved function. The function starts at the point (-2, 0). The x intercept is at (-2, 0) and the y intercept is at the approximate point (0, 1.4).]Figure 10. Graph of [image: f(x)]. 
 Show Solution 
 Reflect the graph about the line [image: y=x]. The domain of [image: f^{-1}] is [image: [0,\infty)]. The range of [image: f^{-1}] is [image: [-2,\infty)]. By using the preceding strategy for finding inverse functions, we can verify that the inverse function is [image: f^{-1}(x)=x^2-2], as shown in the graph.
 [image: An image of a graph. The x axis runs from -2 to 2 and the y axis runs from -2 to 2. The graph is of two functions. The first function is “f(x) = square root of (x +2)”, an increasing curved function. The function starts at the point (-2, 0). The x intercept is at (-2, 0) and the y intercept is at the approximate point (0, 1.4). The second function is “f inverse (x) = (x squared) -2”, an increasing curved function that starts at the point (0, -2). The x intercept is at the approximate point (1.4, 0) and the y intercept is at the point (0, -2). In addition to the two functions, there is a diagonal dotted line potted with the equation “y =x”, which shows that “f(x)” and “f inverse (x)” are mirror images about the line “y =x”.]Figure 11. Graph of [image: f(x)] and its inverse. 
  [ohm_question hide_question_numbers=1]170589[/ohm_question]
  Restricting Domains
 As we have seen, [image: f(x)=x^2] does not have an inverse function because it is not one-to-one. However, we can choose a subset of the domain of [image: f] such that the function is one-to-one. This subset is called a restricted domain.
 By restricting the domain of [image: f], we can define a new function [image: g] such that the domain of [image: g] is the restricted domain of [image: f] and [image: g(x)=f(x)] for all [image: x] in the domain of [image: g]. Then we can define an inverse function for [image: g] on that domain.
 For example, since [image: f(x)=x^2] is one-to-one on the interval [image: [0,\infty)], we can define a new function [image: g] such that the domain of [image: g] is [image: [0,\infty)] and [image: g(x)=x^2] for all [image: x] in its domain. Since [image: g] is a one-to-one function, it has an inverse function, given by the formula [image: g^{-1}(x)=\sqrt{x}].
 On the other hand, the function [image: f(x)=x^2] is also one-to-one on the domain [image: (−\infty,0]]. Therefore, we could also define a new function [image: h] such that the domain of [image: h] is [image: (−\infty,0]] and [image: h(x)=x^2] for all [image: x] in the domain of [image: h]. Then [image: h] is a one-to-one function and must also have an inverse. Its inverse is given by the formula [image: h^{-1}(x)=−\sqrt{x}] (Figure 13).
 [image: An image of two graphs. Both graphs have an x axis that runs from -2 to 5 and a y axis that runs from -2 to 5. The first graph is of two functions. The first function is “g(x) = x squared”, an increasing curved function that starts at the point (0, 0). This function increases at a faster rate for larger values of x. The second function is “g inverse (x) = square root of x”, an increasing curved function that starts at the point (0, 0). This function increases at a slower rate for larger values of x. The first function is “h(x) = x squared”, a decreasing curved function that ends at the point (0, 0). This function decreases at a slower rate for larger values of x. The second function is “h inverse (x) = -(square root of x)”, an increasing curved function that starts at the point (0, 0). This function decreases at a slower rate for larger values of x. In addition to the two functions, there is a diagonal dotted line potted with the equation “y =x”, which shows that “f(x)” and “f inverse (x)” are mirror images about the line “y =x”.]Figure 13. (a) For [image: g(x)=x^2] restricted to [image: [0,\infty), \, g^{-1}(x)=\sqrt{x}]. (b) For [image: h(x)=x^2] restricted to [image: (−\infty,0], \, h^{-1}(x)=−\sqrt{x}]. restricted domain
 Some functions don’t have inverses over their full domains because they’re not one-to-one. By restricting the domain, we ensure the function is one-to-one. Once the domain is restricted, we can define an inverse.
  Consider the function [image: f(x)=(x+1)^2].
 	Sketch the graph of [image: f] and use the horizontal line test to show that [image: f] is not one-to-one.
 	Show that [image: f] is one-to-one on the restricted domain [image: [-1,\infty)]. Determine the domain and range for the inverse of [image: f] on this restricted domain and find a formula for [image: f^{-1}].
 
 Show Solution 
 	The graph of [image: f] is the graph of [image: y=x^2] shifted left 1 unit. Since there exists a horizontal line intersecting the graph more than once, [image: f] is not one-to-one.
 [image: An image of a graph. The x axis runs from -6 to 6 and the y axis runs from -2 to 10. The graph is of the function “f(x) = (x+ 1) squared”, which is a parabola. The function decreases until the point (-1, 0), where it begins it increases. The x intercept is at the point (-1, 0) and the y intercept is at the point (0, 1). There is also a horizontal dotted line plotted on the graph, which crosses through the function at two points.]Figure 14. Graph of the function [image: f(x)=(x+1)^2]. 
 	On the interval [image: [-1,\infty), \, f] is one-to-one.
 [image: An image of a graph. The x axis runs from -6 to 6 and the y axis runs from -2 to 10. The graph is of the function “f(x) = (x+ 1) squared”, on the interval [1, infinity). The function starts from the point (-1, 0) and increases. The x intercept is at the point (-1, 0) and the y intercept is at the point (0, 1).]Figure 15. Looking at a restricted domain graph of a function. The domain and range of [image: f^{-1}] are given by the range and domain of [image: f], respectively. Therefore, the domain of [image: f^{-1}] is [image: [0,\infty)] and the range of [image: f^{-1}] is [image: [-1,\infty)]. 
 To find a formula for [image: f^{-1}], solve the equation [image: y=(x+1)^2] for [image: x]. If [image: y=(x+1)^2], then [image: x=-1 \pm \sqrt{y}]. Since we are restricting the domain to the interval where [image: x \ge -1], we need [image: \pm \sqrt{y} \ge 0]. Therefore, [image: x=-1+\sqrt{y}]. Interchanging [image: x] and [image: y], we write [image: y=-1+\sqrt{x}] and conclude that [image: f^{-1}(x)=-1+\sqrt{x}].

 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=JFQ8maupdT8%3Fcontrols%3D0%26start%3D215%26end%3D405%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
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		Inverse Functions: Learn It 4

								

	
				Inverse Trigonometric Functions
 The six basic trigonometric functions are periodic, and therefore they are not one-to-one. However, if we restrict the domain of a trigonometric function to an interval where it is one-to-one, we can define its inverse.
 Consider the sine function. The sine function is one-to-one on an infinite number of intervals, but the standard convention is to restrict the domain to the interval [image: [-\frac{\pi}{2},\frac{\pi}{2}]]. By doing so, we define the inverse sine function on the domain [image: [-1,1]] such that for any [image: x] in the interval [image: [-1,1]], the inverse sine function tells us which angle [image: \theta] in the interval [image: [-\frac{\pi}{2},\frac{\pi}{2}]] satisfies [image: \sin \theta =x].
 Similarly, we can restrict the domains of the other trigonometric functions to define inverse trigonometric functions, which are functions that tell us which angle in a certain interval has a specified trigonometric value.
 inverse trigonometric functions
 The inverse sine function, denoted [image: \sin^{-1}] or arcsin, and the inverse cosine function, denoted [image: \cos^{-1}] or arccos, are defined on the domain [image: D=\{x|-1 \le x \le 1\}] as follows:
 [image: \begin{array}{c}\sin^{-1}(x)=y \,\, \text{if and only if} \, \sin (y)=x \, \text{and} \, -\frac{\pi}{2} \le y \le \frac{\pi}{2};\hfill \\ \cos^{-1}(x)=y \,\, \text{if and only if} \, \cos (y)=x \, \text{and} \, 0 \le y \le \pi \hfill \end{array}]
  
 The inverse tangent function, denoted [image: \tan^{-1}] or arctan, and inverse cotangent function, denoted [image: \cot^{-1}] or arccot, are defined on the domain [image: D=\{x|-\infty < x < \infty \}] as follows:
 [image: \begin{array}{c}\tan^{-1}(x)=y \,\, \text{if and only if} \, \tan (y)=x \, \text{and} \, -\frac{\pi}{2} \le y \le \frac{\pi}{2};\hfill \\ \cot^{-1}(x)=y \,\, \text{if and only if} \, \cot (y)=x \, \text{and} \, 0 \le y \le \pi \hfill \end{array}]
  
 The inverse cosecant function, denoted [image: \csc^{-1}] or arccsc, and inverse secant function, denoted [image: \sec^{-1}] or arcsec, are defined on the domain [image: D=\{x| \, |x| \ge 1\}] as follows:
 [image: \begin{array}{c}\csc^{-1}(x)=y \,\, \text{if and only if} \, \csc (y)=x \, \text{and} \, -\frac{\pi}{2} \le y \le \frac{\pi}{2}, \, y\ne 0;\hfill \\ \sec^{-1}(x)=y \,\, \text{if and only if} \, \sec (y)=x \, \text{and} \, 0 \le y \le \pi, \, y \ne \frac{\pi}{2}\hfill \end{array}]
  Graphs of Inverse Trigonometric Functions
 To graph the inverse trigonometric functions, we use the graphs of the trigonometric functions restricted to the domains defined earlier and reflect the graphs about the line [image: y=x] (Figure 16).
 [image: An image of six graphs. The first graph is of the function “f(x) = sin inverse(x)”, which is an increasing curve function. The function starts at the point (-1, -(pi/2)) and increases until it ends at the point (1, (pi/2)). The x intercept and y intercept are at the origin. The second graph is of the function “f(x) = cos inverse (x)”, which is a decreasing curved function. The function starts at the point (-1, pi) and decreases until it ends at the point (1, 0). The x intercept is at the point (1, 0). The y intercept is at the point (0, (pi/2)). The third graph is of the function f(x) = tan inverse (x)”, which is an increasing curve function. The function starts close to the horizontal line “y = -(pi/2)” and increases until it comes close the “y = (pi/2)”. The function never intersects either of these lines, it always stays between them - they are horizontal asymptotes. The x intercept and y intercept are both at the origin. The fourth graph is of the function “f(x) = cot inverse (x)”, which is a decreasing curved function. The function starts slightly below the horizontal line “y = pi” and decreases until it gets close the x axis. The function never intersects either of these lines, it always stays between them - they are horizontal asymptotes. The fifth graph is of the function “f(x) = csc inverse (x)”, a decreasing curved function. The function starts slightly below the x axis, then decreases until it hits a closed circle point at (-1, -(pi/2)). The function then picks up again at the point (1, (pi/2)), where is begins to decrease and approach the x axis, without ever touching the x axis. There is a horizontal asymptote at the x axis. The sixth graph is of the function “f(x) = sec inverse (x)”, an increasing curved function. The function starts slightly above the horizontal line “y = (pi/2)”, then increases until it hits a closed circle point at (-1, pi). The function then picks up again at the point (1, 0), where is begins to increase and approach the horizontal line “y = (pi/2)”, without ever touching the line. There is a horizontal asymptote at the “y = (pi/2)”.]Figure 16. The graph of each of the inverse trigonometric functions is a reflection about the line [image: y=x] of the corresponding restricted trigonometric function. When evaluating an inverse trigonometric function, the output is an angle.
 For example, to evaluate [image: \cos^{-1}(\frac{1}{2})], we need to find an angle [image: \theta] such that [image: \cos \theta =\frac{1}{2}]. Clearly, many angles have this property. However, given the definition of [image: \cos^{-1}], we need the angle [image: \theta] that not only solves this equation, but also lies in the interval [image: [0,\pi]]. We conclude that [image: \cos^{-1}(\frac{1}{2})=\frac{\pi}{3}].
 Knowing the common values of sine and cosine for key angles can simplify the process of evaluating inverse trigonometric functions, making it a smoother and quicker task. 	Angle 	[image: 0] 	[image: \frac{\pi }{6}], or [image: 30°] 	[image: \frac{\pi }{4}], or [image: 45°] 	[image: \frac{\pi }{3}], or [image: 60°] 	[image: \frac{\pi }{2}], or [image: 90°] 
 	Cosine 	[image: 1] 	[image: \frac{\sqrt{3}}{2}] 	[image: \frac{\sqrt{2}}{2}] 	[image: \frac{1}{2}] 	[image: 0] 
 	Sine 	[image: 0] 	[image: \frac{1}{2}] 	[image: \frac{\sqrt{2}}{2}] 	[image: \frac{\sqrt{3}}{2}] 	[image: 1] 
  
  Compositions of Inverse Trigonometric Functions
 When working with inverse trigonometric functions, it’s crucial to understand how composition works. For instance, when we compose [image: \sin] and its inverse [image: \sin^{-1}], such as in [image: \sin{(\sin^{-1}(y))}], we’re essentially undoing the sine function, which should give us the original input, [image: y]. However, this holds true only if [image: y] falls within the range of [image: \sin^{-1}], which is [image: [1,1]]. So [image: \sin{(\sin^{-1}(y))}=y] for [image: -1 \le y \le 1]. Conversely, when we consider [image: \sin^{-1}({\sin(x)})], the result is [image: x] only if [image: x] is within the restricted domain of [image: \sin^{-1}], which is [image: [-\frac{\pi}{2},\frac{\pi}{2}]]. The same principle applies to [image: \cos] and its inverse.
 For example, consider the two expressions [image: \sin (\sin^{-1}(\frac{\sqrt{2}}{2}))] and [image: \sin^{-1}(\sin(\pi))]. For the first one, we simplify as follows:
 [image: \sin (\sin^{-1}(\frac{\sqrt{2}}{2}))= \sin (\frac{\pi}{4})=\frac{\sqrt{2}}{2}]
 For the second one, we have
 [image: \sin^{-1}( \sin (\pi))=\sin^{-1}(0)=0]This is because the value of [image: π] falls outside the restricted range of the inverse sine function, which is [image: [-\frac{\pi}{2},\frac{\pi}{2}]].
 To summarize,
 [image: \sin (\sin^{-1}{y})=y \, \text{ if } \, -1 \le y \le 1]
  
 and
 [image: \sin^{-1}( \sin {x})=x \, \text{ if } \, -\frac{\pi}{2} \le x \le \frac{\pi}{2}]
  
 Similarly, for the cosine function,
 [image: \cos (\cos^{-1}{y})=y \, \text{ if } \, -1 \le y \le 1]
  
 and
 [image: \cos^{-1}( \cos {x})=x \, \text{ if } 0 \le x \le \pi]
  
 Similar properties hold for the other trigonometric functions and their inverses.
 How to: Composing Inverse Trig Functions
 	Check the Range: Ensure the value inside the inverse function is within the inverse function’s range. For [image: \sin^{-1}], the value must be between [image: -1] and [image: 1].
 	Apply the Function: Perform the composition by applying the inverse function first.
 	Reverse the Process: Apply the original trigonometric function to the result.
 	Restrict the Range: Remember that for [image: \sin{(\sin^{-1}({x}))}] and [image: \cos{(\cos^{-1}({x}))}], the original [image: x] is retrieved only if it’s in the principal range of the inverse function.
 	Verify: Plug the result back into the original function to confirm the outcome.
 
  Evaluate each of the following expressions.
 	[image: \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)]
 	[image: \tan \left(\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right)]
 	[image: \cos^{-1}\left( \cos \left(\frac{5\pi}{4}\right)\right)]
 	[image: \sin^{-1}\left( \cos \left(\frac{2\pi}{3}\right)\right)]
 
 Show Solution 
 	Evaluating [image: \sin^{-1}\left(−\frac{\sqrt{3}}{2}\right)] is equivalent to finding the angle [image: \theta] such that [image: \sin \theta =−\frac{\sqrt{3}}{2}] and [image: −\frac{\pi}{2} \le \theta \le \frac{\pi}{2}]. The angle [image: \theta =−\frac{\pi}{3}] satisfies these two conditions. Therefore, [image: \sin^{-1}\left(−\frac{\sqrt{3}}{2}\right)=−\frac{\pi}{3}].

 	First we use the fact that [image: \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)=−\frac{\pi}{6}]. Then [image: \tan \left(\frac{\pi}{6}\right)=-\frac{1}{\sqrt{3}}]. Therefore, [image: \tan \left(\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right)=-\frac{1}{\sqrt{3}}].

 	To evaluate [image: \cos^{-1}\left( \cos \left(\frac{5\pi}{4}\right)\right)], first use the fact that [image: \cos \left(\frac{5\pi}{4}\right)=−\frac{\sqrt{2}}{2}]. Then we need to find the angle [image: \theta] such that [image: \cos (\theta )=−\frac{\sqrt{2}}{2}] and [image: 0 \le \theta \le \pi]. Since [image: \frac{3\pi}{4}] satisfies both these conditions, we have [image: \cos \left(\cos^{-1}\left(\frac{5\pi}{4}\right)\right)= \cos \left(\cos^{-1}\left(−\frac{\sqrt{2}}{2}\right)\right)=\frac{3\pi}{4}].

 	Since [image: \cos \left(\frac{2\pi}{3}\right)=-\frac{1}{2}], we need to evaluate [image: \sin^{-1}\left(-\frac{1}{2}\right)]. That is, we need to find the angle [image: \theta] such that [image: \sin (\theta )=-\frac{1}{2}] and [image: −\frac{\pi}{2} \le \theta \le \frac{\pi}{2}]. Since [image: −\frac{\pi}{6}] satisfies both these conditions, we can conclude that [image: \sin^{-1}\left( \cos \left(\frac{2\pi}{3}\right)\right)=\sin^{-1}\left(-\frac{1}{2}\right)=−\frac{\pi}{6}].

 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=JFQ8maupdT8%3Fcontrols%3D0%26start%3D934%26end%3D1240%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   [ohm_question hide_question_numbers=1]197034[/ohm_question]
  Activity: The Maximum Value of a Function
 In many areas of science, engineering, and mathematics, it is useful to know the maximum value a function can obtain, even if we don’t know its exact value at a given instant. For instance, if we have a function describing the strength of a roof beam, we would want to know the maximum weight the beam can support without breaking. If we have a function that describes the speed of a train, we would want to know its maximum speed before it jumps off the rails. Safe design often depends on knowing maximum values.
 This project describes a simple example of a function with a maximum value that depends on two equation coefficients. We will see that maximum values can depend on several factors other than the independent variable [image: x].
 	Consider the graph in Figure 17 of the function [image: y= \sin x + \cos x]. Describe its overall shape. Is it periodic? How do you know?
 [image: An image of a graph. The x axis runs from -4 to 4 and the y axis runs from -4 to 4. The graph is of the function “y = sin(x) + cos(x)”, a curved wave function. The graph of the function decreases until it hits the approximate point (-(3pi/4), -1.4), where it increases until the approximate point ((pi/4), 1.4), where it begins to decrease again. The x intercepts shown on this graph of the function are at (-(5pi/4), 0), (-(pi/4), 0), and ((3pi/4), 0). The y intercept is at (0, 1).]Figure 17. The graph of [image: y= \sin x + \cos x]. Using a graphing calculator or other graphing device, estimate the [image: x]– and [image: y]-values of the maximum point for the graph (the first such point where [image: x>0]). It may be helpful to express the [image: x]-value as a multiple of [image: \pi].

 	Now consider other graphs of the form [image: y=A \sin x + B \cos x] for various values of [image: A] and [image: B]. Sketch the graph when [image: A = 2] and [image: B = 1], and find the [image: x]– and [image: y]-values for the maximum point. (Remember to express the [image: x]-value as a multiple of [image: \pi], if possible.) Has it moved?
 	Repeat for [image: A = 1, \, B = 2]. Is there any relationship to what you found in part (2)?
 	Complete the following table, adding a few choices of your own for [image: A] and [image: B]:
 	[image: A] 	[image: B] 	[image: x] 	[image: y] 	  	[image: A] 	[image: B] 	[image: x] 	[image: y] 
  	0 	1 	  	  	  	[image: \sqrt{3}] 	1 	  	  
 	1 	0 	  	  	1 	[image: \sqrt{3}] 	  	  
 	1 	1 	  	  	12 	5 	  	  
 	1 	2 	  	  	5 	12 	  	  
 	2 	1 	  	  	  	  	  	  
 	2 	2 	  	  	  	  	  	  
 	3 	4 	  	  	  	  	  	  
 	4 	3 	  	  	  	  	  	  
  
 
 	Try to figure out the formula for the [image: y]-values.
 	The formula for the [image: x]-values is a little harder. The most helpful points from the table are [image: (1,1), \, (1,\sqrt{3}), \, (\sqrt{3},1)]. (Hint: Consider inverse trigonometric functions.)
 	If you found formulas for parts (5) and (6), show that they work together. That is, substitute the [image: x]-value formula you found into [image: y=A \sin x + B \cos x] and simplify it to arrive at the [image: y]-value formula you found.
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				 	Check if a function can have an inverse by using the horizontal line test
 	Determine a function’s inverse and draw its mirrored graph
 	Calculate values using inverse trig functions like arcsine, arccosine, and arctangent
 
  Inverse Functions
 In this apply-it task, you’ll work with various aspects of inverse functions, including finding inverses, graphing them, and exploring inverse trigonometric functions.
 [ohm_question hide_question_numbers=1]288196[/ohm_question]
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		Exponential and Logarithmic Functions: Learn It 1

								

	
				 	Work with exponential functions to find their values
 	Recognize logarithmic functions, explore their relationship with exponential functions, and change their bases
 	Identify hyperbolic functions their graphs, and understand their fundamental identities
 
  Exponential Functions
 Exponential functions arise in many applications. One common example is population growth.
 If a population starts with [image: P_0] individuals and then grows at an annual rate of [image: 2\%], its population after [image: 1] year is
 [image: P(1)=P_0+0.02P_0=P_0(1+0.02)=P_0(1.02)]
 Its population after [image: 2] years is
 [image: P(2)=P(1)+0.02P(1)=P(1)(1.02)=P_0(1.02)^2]
 In general, its population after [image: t] years is
 [image: P(t)=P_0(1.02)^t],
 which is an exponential function.
  More generally, any function of the form [image: f(x)=b^x], where [image: b>0, \, b \ne 1], is an exponential function with base [image: b] and exponent [image: x]. Exponential functions have constant bases and variable exponents.
 exponential function
 For any real number [image: x], an exponential function is a function with the form
 [image: f(x)=ab^x]
 where,
 	[image: a] is a non-zero real number called the initial value and
 	[image: b] is any positive real number ([image: b>0]) such that [image: b≠1].
 
 
  Why do we limit the base [image: b] to positive values?
 To ensure that the outputs will be real numbers. Observe what happens if the base is not positive:
 	Let [image: b=−9] and [image: x=\frac{1}{2}]. Then [image: f(x)=f(\frac{1}{2})=(−9)^\frac{1}{2}=\sqrt{−9}], which is not a real number.
 
 Why do we limit the base to positive values other than [image: 1]?
 Because base [image: 1] results in the constant function. Observe what happens if the base is [image: 1]:
 	Let [image: b=1]. Then [image: f(x)=1^x=1] for any value of [image: x].
 
  Note that a function of the form [image: f(x)=x^b] for some constant [image: b] is not an exponential function but a power function.
 To see the difference between an exponential function and a power function, we can compare the functions [image: y=x^2] and [image: y=2^x].
 In the table below, we see that both [image: 2^x] and [image: x^2] approach infinity as [image: x \to \infty]. Eventually, however, [image: 2^x] becomes larger than [image: x^2] and grows more rapidly as [image: x \to \infty]. In the opposite direction, as [image: x \to −\infty, \, x^2 \to \infty], whereas [image: 2^x \to 0]. The line [image: y=0] is a horizontal asymptote for [image: y=2^x].
 Values of [image: x^2] and [image: 2^x] 	[image: \mathbf{x}] 	[image: \mathbf{x^2}] 	[image: \mathbf{2^x}] 
 	[image: -3] 	[image: 9] 	[image: 1/8] 
 	[image: -2] 	[image: 4] 	[image: 1/4] 
 	[image: -1] 	[image: 1] 	[image: 1/2] 
 	[image: 0] 	[image: 0] 	[image: 1] 
 	[image: 1] 	[image: 1] 	[image: 2] 
 	[image: 2] 	[image: 4] 	[image: 4] 
 	[image: 3] 	[image: 9] 	[image: 8] 
 	[image: 4] 	[image: 16] 	[image: 16] 
 	[image: 5] 	[image: 25] 	[image: 32] 
 	[image: 6] 	[image: 36] 	[image: 64] 
  
 [image: An image of a graph. The x axis runs from -10 to 10 and the y axis runs from 0 to 50. The graph is of two functions. The first function is “y = x squared”, which is a parabola. The function decreases until it hits the origin and then begins increasing. The second function is “y = 2 to the power of x”, which starts slightly above the x axis, and begins increasing very rapidly, more rapidly than the first function.]Figure 1. Both [image: 2^x] and [image: x^2] approach infinity as [image: x \to \infty], but [image: 2^x] grows more rapidly than [image: x^2]. As [image: x \to −\infty, \, x^2 \to \infty], whereas [image: 2^x \to 0].  	Arrow Notation 
 	Symbol 	Meaning 
  	[image: x\to \infty] 	[image: x] approaches infinity ([image: x] increases without bound) 
 	[image: x\to -\infty] 	[image: x] approaches negative infinity ([image: x] decreases without bound) 
 	[image: f\left(x\right)\to \infty] 	the output approaches infinity (the output increases without bound) 
 	[image: f\left(x\right)\to -\infty] 	the output approaches negative infinity (the output decreases without bound) 
 	[image: f\left(x\right)\to a] 	the output approaches [image: a] 
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				Exponential Functions Cont.
 Evaluating Exponential Functions
 To evaluate an exponential function with the form [image: f(x)=b^x], we simply substitute [image: x] with the given value, and calculate the resulting power.
 Let [image: f(x)=2^x]. What is [image: f(3)]?
 [image: \begin{array}{rcl} f(x) & = & 2^x \\ f(3) & = & 2^3 & \quad \text{Substitute } x = 3. \\ & = & 8 & \quad \text{Evaluate the power.} \end{array}]
  
  To evaluate an exponential function with a form other than the basic form, it is important to follow the order of operations.
 Let [image: f(x)=30(2)^x]. What is [image: f(3)]?
 [image: \begin{array}{rcll} f(x) & = & 30(2)^x & \\ f(3) & = & 30(2)^3 & \quad \text{Substitute } x = 3. \\ & = & 30(8) & \quad \text{Simplify the power first.} \\ & = & 240 & \quad \text{Multiply.} \end{array}]Note that if the order of operations were not followed, the result would be incorrect:[image: f(3)=30(2)^3≠60^3=216,000]
 How To: Evaluating Exponential Functions
 	Given an exponential function, identify [image: a], [image: b], and the value of [image: x] you’re being asked to substitute into the function.
 	Replace the variable [image: x] in the function with the given number.
 	Compute the value of [image: b^x]. This means raising the base [image: b] to the power of [image: x].
 	If there is a coefficient [image: a] in front of the base, multiply the result of [image: b^x] by [image: a]. If [image: a] is [image: 1], this step does not change the value.
 	Simplify the expression if necessary. This could involve performing any additional multiplication or addition/subtraction if the function has more terms.
 
  Let [image: f(x)=5(3)^x+1]. Evaluate [image: f(2)] without using a calculator.
 
 Show Answer Follow the order of operations. Be sure to pay attention to the parentheses.
 [image: \begin{array}{rcll} f(x) & = & 5(3)^{x+1} & \\ f(2) & = & 5(3)^{2+1} & \quad \text{Substitute } x = 2. \\ & = & 5(3)^3 & \quad \text{Add the exponents.} \\ & = & 5(27) & \quad \text{Simplify the power.} \\ & = & 135 & \quad \text{Multiply.} \end{array}]
   [ohm_question hide_question_numbers=1]284250[/ohm_question]
  Suppose a particular population of bacteria is known to double in size every [image: 4] hours. If a culture starts with [image: 1000] bacteria, the number of bacteria after [image: 4] hours is [image: n(4)=1000·2]. The number of bacteria after [image: 8] hours is [image: n(8)=n(4)·2=1000·2^2].
 In general, the number of bacteria after [image: 4m] hours is [image: n(4m)=1000·2^m]. Letting [image: t=4m], we see that the number of bacteria after [image: t] hours is [image: n(t)=1000·2^{t/4}].
 Find the number of bacteria after [image: 6] hours, [image: 10] hours, and [image: 24] hours.
 Show Solution 
 The number of bacteria after [image: 6] hours is given by [image: n(6)=1000·2^{6/4} \approx 2828] bacteria.
 The number of bacteria after [image: 10] hours is given by [image: n(10)=1000·2^{10/4} \approx 5657] bacteria.
 The number of bacteria after [image: 24] hours is given by [image: n(24)=1000·2^{24/4}=1000·2^6=64,000] bacteria.
   Laws of Exponents
 The Laws of Exponents are fundamental rules that govern the operations involving powers. These rules are essential for simplifying expressions and are foundational for higher-level math.
 laws of exponents
 	The Product of Powers rule states that when you multiply two exponents with the same base, you can add the exponents.[image: b^x·b^y=b^{x+y}]
 	The Quotient of Powers rule tells us that when dividing exponents with the same base, we subtract the exponents.[image: \large\frac{b^x}{b^y} \normalsize = b^{x-y}]
 	The Power of a Power rule shows that when taking an exponent to another exponent, we multiply the exponents.[image: (b^x)^y=b^{xy}]
 	The Power of a Product rule lets us know that when raising a product to an exponent, each factor in the product is raised to the exponent.[image: (ab)^x=a^x b^x]
 	The Power of a Quotient rule indicates that when a quotient is raised to an exponent, both the numerator and the denominator are raised to the exponent.[image: \dfrac{a^x}{b^x} =\left(\dfrac{a}{b}\right)^x]
 
 Note: This is true for any constants [image: a>0, \, b>0], and for all [image: x] and [image: y]
  Use the laws of exponents to simplify each of the following expressions.
 	[image: \large \frac{(2x^{2/3})^3}{(4x^{-1/3})^2}]
 	[image: \large \frac{(x^3 y^{-1})^2}{(xy^2)^{-2}}]
 
 Show Solution 
 	We can simplify as follows: [image: \large \frac{(2x^{2/3})^3}{(4x^{-1/3})^2} \normalsize = \large \frac{2^3(x^{2/3})^3}{4^2(x^{-1/3})^2} \normalsize = \large \frac{8x^2}{16x^{-2/3}} \normalsize = \large \frac{x^2x^{2/3}}{2} \normalsize = \large \frac{x^{8/3}}{2}]
 
 	We can simplify as follows: [image: \large \frac{(x^3y^{-1})^2}{(xy^2)^{-2}} \normalsize = \large \frac{(x^3)^2(y^{-1})^2}{x^{-2}(y^2)^{-2}} \normalsize = \large \frac{x^6y^{-2}}{x^{-2}y^{-4}} \normalsize = x^6x^2y^{-2}y^4 = x^8y^2]
 
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=tOkk_pSFpzk%3Fcontrols%3D0%26start%3D212%26end%3D380%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   When you encounter a negative exponent on a term in the denominator of a fraction, you can transform it into a positive exponent by moving the term to the numerator.
 [image: \frac{1}{a^-n}=a^{n}]Using this rule can significantly simplify expressions involving exponents.
 [ohm_question hide_question_numbers=1]123515[/ohm_question]
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				Logarithmic Functions
 Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. 
 Inverse Functions
 For any one-to-one function [image: f\left(x\right)=y], a function [image: {f}^{-1}\left(x\right)] is an inverse function of [image: f] if [image: {f}^{-1}\left(y\right)=x]. 
 The notation [image: {f}^{-1}] is read “[image: f] inverse.” Like any other function, we can use any variable name as the input for [image: {f}^{-1}], so we will often write [image: {f}^{-1}\left(x\right)], which we read as [image: "f] inverse of [image: x]“.
  Logarithmic functions come in handy when we need to consider any phenomenon that varies over a wide range of values, such as pH in chemistry or decibels in sound levels.
 The exponential function [image: f(x)=b^x] is one-to-one, with domain [image: (−\infty ,\infty)] and range [image: (0,\infty )]. Therefore, it has an inverse function, called the logarithmic function with base [image: b].
 For any [image: b>0, \, b \ne 1], the logarithmic function with base [image: b], denoted [image: \log_b], has domain [image: (0,\infty )] and range [image: (−\infty ,\infty )], and satisfies
 [image: \log_b(x)=y] if and only if [image: b^y=x].
 logarithmic functions
 A logarithmic function is the inverse of an exponential function and is written as [image: log_{b}(x)]. For a given base [image: b], it tells us the power to which [image: b] must be raised to get [image: x].
  [image: \begin{array}{cccc} \log_2 (8)=3\hfill & & & \text{since}\phantom{\rule{3em}{0ex}}2^3=8,\hfill \\ \log_{10} (\frac{1}{100})=-2\hfill & & & \text{since}\phantom{\rule{3em}{0ex}}10^{-2}=\frac{1}{10^2}=\frac{1}{100},\hfill \\ \log_b (1)=0\hfill & & & \text{since}\phantom{\rule{3em}{0ex}}b^0=1 \, \text{for any base} \, b>0.\hfill \end{array}]
  The most commonly used logarithmic function is the function [image: \log_e (x)]. Since this function uses natural [image: e] as its base, it is called the natural logarithm. Here we use the notation [image: \ln(x)] or [image: \ln x] to mean [image: \log_e (x)].
 [image: \begin{array}{l}\ln (e)=\log_e (e)=1 \\ \ln(e^3)=\log_e (e^3)=3 \\ \ln(1)=\log_e (1)=0\end{array}] Euler’s number, denoted as [image: e], is a fundamental mathematical constant approximately equal to [image: 2.71828]. It is the base of the natural logarithm and the natural exponential function, known for its unique properties in calculus, especially in relation to growth processes and compound interest calculations.
  Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.
 Properties of Logarithms
 If [image: a,b,c>0, \, b\ne 1], and [image: r] is any real number, then
 [image: \begin{array}{cccc}1.\phantom{\rule{2em}{0ex}}\log_b (ac)=\log_b (a)+\log_b (c)\hfill & & & \text{(Product property)}\hfill \\ 2.\phantom{\rule{2em}{0ex}}\log_b(\frac{a}{c})=\log_b (a) -\log_b (c)\hfill & & & \text{(Quotient property)}\hfill \\ 3.\phantom{\rule{2em}{0ex}}\log_b (a^r)=r \log_b (a)\hfill & & & \text{(Power property)}\hfill \end{array}]
  Solve each of the following equations for [image: x].
 	[image: \ln \left(\frac{1}{x}\right)=4]
 	[image: \log_{10} \sqrt{x}+ \log_{10} x=2]
 	[image: \ln(2x)-3 \ln(x^2)=0]
 
 Show Solution 
 	By the definition of the natural logarithm function, [image: \ln\big(\frac{1}{x}\big)=4 \, \text{ if and only if } \, e^4=\frac{1}{x}]
 Therefore, the solution is [image: x=\frac{1}{e^4}].
 
 	Using the product and power properties of logarithmic functions, rewrite the left-hand side of the equation as [image: \log_{10} \sqrt{x}+ \log_{10} x = \log_{10} x \sqrt{x} = \log_{10}x^{3/2} = \frac{3}{2} \log_{10} x]
 Therefore, the equation can be rewritten as
 [image: \frac{3}{2} \log_{10} x = 2 \, \text{ or } \, \log_{10} x = \frac{4}{3}]
 The solution is [image: x=10^{4/3}=10\sqrt[3]{10}].
 
 	Using the power property of logarithmic functions, we can rewrite the equation as [image: \ln(2x) - \ln(x^6) = 0].
 Using the quotient property, this becomes [image: \ln\big(\frac{2}{x^5}\big)=0]
 Therefore, [image: \frac{2}{x^5}=1], which implies [image: x=\sqrt[5]{2}]. 
 
 
   Solve each of the following equations for [image: x].
 	[image: 5^x=2]
 	[image: e^x+6e^{−x}=5]
 
 Show Solution 
 	Applying the natural logarithm function to both sides of the equation, we have [image: \ln 5^x=\ln 2]
 Using the power property of logarithms,
 [image: x \ln 5=\ln 2]
 Therefore, [image: x=\frac{\ln 2 }{\ln 5}].
 
 	Multiplying both sides of the equation by [image: e^x], we arrive at the equation [image: e^{2x}+6=5e^x]
 Rewriting this equation as
 [image: e^{2x}-5e^x+6=0],
 we can then rewrite it as a quadratic equation in [image: e^x]:
 [image: (e^x)^2-5(e^x)+6=0]
 Now we can solve the quadratic equation. Factoring this equation, we obtain
 [image: (e^x-3)(e^x-2)=0]
 Therefore, the solutions satisfy [image: e^x=3] and [image: e^x=2]. Taking the natural logarithm of both sides gives us the solutions
 [image: x=\ln 3, \, \ln 2]
 
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=tOkk_pSFpzk%3Fcontrols%3D0%26start%3D640%26end%3D823%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   [ohm_question hide_question_numbers=1]217547[/ohm_question]
  In calculations involving logarithms, you might have noticed that calculators typically provide only the common logarithm ([image: \log_{10}]) and natural logarithm (base [image: e]).  However, exponential functions and logarithm functions can be expressed in terms of any desired base [image: b].
 To work with different bases, we can use the change-of-base formula to convert to a base your calculator can handle.
 change-of-base formulas
 The change-of-base formula allows you to evaluate logarithms with any base using only the common or natural logarithm functions typically available on a calculator.
  
 For any real number [image: x] and bases [image: a>0, \, b>0], and [image: a\ne 1, \, b\ne 1], the exponential expression [image: a^x]can be rewritten using a logarithm with base [image: b] as [image: a^x=b^{x \log_b a}]. 
 The change of base formula is:
 [image: \log_a x=\frac{\log_b x}{\log_b a}] for any real number [image: x>0].
 If [image: b=e], this exponential expression reduces to [image: a^x=e^{x \log_e a}=e^{x \ln a}]. The change of base formula reduces to [image: \log_a x=\frac{\ln x}{\ln a}].
  Proof
 
 For the first change-of-base formula, we begin by making use of the power property of logarithmic functions. We know that for any base [image: b>0, \, b\ne 1, \, \log_b (a^x)=x \log_b a]. Therefore,
 [image: b^{\log_b(a^x)}=b^{x \log_b a}]
  
 In addition, we know that [image: b^x] and [image: \log_b (x)] are inverse functions. Therefore,
 [image: b^{\log_b (a^x)}=a^x]
  
 Combining these last two equalities, we conclude that [image: a^x=b^{x \log_b a}].
 To prove the second property, we show that
 [image: (\log_b a)·(\log_a x)=\log_b x]
  
 Let [image: u=\log_b a, \, v=\log_a x], and [image: w=\log_b x]. We will show that [image: u·v=w]. By the definition of logarithmic functions, we know that [image: b^u=a, \, a^v=x], and [image: b^w=x]. From the previous equations, we see that
 [image: b^{uv}=(b^u)^v=a^v=x=b^w]
  
 Therefore, [image: b^{uv}=b^w]. Since exponential functions are one-to-one, we can conclude that [image: u·v=w].
 [image: _\blacksquare]
 
 How to: Use the Change-of-Base Formulas
 	Take the logarithm you need to evaluate, [image: (\log_b a)]
 	Using the change-of-base formula, rewrite it as:[image: \log_a x=\frac{\log_b x}{\log_b a}]
 	Use your calculator to find the common log (base [image: 10]) of [image: a],[image: \log{a}], and the common log of [image: x], [image: \log{x}].
 	Divide these two values to compute [image: \log_a x]
 
 Note: You can also use the natural logarithm ([image: ln]) in place of the common logarithm ([image: log]) if preferred.
  Use a calculator to evaluate [image: \log_3 7] using the change-of-base formula.
 Show Solution 
 Using the change-of-base formula [image: \log_a x=\frac{\log_b x}{\log_b a}]:
 [image: \log_3 7=\frac{\log 7}{\log 3} \approx 1.77124].
   [ohm_question hide_question_numbers=1]217554[/ohm_question]
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				Hyperbolic Functions
 Hyperbolic functions are defined in terms of certain combinations of [image: e^x] and [image: e^{−x}]. These functions arise naturally in various engineering and physics applications, including the study of water waves and vibrations of elastic membranes.
 Another common use for a hyperbolic function is the representation of a hanging chain or cable, also known as a catenary. If we introduce a coordinate system so that the low point of the chain lies along the [image: y]-axis, we can describe the height of the chain in terms of a hyperbolic function. 
 [image: A photograph of a spider web collecting dew drops.]Figure 6. The shape of a strand of silk in a spider’s web can be described in terms of a hyperbolic function. The same shape applies to a chain or cable hanging from two supports with only its own weight. (credit: “Mtpaley”, Wikimedia Commons) Using the definition of [image: \cosh(x)] and principles of physics, it can be shown that the height of a hanging chain can be described by the function [image: h(x)=a \cosh(x/a)+c] for certain constants [image: a] and [image: c].
  hyperbolic functions
 Hyperbolic cosine
 [image: \cosh x=\large \frac{e^x+e^{−x}}{2}]
  
 Hyperbolic sine
 [image: \sinh x=\large \frac{e^x-e^{−x}}{2}]
  
 Hyperbolic tangent
 [image: \tanh x=\large \frac{\sinh x}{\cosh x} \normalsize = \large \frac{e^x-e^{−x}}{e^x+e^{−x}}]
  
 Hyperbolic cosecant
 [image: \text{csch} \, x=\large \frac{1}{\sinh x} \normalsize = \large \frac{2}{e^x-e^{−x}}]
  
 Hyperbolic secant
 [image: \text{sech} \, x=\large \frac{1}{\cosh x} \normalsize = \large \frac{2}{e^x+e^{−x}}]
  
 Hyperbolic cotangent
 [image: \coth x=\large \frac{\cosh x}{\sinh x} \normalsize = \large \frac{e^x+e^{−x}}{e^x-e^{−x}}]
  The name cosh rhymes with “gosh,” whereas the name sinh is pronounced “cinch.” Tanh, sech, csch, and coth are pronounced “tanch,” “seech,” “coseech,” and “cotanch,” respectively.
  But why are these functions called hyperbolic functions?
 To answer this question, consider the quantity [image: \cosh^2 t-\sinh^2 t]. Using the definition of [image: \cosh] and [image: \sinh], we see that
 [image: \cosh^2 t-\sinh^2 t=\large \frac{e^{2t}+2+e^{-2t}}{4}-\frac{e^{2t}-2+e^{-2t}}{4} \normalsize =1]
  
 This identity is the analog of the trigonometric identity [image: \cos^2 t+\sin^2 t=1]. Here, given a value [image: t], the point [image: (x,y)=(\cosh t,\sinh t)] lies on the unit hyperbola [image: x^2-y^2=1] (Figure 7).
 [image: An image of a graph. The x axis runs from -1 to 3 and the y axis runs from -3 to 3. The graph is of the relation “(x squared) - (y squared) -1”. The left most point of the relation is at the x intercept, which is at the point (1, 0). From this point the relation both increases and decreases in curves as x increases. This relation is known as a hyperbola and it resembles a sideways “U” shape. There is a point plotted on the graph of the relation labeled “(cosh(1), sinh(1))”, which is at the approximate point (1.5, 1.2).]Figure 7. The unit hyperbola [image: \cosh^2 t-\sinh^2 t=1].  If you think hyperbolic functions look a lot like trigonometric ones, you’re not wrong! They share similar properties because they’re both connected to the concept of the exponential function [image: e^x]. Remember, while trigonometric functions relate to the unit circle, hyperbolic functions are associated with the unit hyperbola.
  Graphs of Hyperbolic Functions
 The graphs of [image: \cosh x] and [image: \sinh x], can be derived by observing how they relate to exponential functions.
 As [image: x] approaches towards infinity, both functions approach [image: \frac{1}{2}e^x] because the term [image: e^{−x}] becomes negligible.
 In contrast, as [image: x] moves towards negative infinity, [image: \cosh x] mirrors [image: \frac{1}{2}e^{−x}], while [image: \sinh x] mirrors [image: -\frac{1}{2}e^{−x}].
 Therefore, the graphs [image: \frac{1}{2}e^x, \, \frac{1}{2}e^{−x}], and [image: −\frac{1}{2}e^{−x}] provide a roadmap for sketching the graphs.
 When graphing [image: \tanh x], we note that its value starts at [image: 0] when [image: x] is [image: 0] and then ascends towards [image: 1] or descends towards  [image: -1] as [image: x] goes to positive or negative infinity, respectively.
 The graphs of the other three hyperbolic functions can be sketched using the graphs of [image: \cosh x, \, \sinh x], and [image: \tanh x] (Figure 8).
 [image: An image of six graphs. Each graph has an x axis that runs from -3 to 3 and a y axis that runs from -4 to 4. The first graph is of the function “y = cosh(x)”, which is a hyperbola. The function decreases until it hits the point (0, 1), where it begins to increase. There are also two functions that serve as a boundary for this function. The first of these functions is “y = (1/2)(e to power of -x)”, a decreasing curved function and the second of these functions is “y = (1/2)(e to power of x)”, an increasing curved function. The function “y = cosh(x)” is always above these two functions without ever touching them. The second graph is of the function “y = sinh(x)”, which is an increasing curved function. There are also two functions that serve as a boundary for this function. The first of these functions is “y = (1/2)(e to power of x)”, an increasing curved function and the second of these functions is “y = -(1/2)(e to power of -x)”, an increasing curved function that approaches the x axis without touching it. The function “y = sinh(x)” is always between these two functions without ever touching them. The third graph is of the function “y = sech(x)”, which increases until the point (0, 1), where it begins to decrease. The graph of the function has a hump. The fourth graph is of the function “y = csch(x)”. On the left side of the y axis, the function starts slightly below the x axis and decreases until it approaches the y axis, which it never touches. On the right side of the y axis, the function starts slightly to the right of the y axis and decreases until it approaches the x axis, which it never touches. The fifth graph is of the function “y = tanh(x)”, an increasing curved function. There are also two functions that serve as a boundary for this function. The first of these functions is “y = 1”, a horizontal line function and the second of these functions is “y = -1”, another horizontal line function. The function “y = tanh(x)” is always between these two functions without ever touching them. The sixth graph is of the function “y = coth(x)”. On the left side of the y axis, the function starts slightly below the boundary line “y = 1” and decreases until it approaches the y axis, which it never touches. On the right side of the y axis, the function starts slightly to the right of the y axis and decreases until it approaches the boundary line “y = -1”, which it never touches.]Figure 8. The hyperbolic functions involve combinations of [image: e^x] and [image: e^{−x}]. 
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				Hyperbolic Functions Cont.
 Identities Involving Hyperbolic Functions
 Just as trigonometric functions have identities that allow for the simplification and transformation of expressions, hyperbolic functions also possess their own set of identities.
 hyperbolic function identities
 Hyperbolic Reflection Identities: 	[image: \cosh(−x)=\cosh x]
 	[image: \sinh(−x)=−\sinh x]
 
 Hyperbolic Pythagorean Identities:
 	[image: \cosh^2 x-\sinh^2 x=1]
 
 Hyperbolic Squared Identities:
 	[image: 1-\tanh^2 x=\text{sech}^2 x]
 	[image: \coth^2 x-1=\text{csch}^2 x]
 
 Hyperbolic Addition Formulas:
 	[image: \sinh(x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y]
 	[image: \cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y]
 
 Exponential Definitions of Hyperbolic Functions
 	[image: \cosh x+\sinh x=e^x]
 	[image: \cosh x-\sinh x=e^{−x}]
 
 
  	Simplify [image: \sinh(5 \ln x)].
 	If [image: \sinh x=\frac{3}{4}], find the values of the remaining five hyperbolic functions.
 
 Show Solution 
 	Using the definition of the [image: \sinh] function, we write [image: \sinh(5 \ln x)=\large \frac{e^{5 \ln x}-e^{-5 \ln x}}{2} \normalsize = \large \frac{e^{\ln(x^5)}-e^{\ln(x^{-5})}}{2} \normalsize =\large \frac{x^5-x^{-5}}{2}].
 
 	Using the identity [image: \cosh^2 x-\sinh^2 x=1], we see that [image: \cosh^2 x=1+\big(\frac{3}{4}\big)^2=\frac{25}{16}].
 Since [image: \cosh x \ge 1] for all [image: x], we must have [image: \cosh x=5/4]. Then, using the definitions for the other hyperbolic functions, we conclude that [image: \tanh x=3/5, \, \text{csch} \, x=4/3, \, \text{sech} \, x=4/5], and [image: \coth x=5/3].
 
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=tOkk_pSFpzk%3Fcontrols%3D0%26start%3D1498%26end%3D1738%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   Inverse Hyperbolic Functions
 From the graphs of the hyperbolic functions, we see that all of them are one-to-one except [image: \cosh x] and [image: \text{sech} \, x]. If we restrict the domains of these two functions to the interval [image: [0,\infty)], then all the hyperbolic functions are one-to-one, and we can define the inverse hyperbolic functions. Since the hyperbolic functions themselves involve exponential functions, the inverse hyperbolic functions involve logarithmic functions.
 inverse hyperbolic functions
 [image: \begin{array}{cccc}\sinh^{-1} x=\text{arcsinh } x=\ln(x+\sqrt{x^2+1})\hfill & & & \cosh^{-1} x=\text{arccosh } x=\ln(x+\sqrt{x^2-1})\hfill \\ \tanh^{-1} x=\text{arctanh } x=\frac{1}{2}\ln\big(\frac{1+x}{1-x}\big)\hfill & & & \coth^{-1} x=\text{arccot } x=\frac{1}{2}\ln\big(\frac{x+1}{x-1}\big)\hfill \\ \text{sech}^{-1} x=\text{arcsech } x=\ln\big(\frac{1+\sqrt{1-x^2}}{x}\big)\hfill & & & \text{csch}^{-1} x=\text{arccsch } x=\ln\big(\frac{1}{x}+\frac{\sqrt{1+x^2}}{|x|}\big)\hfill \end{array}]
  Let’s look at how to derive the first equation, [image: \sinh^{-1} x=\text{arcsinh } x=\ln(x+\sqrt{x^2+1})]. The others follow similarly.
 Suppose [image: y=\sinh^{-1} x]. Then, [image: x=\sinh y] and, by the definition of the hyperbolic sine function, [image: x=\frac{e^y-e^{−y}}{2}]. 
 Multiplying both sides of this equation by [image: 2] to get rid of the fraction and setting that equal to zero, we get
 [image: e^y-2x-e^{−y}=0]
 Multiplying this equation by [image: e^y], we obtain
 [image: e^{2y}-2xe^y-1=0]
 This can be solved like a quadratic equation, with the solution
 [image: e^y=\large \frac{2x \pm \sqrt{4x^2+4}}{2} \normalsize =x \pm \sqrt{x^2+1}]
 Since [image: e^y>0], the only solution is the one with the positive sign.
 Applying the natural logarithm to both sides of the equation, we conclude that
 [image: y=\ln(x+\sqrt{x^2+1})]
  Evaluate each of the following expressions
 [image: \sinh^{-1}(2)]
 [image: \tanh^{-1}\left(\frac{1}{4}\right)]
 Show Solution 
 [image: \sinh^{-1}(2)=\ln(2+\sqrt{2^2+1})=\ln(2+\sqrt{5}) \approx 1.4436]
 [image: \tanh^{-1}(\frac{1}{4})=\frac{1}{2}\ln(\frac{1+1/4}{1-1/4})=\frac{1}{2}\ln(\frac{5/4}{3/4})=\frac{1}{2}\ln(\frac{5}{3}) \approx 0.2554]
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		Exponential and Logarithmic Functions: Apply It

								

	
				 	Work with exponential functions to find their values
 	Recognize logarithmic functions, explore their relationship with exponential functions, and change their bases
 	Identify hyperbolic functions their graphs, and understand their fundamental identities
 
  Exponential and Logarithmic Functions
 In this apply-it task, you’ll work with exponential, logarithmic, and hyperbolic functions to explore their properties and relationships.
 [ohm_question hide_question_numbers=1]288200[/ohm_question]
  [ohm_question hide_question_numbers=1]288201[/ohm_question]
  [ohm_question hide_question_numbers=1]288202[/ohm_question]
  [ohm_question hide_question_numbers=1]288203[/ohm_question]
  [ohm_question hide_question_numbers=1]288204[/ohm_question]
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		Understanding Limits: Background You’ll Need 1

								

	
				 	Determine whether a linear function is increasing, decreasing, or constant.
 
  Determine Whether a Linear Function is Increasing, Decreasing, or Constant
 A linear function may be increasing, decreasing, or constant.
 For an increasing function, as with the train example, the output values increase as the input values increase. The graph of an increasing function has a positive slope. A line with a positive slope slants upward from left to right as in Figure 1 (a).
 For a decreasing function, the slope is negative. The output values decrease as the input values increase. A line with a negative slope slants downward from left to right as in Figure 1 (b).
 If the function is constant, the output values are the same for all input values, so the slope is zero. A line with a slope of zero is horizontal as in Figure 1 (c).
 [image: Three graphs depicting an increasing function, a decreasing function, and a constant function.]Figure 1 increasing and decreasing linear functions
 The slope determines if a linear function function is an increasing, decreasing or constant.
  
 	[image: f\left(x\right)=mx+b\text{ is an increasing function if }m>0]
 	[image: f\left(x\right)=mx+b\text{ is an decreasing function if }m<0]
 	[image: f\left(x\right)=mx+b\text{ is a constant function if }m=0]
 
 
  The slope [image: m] in the linear function [image: f(x)=mx+b] is the rate at which [image: f(x)] changes relative to [image: x]. It describes both how steep the line is and in which direction it tilts—upwards for a positive slope, downwards for a negative, and horizontal for a slope of zero.
  Some recent studies suggest that a teenager sends an average of [image: 60] text messages per day.[1] For each of the following scenarios, find the linear function that describes the relationship between the input value and the output value. Then determine whether the graph of the function is increasing, decreasing, or constant. 	The total number of texts a teenager sends is considered a function of time in days. The input is the number of days and output is the total number of texts sent.
 	A teenager has a limit of [image: 500] texts per month in his or her data plan. The input is the number of days and output is the total number of texts remaining for the month.
 	A teenager has an unlimited number of texts in his or her data plan for a cost of [image: $50] per month. The input is the number of days and output is the total cost of texting each month.
 
 Show Solution Analyze each function.
 	The function can be represented as [image: f\left(x\right)=60x] where [image: x] is the number of days. The slope, [image: 60], is positive so the function is increasing. This makes sense because the total number of texts increases with each day.
 	The function can be represented as [image: f\left(x\right)=500 - 60x] where [image: x] is the number of days. In this case, the slope is negative so the function is decreasing. This makes sense because the number of texts remaining decreases each day and this function represents the number of texts remaining in the data plan after [image: x] days.
 	The cost function can be represented as [image: f\left(x\right)=50] because the number of days does not affect the total cost. The slope is [image: 0] so the function is constant.
 
   [ohm_question hide_question_numbers=1]289916[/ohm_question]
  Use an online graphing calculator to graph the function: [image: f(x)=-\frac{2}{3}x-\frac{4}{3}].
 If you are using Desmos, you can add sliders to represent various aspects of your equation. Below is a short tutorial on how to add sliders to your graphs in Desmos. Other online graphing calculators may or may not have this feature.
  One or more interactive elements has been excluded from this version of the text. You can view them online here: https://printed.lumenlearning.com/calc1/?p=65#oembed-1 
 
 Try adding a slider to the function [image: f(x) =-\frac{2}{3}x-\frac{4}{3}] that will let you change the slope. Limit the range of values for the slope such that your function is increasing, then do the same for a function that is decreasing. Finally, write and graph a function whose slope is constant.
  
	http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-are-sending-60-texts-a-day-study-says/ ↵
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		Understanding Limits: Background You’ll Need 2

								

	
				 	Find the vertical and horizontal asymptotes of a function
 
  Vertical Asymptote
 It’s important to recognize characteristics of a function’s graph that signal specific behaviors. Vertical asymptotes are one such feature, indicating where a function’s output heads towards infinity or negative infinity as the input nears certain values. 
 vertical asymptote
 Vertical asymptotes occur in the graph of a function where the function approaches infinity or negative infinity as the input approaches a certain value. They represent values of [image: x] at which the function is undefined and the graph of the function cannot cross. These asymptotes are typically found in rational functions where the denominator is zero.
  The graph of [image: f\left(x\right)=\dfrac{x+3}{{x}^{2}-9}] has a vertical asymptote at [image: x=3].
 [image: Graph of f(x)=1/(x-3) with its vertical asymptote at x=3 and its horizontal asymptote at y=0.]
  In rational functions, vertical asymptotes serve as crucial indicators of the points at which the function’s value tends toward infinity. These asymptotes can be found by examining the factors of the denominator that do not cancel with corresponding factors in the numerator. Specifically, the values that make the denominator zero—unless they also make the numerator zero—determine the locations of these asymptotes.
 How To: Given a Rational Function, Identify it’s Vertical Asymptotes.
 	Factor: Break down both the numerator and denominator into their prime factors.
 	Simplify: Reduce the rational function by canceling out common factors between the numerator and the denominator.
 	Determine Asymptotes: The zeros of the simplified denominator are the [image: x]-values for vertical asymptotes, provided they do not also zero the numerator.
 
  To break down an expression into prime factors, repeatedly divide by the smallest prime number that will go into the number evenly, until you reach a quotient of one. For algebraic expressions, apply factoring techniques such as finding common factors, difference of squares, or using the quadratic formula to express the expression as a product of its irreducible factors.
  Find the vertical asymptotes of the graph of [image: k\left(x\right)=\dfrac{5+2{x}^{2}}{2-x-{x}^{2}}].
 Show Solution 
 First, factor the numerator and denominator.
 [image: \begin{align}k\left(x\right)&=\dfrac{5+2{x}^{2}}{2-x-{x}^{2}} \\[1mm] &=\dfrac{5+2{x}^{2}}{\left(2+x\right)\left(1-x\right)} \end{align}]
 To find the vertical asymptotes, we determine where this function will be undefined by setting the denominator equal to zero:
 [image: \left(2+x\right)\left(1-x\right)=0]
 [image: x=-2,1]
 Neither [image: x=-2] nor [image: x=1] are zeros of the numerator, so the two values indicate two vertical asymptotes. The graph below confirms the location of the two vertical asymptotes.
 [image: Graph of k(x)=(5+2x)^2/(2-x-x^2) with its vertical asymptotes at x=-2 and x=1 and its horizontal asymptote at y=-2.]
   Horizontal Asymptote
 While vertical asymptotes describe the behavior of a graph as the output gets very large or very small, horizontal asymptotes help describe the behavior of a graph as the input gets very large or very small. Recall that a polynomial’s end behavior will mirror that of the leading term. Likewise, a rational function’s end behavior will mirror that of the ratio of the function that is the ratio of the leading terms.
 The leading coefficient and degree of a polynomial function is useful when predicting its end behavior.
 If the leading term is positive or negative, and has even or odd degree, it will tell us the toolkit function’s graph behavior it will mimic: [image: f(x)=x^2, \quad f(x)=-x^2,\quad f(x)=x^3,\quad] or [image: \quad f(x)=-x^3].
 The same idea applies to the ratio of leading terms of a rational function.
  There are three distinct outcomes when checking for horizontal asymptotes:
 Case 1: If the degree of the denominator is greater than the degree of the numerator, there is a horizontal asymptote at [image: y=0].
 Consider the following function:
 [image: f\left(x\right)=\dfrac{4x+2}{{x}^{2}+4x - 5}]
 In this case the end behavior is [image: f\left(x\right)\approx \frac{4x}{{x}^{2}}=\frac{4}{x}].
 This tells us that, as the inputs increase or decrease without bound, this function will behave similarly to the function [image: g\left(x\right)=\frac{4}{x}], and the outputs will approach zero, resulting in a horizontal asymptote at [image: y=0]. Note that this graph crosses the horizontal asymptote.
 [image: Graph of f(x)=(4x+2)/(x^2+4x-5) with its vertical asymptotes at x=-5 and x=1 and its horizontal asymptote at y=0.]Horizontal Asymptote [image: y=0] when [image: f\left(x\right)=\dfrac{p\left(x\right)}{q\left(x\right)},q\left(x\right)\ne{0}\text{ where degree of }p<\text{degree of q}].  Case 2: If the degree of the denominator is less than the degree of the numerator by one, we get a slant asymptote.
 Consider the following function:
 [image: f\left(x\right)=\dfrac{3{x}^{2}-2x+1}{x - 1}]
 In this case the end behavior is [image: f\left(x\right)\approx \frac{3{x}^{2}}{x}=3x].
 This tells us that as the inputs increase or decrease without bound, this function will behave similarly to the function [image: g\left(x\right)=3x]. As the inputs grow large, the outputs will grow and not level off, so this graph has no horizontal asymptote.
 However, the graph of [image: g\left(x\right)=3x] looks like a diagonal line, and since [image: f] will behave similarly to [image: g], it will approach a line close to [image: y=3x]. This line is a slant asymptote.
 To find the equation of the slant asymptote, divide [image: \dfrac{3{x}^{2}-2x+1}{x - 1}]. The quotient is [image: 3x+1] and the remainder is [image: 2]. The slant asymptote is the graph of the line [image: g(x)=3x+1].
 [image: Graph of f(x)=(3x^2-2x+1)/(x-1) with its vertical asymptote at x=1 and a slant asymptote aty=3x+1.]Slant asymptote when [image: f(x)=\frac{p(x)}{q(x)}, q(x) \neq 0] where degree of [image: p > \text{ degree of } q \text{ by } 1]  Case 3: If the degree of the denominator is equal to the degree of the numerator, there is a horizontal asymptote at [image: y=\frac{{a}_{n}}{{b}_{n}}], where [image: {a}_{n}] and [image: {b}_{n}] are the leading coefficients of [image: p\left(x\right)] and [image: q\left(x\right)] for [image: f\left(x\right)=\frac{p\left(x\right)}{q\left(x\right)},q\left(x\right)\ne 0].
 Consider the following function:
 [image: f\left(x\right)=\dfrac{3{x}^{2}+2}{{x}^{2}+4x - 5}]
 In this case the end behavior is [image: f\left(x\right)\approx \frac{3{x}^{2}}{{x}^{2}}=3].
 This tells us that as the inputs grow large, this function will behave like the function [image: g\left(x\right)=3], which is a horizontal line. As [image: x\to \pm \infty ,f\left(x\right)\to 3], resulting in a horizontal asymptote at [image: y=3]. Note that this graph crosses the horizontal asymptote.
 [image: Graph of f(x)=(3x^2+2)/(x^2+4x-5) with its vertical asymptotes at x=-5 and x=1 and its horizontal asymptote at y=3.]Horizontal Asymptote when [image: f\left(x\right)=\frac{p\left(x\right)}{q\left(x\right)},q\left(x\right)\ne 0\text{ where degree of }p=\text{degree of }q].  
  Notice that, while the graph of a rational function will never cross a vertical asymptote, the graph may or may not cross a horizontal or slant asymptote. Also, although the graph of a rational function may have many vertical asymptotes, the graph will have at most one horizontal (or slant) asymptote.
 It should be noted that, if the degree of the numerator is larger than the degree of the denominator by more than one, the end behavior of the graph will mimic the behavior of the reduced end behavior fraction.
 For instance, if we had the function
 [image: f\left(x\right)=\dfrac{3{x}^{5}-{x}^{2}}{x+3}]
 with end behavior
 [image: f\left(x\right)\approx \dfrac{3{x}^{5}}{x}=3{x}^{4}],
 the end behavior of the graph would look similar to that of an even polynomial with a positive leading coefficient.
 As [image: x\to \pm \infty , f\left(x\right)\to \infty]
  horizontal asymptote
 The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and denominator.
 	Case 1: Degree of denominator [image: >] degree of  the numerator: horizontal asymptote at [image: y=0]
 	Case 2: Degree of denominator [image: <] degree of numerator by one: no horizontal asymptote; slant asymptote. 	If the degree of the numerator is greater than the degree of the denominator by more than one, the end behavior of the function’s graph will mimic that of the graph of the reduced ratio of leading terms.
 
 
 	Case 3: Degree of numerator [image: =] degree of denominator: horizontal asymptote at ratio of leading coefficients.
 
  For the functions below, identify the horizontal or slant asymptote.
 	[image: g\left(x\right)=\dfrac{6{x}^{3}-10x}{2{x}^{3}+5{x}^{2}}]
 	[image: h\left(x\right)=\dfrac{{x}^{2}-4x+1}{x+2}]
 	[image: k\left(x\right)=\dfrac{{x}^{2}+4x}{{x}^{3}-8}]
 
 Show Solution 
 For these solutions, we will use [image: f\left(x\right)=\dfrac{p\left(x\right)}{q\left(x\right)}, q\left(x\right)\ne 0].
 	The degree of [image: p] and the degree of [image: q] are both equal to [image: 3], so we can find the horizontal asymptote by taking the ratio of the leading terms. There is a horizontal asymptote at [image: y=\frac{6}{2}] or [image: y=3].
 
 	The degree of [image: p=2] and degree of [image: q=1]. Since [image: p>q] by [image: 1], there is a slant asymptote found at [image: \dfrac{{x}^{2}-4x+1}{x+2}].
 [image: Synthetic division of x^2-4x+1 by x+2, resulting in x-6 with a remainder of 13]
 The quotient is [image: x - 6] and the remainder is [image: 13]. There is a slant asymptote at [image: y=-x - 6].
 
 	The degree of [image: p=2\text{ }<] degree of [image: q=3], so there is a horizontal asymptote [image: y=0].
 
 
   [ohm_question hide_question_numbers=1]288268[/ohm_question]
  Find the horizontal and vertical asymptotes of the function
 [image: f\left(x\right)=\dfrac{\left(x - 2\right)\left(x+3\right)}{\left(x - 1\right)\left(x+2\right)\left(x - 5\right)}]
 Show Solution 
 First, note that this function has no common factors, so there are no potential removable discontinuities.
 The function will have vertical asymptotes when the denominator is zero, causing the function to be undefined. The denominator will be zero at [image: x=1,-2,\text{and }5], indicating vertical asymptotes at these values.
 The numerator has degree [image: 2], while the denominator has degree [image: 3]. Since the degree of the denominator is greater than the degree of the numerator, the denominator will grow faster than the numerator, causing the outputs to tend towards zero as the inputs get large, and so as [image: x\to \pm \infty , f\left(x\right)\to 0]. This function will have a horizontal asymptote at [image: y=0].
   [ohm_question hide_question_numbers=1]105058[/ohm_question] 
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				 	Calculate and interpret slope
 
  Calculate and Interpret Slope
 In the study of linear functions, the concept of slope is essential. The slope measures the rate of change between two variables and is often denoted by [image: m]. It represents how much the dependent variable (usually [image: y]) changes for a unit change in the independent variable (usually [image: x]).
 slope
 The slope is a measure of the steepness of the line.
  
 	A positive slope indicates an increase in [image: y] as [image: x] increases, depicting a line rising from left to right.
 	A negative slope indicates a decrease in [image: y] as [image: x] increases, showing a line that falls from left to right.
 	A slope of zero means the line is horizontal, indicating no change in [image: y] as [image: x] varies, and an undefined slope corresponds to a vertical line, where [image: x] remains constant despite changes in [image: y].
 
  For a linear function defined as [image: y=f(x)], where [image: x] is the independent variable and [image: y] is the dependent variable, the slope [image: m] can be calculated when given two distinct points on the line, [image: (x_1,y_1)] and [image: (x_2,y_2)]. The slope is given by the ratio of the change in [image: y] (the “rise”) to the change in [image: x] (the “run”):
 [image: m=\dfrac{\text{change in output (rise)}}{\text{change in input (run)}}=\dfrac{\Delta y}{\Delta x}=\dfrac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}]
 where [image: \Delta y] is the change in output and [image: \Delta x] is the change in input.
 Using function notation, if the output values corresponding to [image: x_1] and [image: x_2] are [image: f\left({x}_{1}\right)] and [image: f\left({x}_{2}\right)] respectively, the formula for the slope becomes:
 [image: m=\dfrac{f\left({x}_{2}\right)-f\left({x}_{1}\right)}{{x}_{2}-{x}_{1}}]
 The graph below indicates how the slope of the line between the points, [image: \left({x}_{1,}{y}_{1}\right)] and [image: \left({x}_{2,}{y}_{2}\right)], is calculated. 
 [image: Graph depicting how to calculate the slope of a line]The slope of a function is calculated by the change in [image: y] divided by the change in [image: x]. It does not matter which coordinate is used as the [image: \left({x}_{2,\text{ }}{y}_{2}\right)] and which is the [image: \left({x}_{1},\text{ }{y}_{1}\right)],as long as each calculation is started with the elements from the same coordinate pair.
 You’ve just learned that slope is calculated as the change in the vertical distance (rise) divided by the change in the horizontal distance (run). A quick way to remember this is the phrase “Rise Over Run.”
 When you’re looking at a graph, you can quickly identify two points and use “Rise Over Run” to calculate the slope right there. To do so pick two points on the line. Count how much you have to go up or down to get from one point to the other—that’s your rise. Then count how much you have to go left or right—that’s your run. The slope is simply the rise divided by the run.
 If you go down instead of up, the rise will be negative. If you go left instead of right, the run will be negative. A negative slope means the line is going downhill as you read from left to right.
  calculating slope
 The slope, or rate of change, [image: m], of a function can be calculated according to the following:
  
 [image: m=\dfrac{\text{change in output (rise)}}{\text{change in input (run)}}=\dfrac{\Delta y}{\Delta x}=\dfrac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}} \Rightarrow \dfrac{f(x_2)-f(x_1)}{x_2 - x_1}]
  
 where [image: {x_1}] and [image: x_2] are input values and [image: {f(x_1)}] and [image: f(x_2)] are output values.
 
  How To: Given two points from a linear function, calculate and interpret the slope. 	Determine the units for output and input values.
 	Calculate the change of output values and change of input values.
 	Interpret the slope as the change in output values per unit of the input value.
 
  If [image: f\left(x\right)] is a linear function and [image: \left(3,-2\right)] and [image: \left(8,1\right)] are points on the line, find the slope. Is this function increasing or decreasing? Show Solution The coordinate pairs are [image: \left(3,-2\right)] and [image: \left(8,1\right)]. To find the rate of change, we divide the change in output by the change in input.
 [image: m=\frac{\text{change in output}}{\text{change in input}}=\frac{1-\left(-2\right)}{8 - 3}=\frac{3}{5}]
 We could also write the slope as [image: m=0.6]. The function is increasing because [image: m>0].
 Analysis of the Solution
 As noted earlier, the order in which we write the points does not matter when we compute the slope of the line as long as the first output value or [image: y]-coordinate used corresponds with the first input value or [image: x]-coordinate used. 
  [ohm_question hide_question_numbers=1]284264[/ohm_question]
  Q&A
 Are the units for slope always [image: \frac{\text{units for the output}}{\text{units for the input}}] ?
 Yes. Think of the units as the change of output value for each unit of change in input value. An example of slope could be miles per hour or dollars per day. Notice the units appear as a ratio of units for the output per units for the input.
  When interpreting slope as an average rate of change, it is customary to express the calculation as change in output per unit of input.
 A vehicle traveled from mile marker [image: 57] to mile marker [image: 180] between 4:15 pm and 6:21 pm.
 Can you use the formula for slope to find the vehicle’s average rate of change in distance as a function of the time it traveled?
 more Time is usually considered the input variable. We say that distance traveled depends on the amount of time spent traveling at a constant rate. But we can calculate an average rate traveled over the entire time traveled using the formula for slope. The average rate of speed will be calculated by the total distance over the total time traveled.
 [image: \dfrac{\text{change in distance}}{\text{change in time}} = \dfrac{180\text{ miles}-57\text{ miles}}{6.35\text{ hours} - 4.15\text{ hours}} = \dfrac{123\text{ miles}}{2.1\text{ hours}} = \dfrac{123}{2.1}\text{ miles per hour} \approx 58.6 \text{ mph}]
   The population of a city increased from [image: 23,400] to [image: 27,800] between 2008 and 2012. Find the change in population per year if we assume the change was constant from 2008 to 2012. Show Solution The rate of change relates the change in population to the change in time. The population increased by [image: 27,800-23,400=4400] people over the four-year time interval. To find the rate of change, divide the change in the number of people by the number of years.
 [image: \frac{4,400\text{ people}}{4\text{ years}}=1,100\text{ }\frac{\text{people}}{\text{year}}]
 So the population increased by [image: 1,100] people per year.
 Analysis of the Solution
 Because we are told that the population increased, we would expect the slope to be positive. This positive slope we calculated is therefore reasonable. 
  [ohm_question hide_question_numbers=1]284265[/ohm_question] 
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				 	Identify the line that just touches a curve at one point by looking at how nearby lines approach it
 	Describe how integration can be used to calculate the area under a curve
 
  The Tangent Problem and Differential Calculus
 Variable Rate of Change
 Calculus emerges from two fundamental problems: (1) the tangent problem, or how to determine the slope of a line tangent to a curve at a point; and (2) the area problem, or how to determine the area under a curve. The concept of the rate of change is pivotal in addressing these challenges.
 A clear starting point for understanding the rate of change is through linear functions, which exhibit a constant rate throughout. Consider the functions [image: f(x)=-2x-3, \, g(x)=\frac{x}{2}+1], and [image: h(x)=2] represented graphically by straight lines. The slopes of these functions, constant across their graphs, illustrate how [image: y] changes with [image: x].
 [image: Three graphs of different linear functions are shown. The first is f(x) = -2x – 3, with slope of -2 and y intercept of -3. The second is g(x) = x / 2 + 1, with slope of 1/2 and y intercept of 1. The third is h(x) = 2, with slope of 0 and y intercept of 2. The rate of change of each is constant, as determined by the slope.]Figure 1. The rate of change of a linear function is constant in each of these three graphs, with the constant determined by the slope. For [image: f(x)=-2x-3], a decrease in [image: x] by one unit leads to a two-unit drop in [image: y], illustrating a slope of  [image: (−2)]. Conversely, the slope of [image: \frac{1}{2}] in the function [image: g(x)] gently rises, increasing [image: y] by half a unit for each increment in [image: x]. The function [image: h(x)=2] has a slope of zero, indicating that the values of the function remain constant.
 These linear function examples, with their constant rates of change, set the groundwork for examining functions with variable rates of change, a central inquiry of calculus.
 Compare the graphs of the three linear functions with the graph of [image: k(x)=x^2] (Figure 2). 
 [image: A graph of the parabola k(x) = x^2, which opens up and has its vertex at the origin.]Figure 2. The function [image: k(x)=x^2] does not have a constant rate of change. The graph of [image: k(x)=x^2] starts from the left by decreasing rapidly, then begins to decrease more slowly and level off, and then finally begins to increase—slowly at first, followed by an increasing rate of increase as it moves toward the right. Unlike a linear function, no single number represents the rate of change for this function. 
 [ohm_question hide_question_numbers=1]219808[/ohm_question]
  These leads to the question: How do we measure the rate of change of a nonlinear function?
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				The Tangent Problem and Differential Calculus Cont.
 The Secant Line
 We can approximate the rate of change of a function [image: f(x)] at a point [image: (a,f(a))] on its graph by taking another point [image: (x,f(x))] on the graph of [image: f(x)], drawing a line through the two points, and calculating the slope of the resulting line. Such a line is called a secant line.
 secant line
 The secant to the function [image: f(x)] through the points [image: (a,f(a))] and [image: (x,f(x))] is the line passing through these points. Its slope is given by
 [image: m_{\sec}=\dfrac{f(x)-f(a)}{x-a}]
 The figure below shows a secant line to a function [image: f(x)] at a point [image: (a,f(a))].
 [image: A graph showing a generic curved function going through the points (0,0), (a, fa.), and (x, f(x)). A straight line called the secant line is drawn through the points (a, fa.), and (x, f(x)), going below the curved function between a and x and going above the curved function at values greater than x or less than a. The curved function and the secant line cross once more at some point in the third quadrant. The slope of the secant line is ( f(x) – fa. ) / (x – a).]Figure 3. The slope of a secant line through a point [image: (a,f(a))] estimates the rate of change of the function at the point [image: (a,f(a))].  [ohm_question hide_question_numbers=1]289920[/ohm_question]
  The accuracy of approximating the rate of change of the function with a secant line depends on how close [image: x] is to [image: a]. As we see in Figure 4, if [image: x] is closer to [image: a], the slope of the secant line is a better measure of the rate of change of [image: f(x)] at [image: a].
 [image: This graph is the same as the previous secant line and generic curved function graph. However, another point x is added, this time plotted closer to a on the x-axis. As such, another secant line is drawn through the points (a, fa.) and the new, closer (x, f(x)). The line stays much closer to the generic curved function around (a, fa.). The slope of this secant line has become a better approximation of the rate of change of the generic function.]Figure 4. As x gets closer to a, the slope of the secant line becomes a better approximation to the rate of change of the function [image: f(x)] at a. The Tangent Line
 The secant lines approach a specific line known as the function’s tangent at point [image: a]. The slope of this tangent line indicates the function’s rate of change at that point. This value corresponds to the function’s derivative at [image: a], or the rate of change of the function at [image: a]. This concept is at the heart of differential calculus, which delves into derivatives and their various applications.
 tangent line
 The tangent line at a point on a function’s graph provides a visual representation of the derivative at that point. It reflects the instantaneous rate of change of the function.
  As a function’s value incrementally changes, secant lines are drawn between two points on the function’s curve, approximating the slope between them. As one point on the secant line moves closer to the other, the secant line approaches the tangent line at that point.
 [image: This graph is a continuation of the previous two. This time, the graph contains the curved function, the two secant lines, and a tangent line. As x approaches a, the secant lines approach the tangent line.]Figure 5. Solving the Tangent Problem: As x approaches a, the secant lines approach the tangent line. This process demonstrates how the slope of the tangent line at a particular point [image: a] is the limit of the slopes of the secant lines, providing the derivative of the function at [image: a], denoted by [image: f′(a)].
 Estimate the slope of the tangent line (rate of change) to [image: f(x)=x^2] at [image: x=1] by finding slopes of secant lines through [image: (1,1)] and each of the following points on the graph of [image: f(x)=x^2].
 	[image: (2,4)]
 	[image: \left(\frac{3}{2},\frac{9}{4}\right)]
 
 Show Solution 
 Use the formula for the slope of a secant line from the definition.
 	[image: m_{\sec}=\frac{4-1}{2-1}=3]
 	[image: m_{\sec}=\frac{\frac{9}{4}-1}{\frac{3}{2}-1}=\frac{5}{2}=2.5]
 
 The point in part b. is closer to the point [image: (1,1)], so the slope of 2.5 is closer to the slope of the tangent line. A good estimate for the slope of the tangent would be in the range of 2 to 2.5 (Figure 6).
 [image: Two graphs of the parabola f(x) = x^2 are shown. The first has a secant line drawn, intersecting the parabola at (1,1) and (2,4). The second has a secant line drawn, intersecting the parabola at (1,1) and (3/2, 9/4). These lines provide successively closer approximations to the tangent line to the function at (1,1).]Figure 6. The secant lines to [image: f(x)=x^2] at [image: (1,1)] through (a) [image: (2,4)] and (b) [image: (\frac{3}{2},\frac{9}{4})] provide successively closer approximations to the tangent line to [image: f(x)=x^2] at [image: (1,1)].   [ohm_question hide_question_numbers=1]284267[/ohm_question]
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				The Tangent Problem and Differential Calculus Cont.
 Calculating Instantaneous Velocity
 Let’s continue our investigation by exploring a related application, instantaneous velocity. Velocity may be thought of as the rate of change of position.
 Suppose that we have a function, [image: s(t)], that gives the position of an object along a coordinate axis at any given time [image: t]. Can we use these same ideas to create a reasonable definition of the instantaneous velocity at a given time [image: t=a]?
 We start by approximating the instantaneous velocity with an average velocity. 
 Recall that the speed of an object traveling at a constant rate is the ratio of the distance traveled to the length of time it has traveled.
  We define the average velocity of an object over a time period to be the change in its position divided by the length of the time period.
 average velocity
 Let [image: s(t)] be the position of an object moving along a coordinate axis at time [image: t]. The average velocity of the object over a time interval [image: [a,t]] where [image: a < t] (or [image: [t,a]] if [image: t < a]) is
 [image: v_{\text{avg}}=\dfrac{s(t)-s(a)}{t-a}] 
  As [image: t] is chosen closer to [image: a], the average velocity becomes closer to the instantaneous velocity.
 Note that finding the average velocity of a position function over a time interval is essentially the same as finding the slope of a secant line to a function. Furthermore, to find the slope of a tangent line at a point [image: a], we let the [image: x]-values approach [image: a] in the slope of the secant line.
  To find the instantaneous velocity at time [image: a], we let the [image: t]-values approach [image: a] in the average velocity. This process of letting [image: x] or [image: t] approach [image: a] in an expression is called taking a limit. 
 instantaneous velocity
 For a position function [image: s(t)], the instantaneous velocity at a time [image: t=a] is the value that the average velocities approach on intervals of the form [image: [a,t]] and [image: [t,a]] as the values of [image: t] become closer to [image: a], provided such a value exists.
  A rock is dropped from a height of [image: 64] ft. It is determined that its height (in feet) above ground [image: t] seconds later (for [image: 0\le t\le 2]) is given by [image: s(t)=-16t^2+64].
 Find the average velocity of the rock over each of the given time intervals. Use this information to guess the instantaneous velocity of the rock at time [image: t=0.5].
 	[image: [0.49,0.5]]
 	[image: [0.5,0.51]]
 
 Show Solution 
 Substitute the data into the formula for the definition of average velocity.
 [image: \begin{array}{rcl} s(0.5) &=& -16(0.5)^2 + 64 = 60 \\ s(0.49) &=& -16(0.49)^2 + 64 = 60.1584 \\ s(0.51) &=& -16(0.51)^2 + 64 = 59.8384 \\ v_{\text{avg}} \text{ for interval [0.49, 0.5]} &=& \frac{s(0.5) - s(0.49)}{0.5 - 0.49} = \frac{60 - 60.1584}{0.01} = -15.84 \\ v_{\text{avg}} \text{ for interval [0.5, 0.51]} &=& \frac{s(0.51) - s(0.5)}{0.51 - 0.5} = \frac{59.8384 - 60}{0.01} = -16.16 \end{array}]
 The instantaneous velocity is somewhere between [image: −15.84] and [image: −16.16] ft/sec. A good guess might be [image: −16] ft/sec.
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=A_VZ-fXSUy8%3Fcontrols%3D0%26start%3D320%26end%3D535%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
  
  [ohm_question hide_question_numbers=1]4838[/ohm_question] 
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				The Area Problem and Integral Calculus
 Having looked at the tangent problem, let’s address the area problem.
 Many quantities in physics—for example, quantities of work—may be interpreted as the area under a curve. This leads us to ask the question: How can we find the area between the graph of a function and the [image: x]-axis over an interval?
 [image: A graph is shown of a generic curved function f(x) shaped like a hill in quadrant one. An area under the function is shaded above the x-axis and between x=a and x=b.]Figure 7. The Area Problem: How do we find the area of the shaded region? As we did with the tangent problem, we first try to approximate the solution.
 We approximate the area by dividing up the interval [image: [a,b]] into smaller intervals in the shape of rectangles. The approximation of the area comes from adding up the areas of these rectangles. 
 [image: The graph is the same as the previous image, with one difference. Instead of the area completely shaded under the curved function, the interval [a, b] is divided into smaller intervals in the shape of rectangles. The rectangles have the same small width. The height of each rectangle is the height of the function at the midpoint of the base of that specific rectangle.]Figure 8. The area of the region under the curve is approximated by summing the areas of thin rectangles. Recall that the area of a rectangle can be found simply by taking the length times the width.
  As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area between the graph of [image: f(x)] and the [image: x]-axis over the interval [image: [a,b]]. Once again, we find ourselves taking a limit. Limits of this type serve as a basis for the definition of the definite integral. Integral calculus is the study of integrals and their applications.
 Estimate the area between the [image: x]-axis and the graph of [image: f(x)=x^2+1] over the interval [image: [0,3]] by using the three rectangles shown in Figure 9.
 [image: A graph of the parabola f(x) – x^2 + 1 drawn on graph paper with all units shown. The rectangles completely contained under the function and above the x-axis in the interval [0,3] are shaded. This strategy sets the heights of the rectangles as the smaller of the two corners that could intersect with the function. As such, the rectangles are shorter than the height of the function.]Figure 9. The area of the region under the curve of [image: f(x)=x^2+1] can be estimated using rectangles Show Solution The areas of the three rectangles are [image: 1] unit2, [image: 2] unit2, and [image: 5] unit2. 
 Using these rectangles, our area estimate is [image: 8] unit2.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=A_VZ-fXSUy8%3Fcontrols%3D0%26start%3D640%26end%3D708%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window). 
  Other Aspects of Calculus
 So far, we have studied functions of one variable only. Such functions can be represented visually using graphs in two dimensions; however, there is no good reason to restrict our investigation to two dimensions.
 Suppose, for example, that instead of determining the velocity of an object moving along a coordinate axis, we want to determine the velocity of a rock fired from a catapult at a given time, or of an airplane moving in three dimensions.
 We might want to graph real-value functions of two variables or determine volumes of solids of the type shown in Figure 11.
 These are only a few of the types of questions that can be asked and answered using multivariable calculus. Informally, multivariable calculus can be characterized as the study of the calculus of functions of two or more variables. However, before exploring these and other ideas, we must first lay a foundation for the study of calculus in one variable by exploring the concept of a limit.
 [image: A diagram in three dimensional space, over the x, y, and z axis where z = f(x,y). The base is the x,y axis, and the height is the z axis. The base is a rectangle contained in the x,y axis plane. The top is a surface of changing height with corners located directly above those of the rectangle in the x,y plane.. The highest point is above the corner at x=0, y=0. The lowest point is at the corner somewhere in the first quadrant of the x, y plane. The other two points are roughly the same height and located above the corners on the x axis and y axis. Lines are drawn connecting the corners of the rectangle to those of the surface.]Figure 11. We can use multivariable calculus to find the volume between a surface defined by a function of two variables and a plane. 
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				 	Identify the line that just touches a curve at one point by looking at how nearby lines approach it
 	Describe how integration can be used to calculate the area under a curve
 
  Caitlin Clark, regarded as one of the greatest collegiate players of all time, joined the Indiana Fever of the Women’s National Basketball Association in 2024. When she shoots a basketball, the height of the ball (in feet) [image: t] seconds after it leaves her hands is given by 
 [image: h(t)=-16t2+24t+8]
 The ball arcs through the air and passes cleanly through the basket which is [image: 10] feet above the ground. It’s a swish!
 [ohm_question hide_question_numbers=1]287758[/ohm_question]
  Caitlin Clark is dealing with fractions of a second here! For the following exercises, complete any calculations with values rounded to five decimal places. Give your final answers rounded to the nearest hundredth.
 [ohm_question hide_question_numbers=1]287759 [/ohm_question]
  [ohm_question hide_question_numbers=1]287760 [/ohm_question]
  [ohm_question hide_question_numbers=1]287761 [/ohm_question]
  [ohm_question hide_question_numbers=1]287762 [/ohm_question]
  [ohm_question hide_question_numbers=1]287763 [/ohm_question]
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				 	Understand how to write the limit of a function using the correct symbols and estimate limits by examining tables and graphs
 	Understand one-sided limits (approaching a point from only one direction) and how they relate to two-sided limits
 	Understand and use the proper notation for infinite limits and define vertical asymptotes
 
  The Definition of a Limit
 We begin our exploration of limits by taking a look at the graphs of the functions
 [image: f(x)=\dfrac{x^2-4}{x-2}, \ \, g(x)=\dfrac{|x-2|}{x-2}],  and  [image: h(x)=\dfrac{1}{(x-2)^2}],
  
 which are shown in Figure 1. In particular, let’s focus our attention on the behavior of each graph at and around [image: x=2].
 <img src="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11202849/CNX_Calc_Figure_02_02_001.jpg" alt=""Three 2 and x= -1 for x Figure 1. These graphs show the behavior of three different functions around [image: x=2].
 Each of the three functions is undefined at [image: x=2], but if we make this statement and no other, we give a very incomplete picture of how each function behaves in the vicinity of [image: x=2]. To express the behavior of each graph in the vicinity of [image: 2] more completely, we need to introduce the concept of a limit.
 Intuitive Definition of a Limit
 Let’s examine how the function [image: f(x)=\dfrac{(x^2-4)}{(x-2)}] behaves as f [image: x] approachs [image: 2]. While [image: f(x)] isn’t defined at [image: x=2], as [image: x] gets closer to [image: 2] from either side, [image: f(x)] approaches [image: 4].
 Mathematically, we say that the limit of [image: f(x)] as [image: x] approaches [image: 2] is [image: 4]. We express this observation using limit notation as:
 [image: \underset{x \to 2}{\lim}f(x)=4]
  
 This initial exploration into limits leads us to a more formal definition.
 Consider the limit of a function at a specific point as the value that the function’s output gets closer to, as the input values approach that point. Assuming such a value exists, we can articulate this concept more precisely with the following definition:
 limit definition
 For a function [image: f(x)] defined over an open interval around a point [image: a], possibly excluding [image: a] itself, if all function values [image: f(x)] get arbitrarily close to some real number [image: L] as [image: x] approaches [image: a], then [image: L] is the limit of [image: f(x)] as [image: x] approaches [image: a]. 
 [image: \text{Limit Notation: } \underset{x\to a}{\lim}f(x)=L]
  A more succinct way to understand this definition: As [image: x] gets closer to [image: a], [image: f(x)] gets closer and stays close to [image: L]. 
  
 [ohm_question hide_question_numbers=1]6241[/ohm_question]
  Estimating Limits Using Tables 
 We can estimate limits by constructing tables of functional values. 
 How to: Evaluate a Limit Using a Table of Functional Values
 	To find [image: \underset{x\to a}{\lim}f(x)], create a table with two sets of [image: x]-values: those just less than [image: a] and those just more than [image: a]. The table below demonstrates what your tables might look like.
 Table of Functional Values for [image: \underset{x\to a}{\lim}f(x)] 	[image: x] 	[image: f(x)] 	  	[image: x] 	[image: f(x)] 
  	[image: a-0.1] 	[image: f(a-0.1)] 	  	[image: a+0.1] 	[image: f(a+0.1)] 
 	[image: a-0.01] 	[image: f(a-0.01)] 	[image: a+0.01] 	[image: f(a+0.01)] 
 	[image: a-0.001] 	[image: f(a-0.001)] 	[image: a+0.001] 	[image: f(a+0.001)] 
 	[image: a-0.0001] 	[image: f(a-0.0001)] 	[image: a+0.0001] 	[image: f(a+0.0001)] 
 	Use additional values as necessary. 	Use additional values as necessary. 
  
 
 	Analyze the [image: f(x)] values. If they get closer to a single number as [image: x] approaches [image: a] from both sides, that’s the limit.
 	If both sides of [image: f(x)] is confirmed. If not, the limit may not exist.
 	Use the graph of [image: f(x)] to verify your results. By plotting the function and zooming in around [image: x=a], you can observe if [image: f(x)] approaches the limit you calculated. This visual check complements the numerical approach.
 
  Evaluate [image: \underset{x\to 4}{\lim}\dfrac{\sqrt{x}-2}{x-4}] using a table of functional values.
 Show Solution 
 As before, we use a table to list the values of the function for the given values of [image: x].
 Table of Functional Values for [image: \underset{x\to 4}{\lim}\frac{\sqrt{x}-2}{x-4}] 	[image: x] 	[image: \frac{\sqrt{x}-2}{x-4}] 	  	[image: x] 	[image: \frac{\sqrt{x}-2}{x-4}] 
  	[image: 3.9] 	[image: 0.251582341869] 	  	[image: 4.1] 	[image: 0.248456731317] 
 	[image: 3.99] 	[image: 0.25015644562] 	[image: 4.01] 	[image: 0.24984394501] 
 	[image: 3.999] 	[image: 0.250015627] 	[image: 4.001] 	[image: 0.249984377] 
 	[image: 3.9999] 	[image: 0.250001563] 	[image: 4.0001] 	[image: 0.249998438] 
 	[image: 3.99999] 	[image: 0.25000016] 	[image: 4.00001] 	[image: 0.24999984] 
  
 After inspecting this table, we see that the functional values less than [image: 4] appear to be decreasing toward [image: 0.25] whereas the functional values greater than [image: 4] appear to be increasing toward [image: 0.25]. We conclude that [image: \underset{x\to 4}{\lim}\frac{\sqrt{x}-2}{x-4}=0.25]. We confirm this estimate using the graph of [image: f(x)=\frac{\sqrt{x}-2}{x-4}] shown in Figure 3.
 [image: A graph of the function f(x) = (sqrt(x) – 2 ) / (x-4) over the interval [0,8]. There is an open circle on the function at x=4. The function curves asymptotically towards the x axis and y axis in quadrant one.]Figure 3. The graph of [image: f(x)=\frac{\sqrt{x}-2}{x-4}] confirms the estimate from the table.   [ohm_question hide_question_numbers=1]4853[/ohm_question]
  
 
 
	

			CC licensed content, Original
	2.2 The Limit of a Function. Authored by: Ryan Melton. License: CC BY: Attribution

CC licensed content, Shared previously
	Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Retrieved from: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction



			


		
	
		
			
	
		44

		Introduction to the Limit of a Function: Learn It 2

								

	
				The Definition of a Limit Cont.
 Estimating Limits Using Graphs
 At this point, we see from the tables that it may be just as easy, if not easier, to estimate a limit of a function by inspecting its graph as it is to estimate the limit by using a table of functional values.
 In the example below, we evaluate a limit exclusively by looking at a graph rather than by using a table of functional values. 
 When looking at a graph, a function’s value at a given [image: x] value is simply the [image: y] value at [image: x].
  For [image: g(x)] shown in the figure below, evaluate [image: \underset{x\to -1}{\lim}g(x)].
 [image: The graph of a generic curving function g(x). In quadrant two, there is an open circle on the function at (-1,3) and a closed circle one unit up at (-1, 4).]Figure 4. The graph of [image: g(x)] includes one value not on a smooth curve. Show Solution 
 Despite the fact that [image: g(-1)=4], as the [image: x]-values approach [image: −1] from either side, the [image: g(x)] values approach [image: 3]. Therefore, [image: \underset{x\to -1}{\lim}g(x)=3]. 
 Note that we can determine this limit without even knowing the algebraic expression of the function.
   Based on the example above, we make the following observation: It is possible for the limit of a function to exist at a point, and for the function to be defined at this point, but the limit of the function and the value of the function at the point may be different.
 Watch the following video to see more examples of evaluating a limit using a graph.
 https://youtube.com/watch?v=qiHi41CfnFA%3Fcontrols%3D0%26start%3D329%26end%3D405%26autoplay%3D0 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
  Exploring the Limits: Beyond Tables and Graphs
 Analyzing functional values in tables or observing a function’s graph can offer initial insights into its limit at a particular point. However, these approaches often involve a degree of estimation.
 To gain a more precise understanding, we’ll move towards algebraic methods for evaluating limits. Before we delve into these methods in the following section, we’ll introduce two essential limits that underpin the forthcoming algebraic techniques.
 basic limit properties
 Let [image: a] be a real number and [image: c] be a constant.
 	[image: \underset{x\to a}{\lim}x=a]
 
 	[image: \underset{x\to a}{\lim}c=c]
 
 
  We can make the following observations about these two limits.
 	For the first limit, observe that as [image: x] approaches [image: a], so does [image: f(x)], because [image: f(x)=x]. Consequently, [image: \underset{x\to a}{\lim}x=a].
 	For the second limit, consider the table below.
 
 Table of Functional Values for [image: \underset{x\to a}{\lim}c=c] 	[image: x] 	[image: f(x)=c] 	  	[image: x] 	[image: f(x)=c] 
  	[image: a-0.1] 	[image: c] 	  	[image: a+0.1] 	[image: c] 
 	[image: a-0.01] 	[image: c] 	[image: a+0.01] 	[image: c] 
 	[image: a-0.001] 	[image: c] 	[image: a+0.001] 	[image: c] 
 	[image: a-0.0001] 	[image: c] 	[image: a+0.0001] 	[image: c] 
  
 Observe that for all values of [image: x] (regardless of whether they are approaching [image: a]), the values [image: f(x)] remain constant at [image: c]. We have no choice but to conclude [image: \underset{x\to a}{\lim}c=c].
 The Existence of a Limit
 Understanding when a limit exists is fundamental to grasping the behavior of functions as their inputs approach a specific value.
 A limit is considered to exist at a certain point if the function values converge to a single, real number as we near that point from any direction. This behavior is indicative of the function’s stability near the point of interest.
 If, instead, the function values diverge or oscillate without settling on a single value, we say the limit at that point does not exist.
 The upcoming example illustrates this concept by examining a scenario where a limit fails to exist
 Mathematicians frequently abbreviate “does not exist” as DNE.
  Evaluate [image: \underset{x\to 0}{\lim} \sin \left(\dfrac{1}{x}\right)] using a table of values.
 Show Solution 
 The table below lists values for the function [image: \sin \left(\dfrac{1}{x}\right)] for the given values of [image: x].
 Table of Functional Values for [image: \underset{x\to 0}{\lim} \sin (\frac{1}{x})] 	[image: x] 	[image: \sin (\frac{1}{x})] 	  	[image: x] 	[image: \sin (\frac{1}{x})] 
  	[image: −0.1] 	[image: 0.544021110889] 	  	[image: 0.1] 	[image: −0.544021110889] 
 	[image: −0.01] 	[image: 0.50636564111] 	[image: 0.01] 	[image: −0.50636564111] 
 	[image: −0.001] 	[image: −0.8268795405312] 	[image: 0.001] 	[image: 0.826879540532] 
 	[image: −0.0001] 	[image: 0.305614388888] 	[image: 0.0001] 	[image: −0.305614388888] 
 	[image: −0.00001] 	[image: −0.035748797987] 	[image: 0.00001] 	[image: 0.035748797987] 
 	[image: −0.000001] 	[image: 0.349993504187] 	[image: 0.000001] 	[image: −0.349993504187] 
  
 After examining the table of functional values, we can see that the [image: y]-values do not seem to approach any one single value. It appears the limit does not exist. Before drawing this conclusion, let’s take a more systematic approach. Take the following sequence of [image: x]-values approaching 0:
 [image: \frac{2}{\pi }, \, \frac{2}{3\pi }, \, \frac{2}{5\pi }, \, \frac{2}{7\pi }, \, \frac{2}{9\pi }, \, \frac{2}{11\pi }, \, \cdots]
 The corresponding [image: y]-values are
 [image: 1, \, -1, \, 1, \, -1, \, 1, \, -1, \, \cdots]
 At this point we can indeed conclude that [image: \underset{x\to 0}{\lim} \sin (\frac{1}{x})] does not exist.
 Thus, we would write [image: \underset{x\to 0}{\lim} \sin (\frac{1}{x})] DNE.
 The graph of [image: f(x)= \sin (\frac{1}{x})] is shown in Figure 6 and it gives a clearer picture of the behavior of [image: \sin (\frac{1}{x})] as [image: x] approaches [image: 0]. You can see that [image: \sin (\frac{1}{x})] oscillates ever more wildly between [image: −1] and [image: 1] as [image: x] approaches [image: 0].
 [image: The graph of the function f(x) = sin(1/x), which oscillates rapidly between -1 and 1 as x approaches 0. The oscillations are less frequent as the function moves away from 0 on the x axis.]Figure 6. The graph of [image: f(x)= \sin (\frac{1}{x})] oscillates rapidly between −1 and 1 as x approaches 0.   
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				One-Sided Limits
 Sometimes indicating that the limit of a function fails to exist at a point does not provide us with enough information about the behavior of the function at that particular point.
 To see this, we now revisit the function [image: g(x)=\frac{|x-2|}{(x-2)}] introduced at the beginning of the section (Figure 1 part b).
 <img src="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11202849/CNX_Calc_Figure_02_02_001.jpg" alt=""Three 2 and x= -1 for x Figure 1. These graphs show the behavior of three different functions around [image: x=2].
 As we pick values of [image: x] close to [image: 2], [image: g(x)] does not approach a single value, so the limit as [image: x] approaches [image: 2] does not exist—that is, [image: \underset{x\to 2}{\lim}g(x)] DNE.
 However, this statement alone does not give us a complete picture of the behavior of the function around the [image: x]-value [image: 2]. To provide a more accurate description, we introduce the idea of a one-sided limit.
 For all values to the left of [image: 2] (or the negative side of [image: 2]), [image: g(x)=-1]. Thus, as [image: x] approaches [image: 2] from the left, [image: g(x)] approaches [image: −1].
 Mathematically, we say that the limit as [image: x] approaches [image: 2] from the left is [image: −1]. Symbolically, we express this idea as
 [image: \underset{x\to 2^-}{\lim}g(x)=-1]
 Similarly, as [image: x] approaches [image: 2] from the right (or from the positive side), [image: g(x)] approaches [image: 1]. Symbolically, we express this idea as
 [image: \underset{x\to 2^+}{\lim}g(x)=1]
 one-sided limits
 One-sided limits are limits approached from one direction—either from the left or the right.
 	Left-Sided Limit: For a function [image: f(x)] on an interval ending at [image: a], if [image: f(x)] approaches a specific value [image: L] as the values of [image: x] approaches [image: a] from the left ([image: x < a]), we denote this limit as:[image: \underset{x\to a^-}{\lim}f(x)=L]
 	Right-Sided Limit: For a function [image: f(x)] on an interval ending at [image: a], if [image: f(x)] approaches a specific value [image: L] as the values of [image: x] approaches [image: a] from the right  ([image: x > a]), we express this limit as:[image: \underset{x\to a^+}{\lim}f(x)=L]
 
  For the function [image: f(x)=\begin{cases} x+1, & \text{ if } \, x < 2 \\ x^2-4, & \text{ if } \, x \ge 2 \end{cases}], evaluate each of the following limits.
 	[image: \underset{x\to 2^-}{\lim}f(x)]
 	[image: \underset{x\to 2^+}{\lim}f(x)]
 
 Show Solution 
 We can use tables of functional values again. Observe that for values of [image: x] less than [image: 2], we use [image: f(x)=x+1] and for values of [image: x] greater than [image: 2], we use [image: f(x)=x^2-4].
 Table of Functional Values for [image: f(x)=\begin{cases} x+1, & \text{ if } \, x < 2 \\ x^2-4, & \text{ if } \, x \ge 2 \end{cases}] 	[image: x] 	[image: f(x)=x+1] 	  	[image: x] 	[image: f(x)=x^2-4] 
  	[image: 1.9] 	[image: 2.9] 	  	[image: 2.1] 	[image: 0.41] 
 	[image: 1.99] 	[image: 2.99] 	[image: 2.01] 	[image: 0.0401] 
 	[image: 1.999] 	[image: 2.999] 	[image: 2.001] 	[image: 0.004001] 
 	[image: 1.9999] 	[image: 2.9999] 	[image: 2.0001] 	[image: 0.00040001] 
 	[image: 1.99999] 	[image: 2.99999] 	[image: 2.00001] 	[image: 0.0000400001] 
  
 Based on this table, we can conclude that
 	[image: \underset{x\to 2^-}{\lim}f(x)=3]
 	[image: \underset{x\to 2^+}{\lim}f(x)=0].
 
 Therefore, the (two-sided) limit of [image: f(x)] does not exist at [image: x=2]. Figure 7 shows a graph of [image: f(x)] and reinforces our conclusion about these limits.
 [image: "The]
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=qiHi41CfnFA%3Fcontrols%3D0%26start%3D576%26end%3D688%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window). 
  Two-Sided Limits
 To fully grasp how limits function, it’s essential to understand the connection between one-sided and two-sided limits.
 A two-sided limit at a point exists only if the one-sided limits from both the left and the right converge to the same value. If there’s a discrepancy between the left and the right limits, the two-sided limit at that point does not exist.
 two-sided limits
 For a function [image: f(x)], defined over an interval including [image: a] (except possibly at [image: a] itself), we say the two-sided limit exists as [image: x] approaches [image: a] and equals [image: L] if, and only if, both one-sided limits as [image: x] approaches [image: a] also equals [image: L].
 [image: \underset{x\to a}{\lim}f(x)=L], if and only if [image: \underset{x\to a^-}{\lim}f(x)=L] and [image: \underset{x\to a^+}{\lim}f(x)=L]
 [ohm_question hide_question_number=1]218961[/ohm_question]
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				Infinite Limits
 Evaluating limits, whether at a specific point or as we approach it from a particular direction, helps us understand how functions behave near that point. While some functions have limits that are finite numbers, others grow without bound—these are cases of infinite limits.
 We now turn our attention to [image: h(x)=\frac{1}{(x-2)^2}] (Figure 1 part c).
 <img src="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11202849/CNX_Calc_Figure_02_02_001.jpg" alt=""Three 2 and x= -1 for x Figure 1. These graphs show the behavior of three different functions around [image: x=2].
 As [image: x] gets closer to [image: 2], [image: h(x)] increases without limit. This unbounded growth means that as [image: x] approaches [image: 2], [image: h(x)] heads towards positive infinity, which we denote as:
 [image: \underset{x\to 2}{\lim}h(x)=+\infty]
 Infinite limits can be understood through the following general definitions.
 infinite limits
 Infinite limits from the left: For a function [image: f(x)] within an interval that ends at [image: a], we say:
 	The limit is [image: +∞] if [image: f(x)] increases without bound as [image: x] approaches [image: a] from the left.
 [image: \underset{x\to a^-}{\lim}f(x)=+\infty].
 	The limit is [image: -∞] if [image: f(x)] decreases without bound as [image: x] approaches [image: a] from the left.
 [image: \underset{x\to a^-}{\lim}f(x)=−\infty].
 
 Infinite limits from the right: For a function [image: f(x)] within an interval that ends at [image: a], we say:
 	The limit is [image: +∞] if [image: f(x)] increases without bound as [image: x] approaches [image: a] from the right. [image: \underset{x\to a^+}{\lim}f(x)=+\infty].
 
 	The limit is [image: -∞] if [image: f(x)] decreases without bound as [image: x] approaches [image: a] from the right. [image: \underset{x\to a^+}{\lim}f(x)=−\infty].
 
 
 Two-sided infinite limit: For a function [image: f(x)] defined at all points except at [image: a]:
 	If [image: f(x)] increases without bound from both sides as [image: x] approaches [image: a], the limit is [image: +∞]. [image: \underset{x\to a}{\lim}f(x)=+\infty].
 
 	If [image: f(x)] decreases without bound from both sides as [image: x] approaches [image: a], the limit is [image: -∞]. [image: \underset{x\to a}{\lim}f(x)=−\infty].
 
 
  It is important to understand that when we write statements such as [image: \underset{x\to a}{\lim}f(x)=+\infty] or [image: \underset{x\to a}{\lim}f(x)=−\infty] we are describing the behavior of the function, as we have just defined it. We are not asserting that a limit exists.
 For the limit of a function [image: f(x)] to exist at [image: a], it must approach a real number [image: L] as [image: x] approaches [image: a]. That said, if, for example, [image: \underset{x\to a}{\lim}f(x)=+\infty], we always write [image: \underset{x\to a}{\lim}f(x)=+\infty] rather than [image: \underset{x\to a}{\lim}f(x)] DNE.
  [ohm_question hide_question_numbers=1]218963[/ohm_question]
  Evaluate each of the following limits, if possible. Use a table of functional values and graph [image: f(x)=\frac{1}{x}] to confirm your conclusion.
 	[image: \underset{x\to 0^-}{\lim}\frac{1}{x}]
 	[image: \underset{x\to 0^+}{\lim}\frac{1}{x}]
 	[image: \underset{x\to 0}{\lim}\frac{1}{x}]
 
 Show Solution 
 Begin by constructing a table of functional values.
 Table of Functional Values for [image: f(x)=\frac{1}{x}] 	[image: x] 	[image: \frac{1}{x}] 	  	[image: x] 	[image: \frac{1}{x}] 
  	[image: −0.1] 	[image: −10] 	  	[image: 0.1] 	[image: 10] 
 	[image: −0.01] 	[image: −100] 	[image: 0.01] 	[image: 100] 
 	[image: −0.001] 	[image: −1000] 	[image: 0.001] 	[image: 1000] 
 	[image: −0.0001] 	[image: −10,000] 	[image: 0.0001] 	[image: 10,000] 
 	[image: −0.00001] 	[image: −100,000] 	[image: 0.00001] 	[image: 100,000] 
 	[image: −0.000001] 	[image: −1,000,000] 	[image: 0.000001] 	[image: 1,000,000] 
  
 	The values of [image: \frac{1}{x}] decrease without bound as [image: x] approaches [image: 0] from the left. We conclude that [image: \underset{x\to 0^-}{\lim}\frac{1}{x}=−\infty].
 
 	The values of [image: \frac{1}{x}] increase without bound as [image: x] approaches [image: 0] from the right. We conclude that [image: \underset{x\to 0^+}{\lim}\frac{1}{x}=+\infty].
 
 	Since [image: \underset{x\to 0^-}{\lim}\frac{1}{x}=−\infty] and [image: \underset{x\to 0^+}{\lim}\frac{1}{x}=+\infty] have different values, we conclude that [image: \underset{x\to 0}{\lim}\frac{1}{x}] DNE.
 
 
 The graph of [image: f(x)=\frac{1}{x}] in Figure 8 confirms these conclusions.
 [image: The graph of the function f(x) = 1/x. The function curves asymptotically towards x=0 and y=0 in quadrants one and three.]Figure 8. The graph of [image: f(x)=\frac{1}{x}] confirms that the limit as [image: x] approaches 0 does not exist.   Vertical Asymptotes
 Continuing our exploration of infinite limits, it is worth highlighting functions like [image: f(x)=\dfrac{1}{(x-a)^n}], where [image: n] is a positive integer, to illustrate the concept further. Such functions exhibit notable behavior as [image: x] approaches [image: a]: they tend toward infinity. Whether approaching from the left or the right, these functions have no finite limit at [image: a], and instead, they soar towards positive or negative infinity, depending on the parity of [image: n]. This tendency is depicted in Figure 9.
 [image: Two graphs side by side of f(x) = 1 / (x-a)^n. The first graph shows the case where n is an odd positive integer, and the second shows the case where n is an even positive integer. In the first, the graph has two segments. Each curve asymptotically towards the x axis, also known as y=0, and x=a. The segment to the left of x=a is below the x axis, and the segment to the right of x=a is above the x axis. In the second graph, both segments are above the x axis.]Figure 9. The function [image: f(x)=1/(x-a)^n] has infinite limits at [image: a]. asymptotic behavior of power functions
 If [image: n] is a positive even integer, then
 [image: \underset{x\to a}{\lim}\dfrac{1}{(x-a)^n}=+\infty]
  
 If [image: n] is a positive odd integer, then
 [image: \underset{x\to a^+}{\lim}\dfrac{1}{(x-a)^n}=+\infty]
  
 and
 [image: \underset{x\to a^-}{\lim}\dfrac{1}{(x-a)^n}=−\infty]
  As we see in the graph, as [image: x] approaches the value of [image: a], regardless of the direction, the function values either increase or decrease sharply. This rapid change is visually represented by how the function’s curve approaches, but never touches, the vertical line [image: x=a]. This specific line is known as a vertical asymptote, which is a boundary the function will never cross or reach.
 vertical asymptote
 A vertical asymptote is a line that a function approaches but never intersects or reaches as the inputs get infinitely close to a particular point. 
 Let [image: f(x)] be a function. If any of the following conditions hold, then the line [image: x=a] is a vertical asymptote of [image: f(x)]:
 [image: \begin{array}{ccc}\hfill \underset{x\to a^-}{\lim}f(x)& =\hfill & +\infty \, \text{or} \, -\infty \hfill \\ \hfill \underset{x\to a^+}{\lim}f(x)& =\hfill & +\infty \, \text{or} \, −\infty \hfill \\ & \text{or}\hfill & \\ \hfill \underset{x\to a}{\lim}f(x)& =\hfill & +\infty \, \text{or} \, −\infty \hfill \end{array}]
  Evaluate each of the following limits. Identify any vertical asymptotes of the function [image: f(x)=\dfrac{1}{(x+3)^4}].
 	[image: \underset{x\to -3^-}{\lim}\dfrac{1}{(x+3)^4}]
 	[image: \underset{x\to -3^+}{\lim}\dfrac{1}{(x+3)^4}]
 	[image: \underset{x\to -3}{\lim}\dfrac{1}{(x+3)^4}]
 
 Show Solution 
 We can use the limits summarized under Figure 9 directly.
 	[image: \underset{x\to -3^-}{\lim}\frac{1}{(x+3)^4}=+\infty]
 	[image: \underset{x\to -3^+}{\lim}\frac{1}{(x+3)^4}=+\infty]
 	[image: \underset{x\to -3}{\lim}\frac{1}{(x+3)^4}=+\infty]
 
 The function [image: f(x)=\frac{1}{(x+3)^4}] has a vertical asymptote of [image: x=-3].
   Watch the following video to see the more examples of finding a vertical asymptote.
 https://youtube.com/watch?v=qiHi41CfnFA%3Fcontrols%3D0%26start%3D841%26end%3D944%26autoplay%3D0 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
  In the next example, we put our knowledge of various types of limits to use to analyze the behavior of a function at several different points.
 Use the graph of [image: f(x)] in Figure 10 to determine each of the following values:
 	[image: \underset{x\to -4^-}{\lim}f(x); \, \underset{x\to -4^+}{\lim}f(x); \, \underset{x\to -4}{\lim}f(x); \, f(-4)]
 	[image: \underset{x\to -2^-}{\lim}f(x); \, \underset{x\to -2^+}{\lim}f(x); \, \underset{x\to -2}{\lim}f(x); \, f(-2)]
 	[image: \underset{x\to 1^-}{\lim}f(x); \, \underset{x\to 1^+}{\lim}f(x); \, \underset{x\to 1}{\lim}f(x); \, f(1)]
 [image: The graph of a function f(x) described by the above limits and values. There is a smooth curve for values below x=-2; at (-2, 3), there is an open circle. There is a smooth curve between (-2, 1] with a closed circle at (1,6). There is an open circle at (1,3), and a smooth curve stretching from there down asymptotically to negative infinity along x=3. The function also curves asymptotically along x=3 on the other side, also stretching to negative infinity. The function then changes concavity in the first quadrant around y=4.5 and continues up.]Figure 10. The graph shows [image: f(x)]. 
 
 Show Solution 
 Using the example above and the graph for reference, we arrive at the following values:
 	[image: \underset{x\to -4^-}{\lim}f(x)=0; \, \underset{x\to -4^+}{\lim}f(x)=0; \, \underset{x\to -4}{\lim}f(x)=0; \, f(-4)=0]
 	[image: \underset{x\to -2^-}{\lim}f(x)=3; \, \underset{x\to -2^+}{\lim}f(x)=3; \, \underset{x\to -2}{\lim}f(x)=3; \, f(-2)] is undefined
 	[image: \underset{x\to 1^-}{\lim}f(x)=6; \, \underset{x\to 1^+}{\lim}f(x)=3; \, \underset{x\to 1}{\lim}f(x)=DNE]; [image: f(1)=6]
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=qiHi41CfnFA%3Fcontrols%3D0%26start%3D1008%26end%3D1197%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
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		Introduction to the Limit of a Function: Apply It

								

	
				 	Understand how to write the limit of a function using the correct symbols and estimate limits by examining tables and graphs
 	Understand one-sided limits (approaching a point from only one direction) and how they relate to two-sided limits
 	Understand and use the proper notation for infinite limits and define vertical asymptotes
 
  The number [image: e] is a constant that, like [image: \pi], is irrational (it cannot be represented as a ratio of integers) and transcendental (it is not the root of a non-zero polynomial of finite degree with rational coefficients). It was first discovered by the Swiss mathematician Jacob Bernoulli in 1683 while studying compound interest. It has many real-world applications including probability theory and exponential growth and decay. Below is an approximation of [image: e] to [image: 20] decimal places.
 [image: e \approx 2.71828182845904523536]
 This number is perhaps best defined by a limit. Consider the function [image: f(x)=(1+x)^{\frac{1}{x}}]. We cannot compute [image: f(0)], but we can see what happens with values of [image: x] close to zero.
 [ohm_question hide_question_numbers=1]287754[/ohm_question]
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		Limits and Continuity: Background You'll Need 1

								

	
				 	Factor and simplify polynomials and rational expressions
 
  Factor Polynomials
 Factoring is central to simplifying expressions, solving equations, and understanding polynomial behavior. Factoring involves breaking down expressions into simpler, constituent parts. A key step in this process is identifying the greatest common factor (GCF), which simplifies polynomials by dividing out commonalities and reducing complexity.
 Greatest Common Factor
 The greatest common factor (GCF) of two numbers is the largest number that divides evenly into both numbers. 
 [image: 4] is the GCF of [image: 16] and [image: 20] because it is the largest number that divides evenly into both [image: 16] and [image: 20].
  The GCF of polynomials works the same way.
 [image: 4x] is the GCF of [image: 16x] and [image: 20{x}^{2}] because it is the largest polynomial that divides evenly into both [image: 16x] and [image: 20{x}^{2}].
  When factoring a polynomial expression, our first step is to check to see if each term contains a common factor. If so, we factor out the greatest amount we can from each term. 
 greatest common factor (GCF) of a polynomial
 The greatest common factor (GCF) of a polynomial is the largest polynomial that divides evenly into each term of the polynomial.
  To make it less challenging to find this GCF of the polynomial terms, first look for the GCF of the coefficients, and then look for the GCF of the variables.
  To factor out a GCF from a polynomial, first identify the greatest common factor of the terms. You can then use the distributive property “backwards” to rewrite the polynomial in a factored form.
 The distributive property allows us to multiply a number by a sum or difference inside parentheses and add or subtract the results. Conversely, when we see a common factor shared by all terms, we can factor it out, effectively reversing the distributive process.
 	Using the distributive property: [image: a\left(b+c\right)=ab+ac].
 	Factoring out a common factor: [image: ab+ac=a\left(b+c\right)].
 
 This principle shows us that multiplication distributed across a sum can be “undone” through factoring, revealing the GCF and the remaining terms of the polynomial.
  How To: Given a Polynomial Expression, Factor Out the Greatest Common Factor
 	Identify the GCF of the coefficients.
 	Identify the GCF of the variables.
 	Combine to find the GCF of the expression.
 	Determine what the GCF needs to be multiplied by to obtain each term in the expression.
 	Write the factored expression as the product of the GCF and the sum of the terms we need to multiply by.
 
  Factor [image: 6{x}^{3}{y}^{3}+45{x}^{2}{y}^{2}+21xy].
 Show Solution 
 First find the GCF of the expression. 
 The GCF of [image: 6,45], and [image: 21] is [image: 3]. 
 The GCF of [image: {x}^{3},{x}^{2}], and [image: x] is [image: x]. (Note that the GCF of a set of expressions of the form [image: {x}^{n}] will always be the lowest exponent.) 
 The GCF of [image: {y}^{3},{y}^{2}], and [image: y] is [image: y]. 
 Combine these to find the GCF of the polynomial, [image: 3xy].
 Next, determine what the GCF needs to be multiplied by to obtain each term of the polynomial. 
 We find that:
 [image: \begin{array}{c} 3xy(2x^2y^2) = 6x^3y^3, \\ 3xy(15xy) = 45x^2y^2, \\ 3xy(7) = 21xy \end{array}]
 Finally, write the factored expression as the product of the GCF and the sum of the terms we needed to multiply by.
 [image: \left(3xy\right)\left(2{x}^{2}{y}^{2}+15xy+7\right)]
 After factoring, we can check our work by multiplying. Use the distributive property to confirm that
 [image: \left(3xy\right)\left(2{x}^{2}{y}^{2}+15xy+7\right)=6{x}^{3}{y}^{3}+45{x}^{2}{y}^{2}+21xy]
   Watch this video to see more examples of how to factor the GCF from a trinomial.
 //plugin.3playmedia.com/show?mf=6454717&p3sdk_version=1.10.1&p=20361&pt=375&video_id=3f1RFTIw2Ng&video_target=tpm-plugin-8plr8d8s-3f1RFTIw2Ng
 You can view the transcript for “Ex 2: Identify GCF and Factor a Trinomial” here (opens in new window).
  Factoring Quadratic Trinomials with a Leading Coefficient of [image: 1]
 When factoring polynomials, starting with the greatest common factor (GCF) is standard. However, the GCF is not always the key to simplification, particularly for polynomials without a common factor.
 For instance, the quadratic trinomial [image: {x}^{2}+5x+6] has a GCF of 1, but it can be written as the product of the factors [image: \left(x+2\right)] and [image: \left(x+3\right)].
 To factor trinomials like [image: {x}^{2}+bx+c], find two numbers that multiply to [image: c] and add up to [image: b].
 The trinomial [image: {x}^{2}+10x+16] can be factored using the numbers [image: 2] and [image: 8], because [image: 2 \times 8 =16] and [image: 2 + 8 = 10]. The trinomial can be rewritten as the product of [image: \left(x+2\right)] and [image: \left(x+8\right)].
  factoring quadratic trinomials with a leading coefficient of [image: 1]
 A trinomial of the form [image: {x}^{2}+bx+c] can be written in factored form [image: \left(x+p\right)\left(x+q\right)] where [image: p \times q=c] and [image: p+q=b].
  It’s a common misconception that all trinomials can be broken down into binomial factors, but this isn’t always the case. While many polynomials can be factored in this way, revealing a product of simpler binomials, there are instances where a trinomial is prime and cannot be factored further using real numbers
  How To: Factoring a Trinomial of the Form [image: {x}^{2}+bx+c]
 	Identify all factor pairs of [image: c].
 	Find the factor pair where the sum equals [image: b].
 	Write the trinomial as the product of two binomials, [image: \left(x+p\right)\left(x+q\right)].
 
  To verify the accuracy of our factorization, we can employ the FOIL method, which stands for First, Outer, Inner, Last. This technique allows us to multiply two binomials and ensures that our factorization is correct. If the expanded expression matches the original polynomial, our factorization is verified.
 The FOIL method is a process used to multiply two binomials. The acronym FOIL stands for:
 	First: Multiply the first terms in each binomial.
 	Outer: Multiply the outermost terms in the product.
 	Inner: Multiply the innermost terms.
 	Last: Multiply the last terms in each binomial.
 
 After applying the FOIL method, combine like terms to get the final expanded expression.
  Factor [image: {x}^{2}+2x - 15]. 
 Show Solution We have a trinomial with leading coefficient [image: 1,b=2], and [image: c=-15]. 
 We need to find two numbers with a product of [image: -15] and a sum of [image: 2]. 
 In the table, we list factors until we find a pair with the desired sum.
 	Factors of [image: -15] 	Sum of Factors 
  	[image: 1,-15] 	[image: -14] 
 	[image: -1,15] 	[image: 14] 
 	[image: 3,-5] 	[image: -2] 
 	[image: -3,5] 	[image: 2] 
  
 Now that we have identified [image: p] and [image: q] as [image: -3] and [image: 5], write the factored form as [image: \left(x - 3\right)\left(x+5\right)].
 We can check our work by multiplying. 
 Use FOIL to confirm that [image: \left(x - 3\right)\left(x+5\right)={x}^{2}+2x - 15]. 
  [ohm_question hide_question_numbers=1]288273[/ohm_question]
  Simplify Rational Expressions
 A rational expression is formed by dividing one polynomial by another. To simplify these expressions, we use fraction properties, particularly focusing on reducing common factors between the numerator and denominator.
 Here’s the process:
 [image: \text{Original Expression: }\frac{{x}^{2}+8x+16}{{x}^{2}+11x+28}]
 Step 1: Factor both the numerator and denominator.
 [image: \text{Factorized Form: }\frac{{(x+4)}{(x+4)}}{\left(x+4\right)\left(x+7\right)}]
 Step 2: Cancel out common factors.[image: \text{Simplified Expression: }\frac{x+4}{x+7}].By removing the common factor of [image: x+4], we’ve simplified the rational expression to its reduced form.
  How To: Simplify a Rational Expression
 	Identify the Polynomials: Recognize the numerator and denominator as separate polynomials.
 	Factor Completely: Break down both the numerator and the denominator into their prime factors.
 	Cancel Common Factors: Look for and cancel out any factors that appear in both the numerator and the denominator.
 	Write the Simplified Expression: After canceling the common factors, write down what remains.
 
  Simplify [image: \frac{{x}^{2}-9}{{x}^{2}+4x+3}]. 
 Show Solution [image: \begin{array}{lllllllll}\frac{\left(x+3\right)\left(x - 3\right)}{\left(x+3\right)\left(x+1\right)}\hfill & \hfill & \hfill & \hfill & \text{Factor the numerator and the denominator}.\hfill \\ \frac{x - 3}{x+1}\hfill & \hfill & \hfill & \hfill & \text{Cancel common factor }\left(x+3\right).\hfill \end{array}]
 We can cancel the common factor because any expression divided by itself is equal to [image: 1]. 
  Can the [image: {x}^{2}] term be cancelled in the above example? 
 No. A factor is an expression that is multiplied by another expression. The [image: {x}^{2}] term is not a factor of the numerator or the denominator.
  Simplify [image: \frac{x - 6}{{x}^{2}-36}]. 
 Show Solution [image: \frac{1}{x+6}]
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				 	Solve inequalities that include absolute values
 
  Solving Absolute Value Inequalities
 Absolute value inequalities are pivotal in calculus for understanding limits, a foundational concept that delves into function behavior near specific points.
 An absolute value inequality, such as [image: |A| < B,|A|\le B,|A| > B,\text{or }|A|\ge B], represents conditions where [image: A], an expression of the variable [image: x], falls within a specific range from zero. The inequality [image: |A| < B] is mathematically equivalent to [image: -B< A< B].
 absolute value inequality
 An absolute value inequality is an equation of the form
 [image: |A| < B,|A|\le B,|A| > B,\text{or }|A|\ge B],
 where [image: A], and sometimes [image: B], represents an algebraic expression dependent on a variable [image: x].
  Remember that absolute value is like measuring how far a number is from zero on a number line. It doesn’t matter which direction you go—left or right—the absolute value is always the distance without signs. Solving these inequalities is about determining all the possible values for [image: x] that meet the specified conditions, often leading to a specific interval or set of intervals.
 There are two basic approaches to solving absolute value inequalities: the graphical and the algebraic approach.
 The graphical method involves visually interpreting the solutions on a graph, which can give a good approximate understanding of where the solutions lie. However, the algebraic approach, though potentially more abstract, provides precise solutions that are sometimes challenging to discern graphically.
 How To: Solving Absolute Value Inequalities
 Algebraic Method:
 	Isolate the absolute value expression on one side of the inequality.
 	Set up two separate inequalities: one for the positive and one for the negative scenario.
 	Solve both inequalities for [image: x] and combine the solution sets.
 
 Graphical Method:
 	Graph the functions inside the absolute value and their opposites.
 	Find the points of intersection with the reference value.
 	The solution interval is between these intersection points.
 
  Solving Inequalities Involving [image: x]
 To solve an inequality for [image: x], follow these steps:
 	Isolate [image: x]: Ensure [image: x] is by itself on one side of the inequality. If a number is added or subtracted from [image: x], counteract this by doing the opposite operation on both sides of the inequality.
 	Simplify: Combine like terms and simplify each side of the inequality.
 	Divide or Multiply: If [image: x] is multiplied by a coefficient, divide both sides of the inequality by that number to solve for [image: x]. Remember, if you multiply or divide by a negative number, you must flip the direction of the inequality sign!
 	Check Your Solution: Substitute your solution back into the original inequality to verify it.
 
  Suppose we want to determine the range of possible returns on an investment where the amount earned is no more than [image: $200] above or below [image: $600].
 Solving algebraically:
 	Write down the absolute value inequality: [image: |x - 600|\le 200]
 	Create two separate inequalities: 	[image: x - 600\le 200] (For the positive scenario)
 	[image: x - 600\ge -200] (For the negative scenario)
 
 
 	Solve for [image: x] in both cases: 	[image: x \le 800]
 	[image: x \ge 400] 
 
 
 	Combine the solutions to state the final range: [image: 400\le x\le 800]
 
 This means our returns would be between [image: $400] and [image: $800].
  Solve [image: |x - 1|\le 3].
 Show Solution 
 [image: |x - 1|\le 3] is equivalent to [image: -3\le x - 1\le 3].
 Separating the two inequalities we get:
 [image: -3\le x - 1 \text{ and } x - 1\le 3]
 Solving these for [image: x] gives:
 [image: x=-2 \text{ and } x=4]
 This can be combined to:
  
 [image: -2\le x\le 4]
   [ohm_question hide_question_numbers=1]288274[/ohm_question]
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				 	Use basic rules to find limits for polynomial and rational functions
 	Find function limits by breaking them into simpler parts (factoring) or using conjugates
 	Determine limits by applying the squeeze theorem
 
  Evaluating Limits
 The Limit Laws
 As we continue our journey through calculus, we encounter limit laws—critical tools that help us understand how functions behave as inputs approach a certain value. These laws are fundamental for calculating function limits and serve as a gateway to deeper concepts like continuity and differentiation.
 Through our initial introduction to limits, we identified two properties that are particularly significant. These properties, along with other limit laws, allow us to evaluate limits for a wide variety of algebraic functions with ease.
 basic limit properties
 Let [image: a] be a real number and [image: c] be a constant.
 	[image: \underset{x\to a}{\lim}x=a]
 
 	[image: \underset{x\to a}{\lim}c=c]
 
 
  Evaluate each of the following limits using the basic limit properties above.
 	[image: \underset{x\to 2}{\lim}x]
 	[image: \underset{x\to 2}{\lim}5]
 
 Show Solution 
 	The limit of [image: x] as [image: x] approaches [image: a] is [image: a]: [image: \underset{x\to 2}{\lim}x=2].
 	The limit of a constant is that constant: [image: \underset{x\to 2}{\lim}5=5].
 
  
  [ohm_question hide_question_numbers=1]288275[/ohm_question]
  
 The limit laws outline the essential properties of limits, crucial for the systematic evaluation of functions as they approach specific points. Our focus will be on their practical use, since the detailed proofs are beyond this course’s scope.
 the limit laws
 For all [image: x] near [image: a], consider functions [image: f(x)] and [image: g(x)] with limits [image: L] and [image: M] respectively, [image: \underset{x\to a}{\lim}f(x)=L] and [image: \underset{x\to a}{\lim}g(x)=M]. Let [image: c] be a constant. The following are established limit laws:
  
 Sum law for limits:
 [image: \underset{x\to a}{\lim}(f(x)+g(x))=\underset{x\to a}{\lim}f(x)+\underset{x\to a}{\lim}g(x)=L+M]
  
 Difference law for limits:
 [image: \underset{x\to a}{\lim}(f(x)-g(x))=\underset{x\to a}{\lim}f(x)-\underset{x\to a}{\lim}g(x)=L-M]
  
 Constant multiple law for limits:
 [image: \underset{x\to a}{\lim}cf(x)=c \cdot \underset{x\to a}{\lim}f(x)=cL]
  
 Product law for limits:
 [image: \underset{x\to a}{\lim}(f(x) \cdot g(x))=\underset{x\to a}{\lim}f(x) \cdot \underset{x\to a}{\lim}g(x)=L \cdot M]
  
 Quotient law for limits:
 [image: \underset{x\to a}{\lim}\dfrac{f(x)}{g(x)}=\dfrac{\underset{x\to a}{\lim}f(x)}{\underset{x\to a}{\lim}g(x)}=\frac{L}{M}] for [image: M\ne 0]
  
 Power law for limits:
 [image: \underset{x\to a}{\lim}(f(x))^n=(\underset{x\to a}{\lim}f(x))^n=L^n] for every positive integer [image: n]
 .
  
 Root law for limits:
 [image: \underset{x\to a}{\lim}\sqrt[n]{f(x)}=\sqrt[n]{\underset{x\to a}{\lim}f(x)}=\sqrt[n]{L}] for all [image: L] if [image: n] is odd and for [image: L\ge 0] if [image: n] is even
 A handy way to keep the limit laws top of mind is to associate them with simple arithmetic operations you already know:
 	Sum and Difference: Just like adding or subtracting numbers, you can add or subtract limits.
 	Constant Multiples: Multiplying a number by a constant? The same goes for a limit.
 	Product: Multiplying two numbers? You can also multiply their limits.
 	Quotient: Dividing numbers translates to dividing their limits, just watch out for a zero denominator.
 	Powers and Roots: Raising a number to a power or taking a root? Apply the same operation to the limit.
 
  Use the limit laws to evaluate [image: \underset{x\to -3}{\lim}(4x+2)].
 Show Solution 
 Let’s apply the limit laws one step at a time to be sure we understand how they work. We need to keep in mind the requirement that, at each application of a limit law, the new limits must exist for the limit law to be applied.
 [image: \begin{array}{ccccc}\underset{x\to -3}{\lim}(4x+2)\hfill & =\underset{x\to -3}{\lim}4x+\underset{x\to -3}{\lim}2\hfill & & & \text{Apply the sum law.}\hfill \\ & =4 \cdot \underset{x\to -3}{\lim}x+\underset{x\to -3}{\lim}2\hfill & & & \text{Apply the constant multiple law.}\hfill \\ & =4 \cdot (-3)+2=-10\hfill & & & \text{Apply the basic limit results and simplify.}\hfill \end{array}]
   Use the limit laws to evaluate [image: \underset{x\to 2}{\lim}\dfrac{2x^2-3x+1}{x^3+4}].
 Show Solution 
 To find this limit, we need to apply the limit laws several times. Again, we need to keep in mind that as we rewrite the limit in terms of other limits, each new limit must exist for the limit law to be applied.
 [image: \begin{array}{ccccc}\\ \\ \underset{x\to 2}{\lim}\large \frac{2x^2-3x+1}{x^3+4} & = \large \frac{\underset{x\to 2}{\lim}(2x^2-3x+1)}{\underset{x\to 2}{\lim}(x^3+4)} & & & \text{Apply the quotient law, making sure that} \, 2^3+4\ne 0 \\ & = \large \frac{2 \cdot \underset{x\to 2}{\lim}x^2-3 \cdot \underset{x\to 2}{\lim}x+\underset{x\to 2}{\lim}1}{\underset{x\to 2}{\lim}x^3+\underset{x\to 2}{\lim}4} & & & \text{Apply the sum law and constant multiple law.} \\ & = \large \frac{2 \cdot (\underset{x\to 2}{\lim}x)^2-3 \cdot \underset{x\to 2}{\lim}x+\underset{x\to 2}{\lim}1}{(\underset{x\to 2}{\lim}x)^3+\underset{x\to 2}{\lim}4} & & & \text{Apply the power law.} \\ & = \large \frac{2(4)-3(2)+1}{2^3+4}=\frac{1}{4} & & & \text{Apply the basic limit laws and simplify.} \end{array}]
   Limits of Polynomial and Rational Functions
 When exploring limits of polynomial and rational functions, a notable pattern emerges.
 Let’s examine the recent example where we calculated the limit of [image: \dfrac{2x^2-3x+1}{x^3+4}] as [image: x] approaches [image: 2]. Applying the limit laws, the limit was found to be [image: \frac{1}{4}]. If [image: x] is replaced with [image: 2] in the function directly, [image: f(2)=\dfrac{2(2)^2-3(2)+1}{(2)^3+4}], [image: f(2)] is also equal to [image: \frac{1}{4}].
 This is not mere chance. It demonstrates a foundational concept in calculus: for polynomial and rational functions that are continuous at a point [image: a], the limit as [image: x] approaches [image: a] equals the value of the function at [image: a], or [image: f(a)]. This holds true provided the function is defined at that point.
 limits of polynomial and rational functions
 Let [image: p(x)] and [image: q(x)] be polynomial functions. Let [image: a] be a real number. Then,
 [image: \underset{x\to a}{\lim}p(x)=p(a)]
 [image: \underset{x\to a}{\lim}\dfrac{p(x)}{q(x)}=\dfrac{p(a)}{q(a)} \, \text{when} \, q(a)\ne 0]
  To see that this theorem holds, consider the polynomial [image: p(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots +c_1x+c_0]. 
 By applying the sum, constant multiple, and power laws, we end up with:
 [image: \begin{array}{cc}\hfill \underset{x\to a}{\lim}p(x)& =\underset{x\to a}{\lim}(c_nx^n+c_{n-1}x^{n-1}+\cdots +c_1x+c_0)\hfill \\ & =c_n(\underset{x\to a}{\lim}x)^n+c_{n-1}(\underset{x\to a}{\lim}x)^{n-1}+\cdots +c_1(\underset{x\to a}{\lim}x)+\underset{x\to a}{\lim}c_0\hfill \\ & =c_na^n+c_{n-1}a^{n-1}+\cdots +c_1a+c_0\hfill \\ & =p(a)\hfill \end{array}]
 It now follows from the quotient law that if [image: p(x)] and [image: q(x)] are polynomials for which [image: q(a)\ne 0], then
 [image: \underset{x\to a}{\lim}\dfrac{p(x)}{q(x)}=\dfrac{p(a)}{q(a)}]
  Evaluate the [image: \underset{x\to 3}{\lim}\dfrac{2x^2-3x+1}{5x+4}].
 Show Solution 
 Since [image: 3] is in the domain of the rational function [image: f(x)=\frac{2x^2-3x+1}{5x+4}], we can calculate the limit by substituting [image: 3] for [image: x] into the function.
 [image: f(3)=\frac{2(3)^2-3(3)+1}{5(3)+4} = \dfrac{10}{19}]
 Thus,
 [image: \underset{x\to 3}{\lim}\dfrac{2x^2-3x+1}{5x+4}=\dfrac{10}{19}]
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				Evaluating Limits Cont.
 More Limit Evaluation Techniques
 Calculating limits is straightforward for polynomials and some rational functions using direct substitution. However, when direct substitution results in an undefined form, such as [image: \frac{0}{0}], further techniques are needed.
 Consider the function [image: \frac{x^2-1}{x-1}].
 Direct substitution for [image: x=1] would yield the indeterminate form [image: \frac{0}{0}].
 By factoring [image: f(x)] to its simplest form,
 [image: \begin{array}{ccc}\hfill f(x)& =\dfrac{x^2-1}{x-1}\hfill \\ & =\dfrac{(x-1)(x+1)}{x-1}\hfill \\ & = x+1\hfill \end{array}]
 we see that except for [image: x=1,] where the function is not defined, the limit as [image: x] approaches [image: 1] is the same as the value of [image: g(x)=x+1] at that point, which is [image: 2].
 [image: \begin{array}{cc}\hfill \underset{x\to 1}{\lim}\dfrac{x^2-1}{x-1}& =\underset{x\to 1}{\lim}\dfrac{(x-1)(x+1)}{x-1}\hfill \\ & =\underset{x\to 1}{\lim}(x+1)\hfill \\ & =2\hfill \end{array}]The graphs of these two functions are shown in Figure 1.
 [image: Two graphs side by side. The first is a graph of g(x) = x + 1, a linear function with y intercept at (0,1) and x intercept at (-1,0). The second is a graph of f(x) = (x^2 – 1) / (x – 1). This graph is identical to the first for all x not equal to 1, as there is an open circle at (1,2) in the second graph.]Figure 1. The graphs of [image: f(x)] and [image: g(x)] are identical for all [image: x\ne 1]. Their limits at 1 are equal.  This shows how simplification can reveal a continuous limit where direct substitution fails.
 When the function assumes the form [image: \frac{0}{0}] upon direct substitution, it’s an indeterminate form.
 indeterminate form in limits
 When direct substitution in a function yields [image: \frac{0}{0}], it indicates an indeterminate form requiring further analysis to calculate the limit.
  How To: Solve Indeterminate [image: \frac{0}{0}] Limits
 	Verify the function has the appropriate form and cannot be evaluated immediately using the limit laws.
 	Find an equivalent function [image: h(x)=f(x)/g(x)] valid for all [image: x] near the point of interest, except at the point itself. To do this, we may need to try one or more of the following steps: 	Factor and simplify polynomials to cancel common terms.
 	For square roots, use conjugates to rationalize.
 	Simplify complex fractions.
 
 
 	Apply the limit laws to the simplified expression to find the limit.
 
  Evaluate a Limit by Factoring and Simplifying Polynomials
 A key step in resolving indeterminate limits involves factoring and simplifying polynomials to cancel out common terms. By extracting the GCF, applying special product formulas for polynomials, and using grouping techniques for trinomials, we can often simplify the expressions and resolve the indeterminate forms.
 How To: Evaluate a Limit by Factoring and Simplifying Polynomials
 	Factor the GCF out from the polynomial terms to reduce complexity.
 	Apply factoring rules for difference of squares, perfect square trinomials, and sum/difference of cubes to break down terms further.
 	For trinomials, utilize grouping for efficient factorization.
 	After simplification, re-evaluate the limit with the new, simplified expression.
 
  [image: \begin{array}{ll} \text{difference of squares} & a^2 - b^2 = (a+b)(a-b) \\ \text{perfect square trinomial} & a^2 + 2ab + b^2 = (a+b)^2 \\ \text{sum of cubes} & a^3 + b^3 = (a+b)(a^2 - ab + b^2) \\ \text{difference of cubes} & a^3 - b^3 = (a-b)(a^2 + ab + b^2) \end{array}]
  Evaluate [image: \underset{x\to 3}{\lim}\dfrac{x^2-3x}{2x^2-5x-3}]
 Show Solution 
 The function [image: f(x)=\frac{x^2-3x}{2x^2-5x-3}] is undefined for [image: x=3]. In fact, if we substitute [image: 3] into the function we get [image: \frac{0}{0}], which is undefined.
 Factoring and canceling is a good strategy.
 [image: \underset{x\to 3}{\lim}\dfrac{x^2-3x}{2x^2-5x-3}=\underset{x\to 3}{\lim}\dfrac{x(x-3)}{(x-3)(2x+1)}]
  
 For all [image: x\ne 3, \, \frac{x^2-3x}{2x^2-5x-3}=\frac{x}{2x+1}]. Therefore,
 [image: \underset{x\to 3}{\lim}\dfrac{x(x-3)}{(x-3)(2x+1)}=\underset{x\to 3}{\lim}\dfrac{x}{2x+1}]
  
 Evaluate using the limit laws:
 [image: \underset{x\to 3}{\lim}\dfrac{x}{2x+1}=\dfrac{3}{7}]
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  Evaluating a Limit by Multiplying by a Conjugate
 To tackle the limit involving a square root, we’ll utilize the method of multiplying by a conjugate. This means if we have a term like [image: \sqrt{x}+a], we multiply by [image: \sqrt{x}+-] to rationalize and simplify the expression. This technique often resolves indeterminate forms by eliminating the radical in the denominator, allowing us to find the limit using algebraic simplification.
 How To: Rationalize a Limit Involving Square Roots
 	Identify the term with the square root in the limit expression.
 	Multiply the expression by the conjugate of the term with the square root, both in the numerator and denominator.
 	Expand the product to eliminate the square root.
 	Simplify the resulting expression by combining like terms and canceling where possible.
 	Apply limit laws to the simplified expression to evaluate the limit.
 
  Evaluate [image: \underset{x\to -1}{\lim}\dfrac{\sqrt{x+2}-1}{x+1}]
 Show Solution 
 [image: \frac{\sqrt{x+2}-1}{x+1}] has the form [image: \frac{0}{0}] at [image: −1].
 Let’s begin by multiplying by [image: \sqrt{x+2}+1], the conjugate of [image: \sqrt{x+2}-1], on the numerator and denominator:
 [image: \underset{x\to -1}{\lim}\frac{\sqrt{x+2}-1}{x+1}=\underset{x\to -1}{\lim}\frac{\sqrt{x+2}-1}{x+1}\cdot \frac{\sqrt{x+2}+1}{\sqrt{x+2}+1}]
 We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that the [image: (x+1)] in the denominator cancels out in the end:
 [image: =\underset{x\to -1}{\lim}\frac{x+1}{(x+1)(\sqrt{x+2}+1)}]
 Then we cancel:
 [image: =\underset{x\to -1}{\lim}\frac{1}{\sqrt{x+2}+1}]
 Last, we apply the limit laws:
 [image: \underset{x\to -1}{\lim}\frac{1}{\sqrt{x+2}+1}=\frac{1}{2}]
 
  Evaluating a Limit by Simplifying Complex Fractions
 When tasked with solving the limit of a function involving a complex fraction, mastering simplification techniques becomes crucial. This process entails combining and reducing fractions within the limit expression, which often leads to a form where the limit laws can be applied.
 How To: Simplify Complex Fractions in Limits
 	Locate the LCD (Least Common Denominator) to combine rational expressions.
 	Factor numerators and denominators as needed.
 	Reduce the fraction to its simplest form.
 	With the simplified expression, apply limit laws to find the limit.
 
  Evaluate [image: \underset{x\to 1}{\lim}\dfrac{\frac{1}{x+1}-\frac{1}{2}}{x-1}]
 Show Solution 
 [image: \frac{\frac{1}{x+1}-\frac{1}{2}}{x-1}] has the form [image: \frac{0}{0}] at [image: 1].
 We simplify the algebraic fraction by multiplying by [image: \frac{2(x+1)}{2(x+1)}]:
 [image: \underset{x\to 1}{\lim}\dfrac{\frac{1}{x+1}-\frac{1}{2}}{x-1}=\underset{x\to 1}{\lim}\dfrac{\frac{1}{x+1}-\frac{1}{2}}{x-1} \cdot \dfrac{2(x+1)}{2(x+1)}]
 Next, we multiply through the numerators. Do not multiply the denominators because we want to be able to cancel the factor [image: (x-1)]:
 [image: =\underset{x\to 1}{\lim}\frac{2-(x+1)}{2(x-1)(x+1)}]
 Then, we simplify the numerator:
 [image: =\underset{x\to 1}{\lim}\frac{-x+1}{2(x-1)(x+1)}]
 Now we factor out [image: −1] from the numerator:
 [image: =\underset{x\to 1}{\lim}\frac{-(x-1)}{2(x-1)(x+1)}]
 Then, we cancel the common factors of [image: (x-1)]:
 [image: =\underset{x\to 1}{\lim}\frac{-1}{2(x+1)}]
 Last, we evaluate using the limit laws:
 [image: \underset{x\to 1}{\lim}\frac{-1}{2(x+1)}=-\frac{1}{4}]
 
  The example below does not fall neatly into any of the patterns established in the previous examples. However, with a little creativity, we can still use these same techniques.
 Evaluate [image: \underset{x\to 0}{\lim}\left(\dfrac{1}{x}+\dfrac{5}{x(x-5)}\right)]
 Show Solution 
 Both [image: \frac{1}{x}] and [image: \frac{5}{x(x-5)}] fail to have a limit at zero. Since neither of the two functions has a limit at zero, we cannot apply the sum law for limits; we must use a different strategy.
 In this case, we find the limit by performing addition and then applying one of our previous strategies.
 Observe that
 [image: \begin{array}{cc} \dfrac{1}{x}+\dfrac{5}{x(x-5)}& =\dfrac{x-5+5}{x(x-5)} \\ & =\dfrac{x}{x(x-5)}\end{array}]
 Thus,
 [image: \begin{array}{cc}\underset{x\to 0}{\lim}\big(\frac{1}{x}+\frac{5}{x(x-5)}\big)& =\underset{x\to 0}{\lim}\frac{x}{x(x-5)} \\ & =\underset{x\to 0}{\lim}\frac{1}{x-5} \\ & =-\frac{1}{5} \end{array}]
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				The Squeeze Theorem
 The techniques we have developed thus far work very well for algebraic functions, but we are still unable to evaluate limits of very basic trigonometric functions.
 The next theorem, called the squeeze theorem, proves very useful for establishing basic trigonometric limits.
 This theorem allows us to calculate limits by “squeezing” a function, with a limit at a point [image: a] that is unknown, between two functions having a common known limit at [image: a]. 
 [image: A graph of three functions over a small interval. All three functions curve. Over this interval, the function g(x) is trapped between the functions h(x), which gives greater y values for the same x values, and f(x), which gives smaller y values for the same x values. The functions all approach the same limit when x=a.]Figure 5. The Squeeze Theorem applies when [image: f(x)\le g(x)\le h(x)] and [image: \underset{x\to a}{\lim}f(x)=\underset{x\to a}{\lim}h(x)]. The Squeeze Theorem
 Let [image: f(x), \, g(x)], and [image: h(x)] be defined for all [image: x\ne a] over an open interval containing [image: a]. If
 [image: g(x)\le f(x)\le h(x)]
 for all [image: x\ne a] in an open interval containing [image: a] and
 [image: \underset{x\to a}{\lim}g(x)=L=\underset{x\to a}{\lim}h(x)]
 where [image: L] is a real number, then [image: \underset{x\to a}{\lim}f(x)=L].
  How To: Solve Trigonometric Limits Using the Squeeze Theorem
 	Confirm the function shows an indeterminate form that the Squeeze Theorem can address.
 	Find two bounding functions, [image: g(x)] and [image: h(x)], that satisfy [image: g(x)\le f(x)\le h(x)].
 	Ensure [image: g(x)] and [image: h(x)] approach the same limit at the point of interest.
 	Use the established bounds to deduce the limit of [image: f(x)]. If [image: g(x)] and [image: h(x)] have a common limit [image: L], then [image: \underset{x\to a}{\lim}f(x)=L].
 
  Apply the Squeeze Theorem to evaluate the limit [image: \underset{x\to 0}{\lim}\frac{\sin{x^2}}{x}].
 First start by identify bounding functions. We know that [image: -1\le \sin{x^2}\le 1].
 Next, divide these inequalities by [image: x].
 [image: \frac{-1}{x}\le \sin{x^2}\le \frac{1}{x}]
 Now, evaluate the limits of the bounding functions as [image: x] approaches [image: 0].
 Both [image: \frac{-1}{x}] and [image: \frac{1}{x}] approach infinity as [image: x] approaches [image: 0], but since [image: \frac{\sin{x^2}}{x}] is sandwiched between them, we deduce that
 [image: \underset{x\to 0}{\lim}\frac{\sin{x^2}}{x}=0]
 due to the squeeze theorem.
  Apply the Squeeze Theorem to evaluate [image: \underset{x\to 0}{\lim}x \cos x].
 Show Solution 
 To evaluate [image: \underset{x\to 0}{\lim}x \cos x] using the Squeeze Theorem:
 	Recognize that [image: -1\le \cos x\le 1] for all real numbers.
 	Multiply this inequality by [image: x] to get [image: -|x|\le x \cos x\le |x|]
 	As [image: x] approaches [image: 0], both [image: −∣x∣] and [image: ∣x∣] approach [image: 0].
 	By the Squeeze Theorem, since [image: x\cos{x}] is squeezed between two functions that both approach [image: 0], [image: \underset{x\to 0}{\lim}x \cos x=0]. The graphs of [image: f(x)=-|x|, \, g(x)=x \cos x], and [image: h(x)=|x|] are shown in Figure 6.
 
 [image: image]0 and downward for x>0.” width=”309″ height=”293″> Figure 6. The graphs of 𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥) are shown around the point 𝑥=0.   [ohm_question hide_question_number=1]204232[/ohm_question]
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				The Squeeze Theorem Cont.
 We now use the squeeze theorem to tackle several very important limits. Although this discussion is somewhat lengthy, these limits prove invaluable for the development of the material in both the next section and the next module. The first of these limits is [image: \underset{\theta \to 0}{\lim} \sin \theta].
 Evaluating the Limit of Sine as Theta Approaches Zero
 Consider the behavior of [image: \sin(\theta)] as [image: \theta] approaches zero. On the unit circle, [image: \sin(\theta)] corresponds to the [image: y]-coordinate, which also represents the arc’s height for a given angle, [image: \theta].
 As [image: \theta] gets closer to zero, particularly for [image: 0 < \theta < \frac{\pi}{2}], [image: \sin(\theta)] becomes smaller and approaches the angle’s measure itself, meaning [image: \sin(\theta)] is squeezed between [image: 0] and [image: \theta] .
 <img src="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11203438/CNX_Calc_Figure_02_03_007.jpg" alt="A diagram of the unit circle in the x,y plane – it is a circle with radius 1 and center at the origin. A specific point (cos(theta), sin(theta)) is labeled in quadrant 1 on the edge of the circle. This point is one vertex of a right triangle inside the circle, with other vertices at the origin and (cos(theta), 0). As such, the lengths of the sides are cos(theta) for the base and sin(theta) for the height, where theta is the angle created by the hypotenuse and base. The radian measure of angle theta is the length of the arc it subtends on the unit circle. The diagram shows that for 0 < theta < pi/2, 0 < sin(theta) Figure 7. The sine function is shown as a line on the unit circle.
 First, consider the established inequalities for [image: \sin(\theta)] when [image: \theta]  is between [image: 0] and [image: \frac{\pi}{2}]:
 [image: 0 < \theta < \frac{\pi}{2} \Longrightarrow 0 < \sin \theta < \theta]
 Now, as [image: \theta] approaches zero from the positive direction, we know that [image: \sin(\theta)] also approaches zero because it is sandwiched between [image: 0] and [image: \theta].
 Mathematically, this can be expressed as:
 [image: \underset{\theta \to 0^+}{\lim}0=0 \text{     and     }\underset{\theta \to 0^+}{\lim} \theta =0],
 which, according to the Squeeze Theorem, compels [image: \sin(\theta)] to satisfy:
 [image: \underset{\theta \to 0^+}{\lim} \sin \theta =0].
 The same principle applies when approaching zero from the negative side, where [image: \sin(\theta)] is negative but greater than [image: -\theta]:
 [image: \frac{-\pi}{2} < \theta < 0 \Longrightarrow-\theta < \sin \theta < 0]
 Here too, as [image: \theta] approaches zero, [image: \sin(\theta)]  is “squeezed” to zero:
  
 [image: \underset{\theta \to 0^-}{\lim}0=0 \text{     and     }\underset{\theta \to 0^-}{\lim} (-\theta) =0],
 leading to the conclusion that:
  
 [image: \underset{\theta \to 0^-}{\lim} \sin \theta =0].
 Therefore, we can definitively state that the limit of [image: \sin(\theta)] as [image: \theta] approaches zero from either direction is [image: 0].
 the limit of [image: \sin(\theta)]
 [image: \underset{\theta \to 0}{\lim} \sin \theta =0]
  
 Evaluating the Limit of Cosine as Theta Approaches Zero
 To evaluate the limit of [image: \cos(\theta)] as [image: \theta] approaches zero, we rely on the fundamental Pythagorean identity which states that for any angle [image: \theta], the square of the cosine of [image: \theta] plus the square of the sine of [image: \theta] equals one:
 [image: \cos^2(\theta)+\sin^2(\theta)=1]
 Rearranging this identity, we can isolate [image: \cos(\theta)]:
 [image: \cos(\theta)=\sqrt{1−\sin^2(\theta)}]
 Since the sine function is bounded between [image: -1] and [image: 1] for all [image: \theta], and as [image: \theta] approaches zero, [image: \sin(\theta)] also approaches zero, we can substitute this limit into our identity:
 [image: \underset{\theta \to 0}{\lim} \cos \theta=\underset{\theta \to 0}{\lim} \sqrt{1−\sin^2(\theta)}]
 Given that [image: \underset{\theta \to 0}{\lim} \sin \theta =0], we then have:
 [image: \underset{\theta \to 0}{\lim} \sqrt{1−\sin^2(\theta)} =\sqrt{1-0^2}=1]
 Thus, we confirm that the limit of [image: \cos(\theta)] as [image: \theta] approaches zero is [image: 1].
 the limit of [image: \cos(\theta)]
 [image: \underset{\theta \to 0}{\lim} \cos \theta =1]
  
 Exploring the Limit of Sine Theta Over Theta
 A pivotal limit in calculus, particularly relevant in the study of derivatives and integrals of trigonometric functions, is [image: \underset{\theta \to 0}{\lim}\frac{\sin \theta}{\theta}].
  
 To understand this limit, we look to the unit circle, where the sine and tangent functions provide geometric insights into this foundational limit.
 <img src="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11203441/CNX_Calc_Figure_02_03_008.jpg" alt="The same diagram as the previous one. However, the triangle is expanded. The base is now from the origin to (1,0). The height goes from (1,0) to (1, tan(theta)). The hypotenuse goes from the origin to (1, tan(theta)). As such, the height is now tan(theta). It shows that for 0 < theta < pi/2, sin(theta) < theta Figure 8. The sine and tangent functions are shown as lines on the unit circle. Analyze the behavior of [image: \sin(\theta)] and [image: \tan(\theta)] within the first quadrant of the unit circle, specifically for angles [image: \theta] where [image: 0 < \theta < \frac{\pi}{2}].
 In this range, it’s clear from the geometric representation that [image: \sin(\theta)] is always less than the length of the tangent line segment from the point on the circle to the [image: x]-axis, which is [image: \tan(\theta)]. Consequently, we have the inequality:
 
 [image: 0< \sin \theta < \tan \theta]
 By dividing each term in the inequality by [image: \sin \theta] , we are led to:
 [image: 1 < \dfrac{\theta}{\sin \theta} < \dfrac{1}{\cos \theta}]
 With the reciprocal, this inequality can be restated as:
 [image: 1 > \dfrac{\sin \theta}{\theta} > \cos \theta]
 As [image: \theta] approaches zero, [image: \cos(\theta)] approaches [image: 1]. Therefore, [image: \sin(\theta)] is squeezed between [image: \cos(\theta)] and [image: 1].
 Since [image: \cos(\theta)] also approaches [image: 1] as [image: \theta]  approaches zero, the Squeeze Theorem can be applied to conclude that:
 [image: \underset{\theta \to 0}{\lim}\dfrac{\sin \theta}{\theta}=1]
 the limit of [image: \dfrac{\sin \theta}{\theta}]
 [image: \underset{\theta \to 0}{\lim}\dfrac{\sin \theta}{\theta}=1]
  Evaluating the Limit of [image: \dfrac{1- \cos \theta}{\theta}]
 As we build upon the understanding of limits involving trigonometric functions, the next step is to apply the Squeeze Theorem to evaluate limits that are not immediately obvious. 
 In the example below, we use the limit of [image: \frac{\sin {\theta}}{\theta}] to establish [image: \underset{\theta \to 0}{\lim}\frac{1- \cos \theta}{\theta}=0]. This limit also proves useful in later modules.
 Evaluate [image: \underset{\theta \to 0}{\lim}\dfrac{1- \cos \theta}{\theta}]
 Show Solution 
 In the first step, we multiply by the conjugate so that we can use a trigonometric identity to convert the cosine in the numerator to a sine:
 [image: \begin{array}{cc} \underset{\theta \to 0}{\lim}\frac{1- \cos \theta}{\theta}& =\underset{\theta \to 0}{\lim}\frac{1- \cos \theta}{\theta} \cdot \frac{1+ \cos \theta}{1+ \cos \theta} \\ & =\underset{\theta \to 0}{\lim}\frac{1-\cos^2 \theta}{\theta(1+ \cos \theta)} \\ & =\underset{\theta \to 0}{\lim}\frac{\sin^2 \theta}{\theta(1+ \cos \theta)} \\ & =\underset{\theta \to 0}{\lim}\frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{1+ \cos \theta} \\ & =1 \cdot \frac{0}{2}=0 \end{array}]
 Therefore,
 [image: \underset{\theta \to 0}{\lim}\dfrac{1- \cos \theta}{\theta}=0]
 
  the limit of [image: \dfrac{1- \cos \theta}{\theta}]
 [image: \underset{\theta \to 0}{\lim}\dfrac{1- \cos \theta}{\theta}=0]
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				 	Use basic rules to find limits for polynomial and rational functions
 	Find function limits by breaking them into simpler parts (factoring) or using conjugates
 	Determine limits by applying the squeeze theorem
 
  Deriving the Formula for the Area of a Circle
 Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods of calculus. The Greek mathematician Archimedes (ca. 287−212 BCE) was particularly inventive, using polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit.
 We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as being made up of [image: n] triangles. By taking the limit as the vertex angle of these triangles goes to zero, you can obtain the area of the circle. To see this, carry out the following steps:
 [ohm_question hide_question_numbers=1]288205[/ohm_question]
  [ohm_question hide_question_numbers=1]288206[/ohm_question]
  [ohm_question hide_question_numbers=1]288207[/ohm_question]
  [ohm_question hide_question_numbers=1]288208[/ohm_question]
  [ohm_question hide_question_numbers=1]288209[/ohm_question]
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				 	Outline the three criteria a function must meet to be continuous at a specific point
 	Explain the different types of breaks a function can have that make it not continuous
 	Explain what it means for a function to be continuous over a range of values
 	Explain the rule for calculating limits of functions that are combined
 	Show how a continuous function reaches every value between its start and end points using the Intermediate Value Theorem
 
  Continuity
 Many functions can be traced without lifting your pencil, indicating they are continuous. Functions that cannot be traced this way have points of discontinuity. To understand continuity at a point, consider the following conditions:
 	The function [image: f(a)] is defined:
 	The function must have a value at [image: a].
 
 
 	The limit [image: \underset{x\to a}{\lim}f(x)] exists:
 	The value that [image: f(x)] approaches as [image: x] gets closer to [image: a] must exist.
 
 
 	The limit equals the function value [image: \underset{x\to a}{\lim}f(x)=f(a)]:
 	The value that [image: f(x)] approaches must be the same as the value of the function at [image: a].
 
 
 
 Let’s illustrate these conditions:
 	Undefined Function:
 	If [image: f(a)] is not defined, the function is not continuous at [image: a].
 [image: A graph of an increasing linear function f(x) which crosses the x axis from quadrant three to quadrant two and which crosses the y axis from quadrant two to quadrant one. A point a greater than zero is marked on the x axis. The point on the function f(x) above a is an open circle; the function is not defined at a.]Figure 1. The function [image: f(x)] is not continuous at a because [image: f(a)] is undefined. 
 
 
 	Non-existent Limit:
 	Even if [image: f(a)] is defined, if [image: \underset{x\to a}{\lim}f(x)] does not exist, the function is not continuous at [image: a].
 [image: The graph of a piecewise function f(x) with two parts. The first part is an increasing linear function that crosses from quadrant three to quadrant one at the origin. A point a greater than zero is marked on the x axis. At fa. on this segment, there is a solid circle. The other segment is also an increasing linear function. It exists in quadrant one for values of x greater than a. At x=a, this segment has an open circle.]Figure 2. The function [image: f(x)] is not continuous at a because [image: \underset{x\to a}{\lim}f(x)] does not exist. 
 
 
 	Limit Not Equal to Function Value:
 	If [image: f(a)] is defined and [image: \underset{x\to a}{\lim}f(x)] exists, but they are not equal, the function is not continuous at [image: a].
 [image: The graph of a piecewise function with two parts. The first part is an increasing linear function that crosses the x axis from quadrant three to quadrant two and which crosses the y axis from quadrant two to quadrant one. A point a greater than zero is marked on the x axis. At this point, there is an open circle on the linear function. The second part is a point at x=a above the line.]Figure 3. The function [image: f(x)] is not continuous at a because [image: \underset{x\to a}{\lim}f(x)\ne f(a)]. 
 
 
 
  continuity 
 A function [image: f(x)] is continuous at a point [image: a] if and only if the following three conditions are satisfied:
 	[image: f(a)] is defined
 	[image: \underset{x\to a}{\lim}f(x)] exists
 	[image: \underset{x\to a}{\lim}f(x)=f(a)]
 
 A function is discontinuous at a point [image: a] if it fails to be continuous at [image: a].
  The following procedure can be used to analyze the continuity of a function at a point using this definition.
 How to: Determine Continuity at a Point
 	Check to see if [image: f(a)] is defined. 	If [image: f(a)] is undefined, we need go no further. The function is not continuous at [image: a].
 	If [image: f(a)] is defined, continue to step 2.
 
 
 	Compute [image: \underset{x\to a}{\lim}f(x)]. In some cases, we may need to do this by first computing [image: \underset{x\to a^-}{\lim}f(x)] and [image: \underset{x\to a^+}{\lim}f(x)]. 	If [image: \underset{x\to a}{\lim}f(x)] does not exist (that is, it is not a real number), then the function is not continuous at [image: a].
 	If [image: \underset{x\to a}{\lim}f(x)] exists, then continue to step 3.
 
 
 	Compare [image: f(a)] and [image: \underset{x\to a}{\lim}f(x)]. 	If [image: \underset{x\to a}{\lim}f(x)\ne f(a)], then the function is not continuous at [image: a].
 	If [image: \underset{x\to a}{\lim}f(x)=f(a)], then the function is continuous at [image: a].
 
 
 
  The next three examples demonstrate how to apply this definition to determine whether a function is continuous at a given point. These examples illustrate situations in which each of the conditions for continuity in the definition succeed or fail.
 Using the definition, determine whether the function [image: f(x)=\dfrac{(x^2-4)}{(x-2)}] is continuous at [image: x=2]. Justify the conclusion.
 Show Solution 
 Let’s begin by trying to calculate [image: f(2)]. We can see that [image: f(2)=\frac{0}{0}], which is undefined. Therefore, [image: f(x)=\frac{x^2-4}{x-2}] is discontinuous at 2 because [image: f(2)] is undefined. The graph of [image: f(x)] is shown in Figure 4.
 [image: A graph of the given function. There is a line which crosses the x axis from quadrant three to quadrant two and which crosses the y axis from quadrant two to quadrant one. At a point in quadrant one, there is an open circle where the function is not defined.]Figure 4. The function [image: f(x)] is discontinuous at 2 because [image: f(2)] is undefined.   Using the definition, determine whether the function [image: f(x)=\begin{cases} -x^2+4 & \text{ if } \, x \le 3 \\ 4x-8 & \text{ if } \, x > 3 \end{cases}] is continuous at [image: x=3]. Justify the conclusion.
 Show Solution 
 Let’s begin by trying to calculate [image: f(3)].
 [image: f(3)=-(3^2)+4=-5]
 Thus, [image: f(3)] is defined. Next, we calculate [image: \underset{x\to 3}{\lim}f(x)]. To do this, we must compute [image: \underset{x\to 3^-}{\lim}f(x)] and [image: \underset{x\to 3^+}{\lim}f(x)]:
 [image: \underset{x\to 3^-}{\lim}f(x)=-(3^2)+4=-5]
 and
 [image: \underset{x\to 3^+}{\lim}f(x)=4(3)-8=4]
 Therefore, [image: \underset{x\to 3}{\lim}f(x)] does not exist. Thus, [image: f(x)] is not continuous at [image: 3]. The graph of [image: f(x)] is shown in Figure 5.
 [image: "A]
   Using the definition, determine whether the function [image: f(x)=\begin{cases} \frac{\sin x}{x} & \text{ if } \, x \ne 0 \\ 1 & \text{ if } \, x = 0 \end{cases}] is continuous at [image: x=0].
 Show Solution 
 First, observe that
 [image: f(0)=1]
 Next,
 [image: \underset{x\to 0}{\lim}f(x)=\underset{x\to 0}{\lim}\frac{\sin x}{x}=1]
 Last, compare [image: f(0)] and [image: \underset{x\to 1}{\lim}f(x)]. We see that
 [image: f(0)=1=\underset{x\to 0}{\lim}f(x)]
 Since all three of the conditions in the definition of continuity are satisfied, [image: f(x)] is continuous at [image: x=0].
   Watch the following video to see the worked solutions to the three previous examples.
 https://youtube.com/watch?v=BXUu5bG1CXU%3Fcontrols%3D0%26start%3D182%26end%3D412%26autoplay%3D0 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.4 Continuity” here (opens in new window).
  [ohm_question hide_question_numbers=1]288279[/ohm_question]
  By applying the definition of continuity and previously established theorems concerning the evaluation of limits, we can state the following theorem.
 continuity of polynomials and rational functions
 Polynomials and rational functions are continuous at every point in their domains.
  Proof
 
 Previously, we showed that if [image: p(x)] and [image: q(x)] are polynomials, [image: \underset{x\to a}{\lim}p(x)=p(a)] for every polynomial [image: p(x)] and [image: \underset{x\to a}{\lim}\dfrac{p(x)}{q(x)}=\dfrac{p(a)}{q(a)}] as long as [image: q(a)\ne 0]. Therefore, polynomials and rational functions are continuous on their domains.
 [image: _\blacksquare]
 
 The domain of every polynomial function is all real numbers. 
 The domain of a rational functional can be found by:
 	Set the denominator equal to zero.
 	Solve to find the values of the variable that cause the denominator to equal zero.
 	The domain contains all real numbers except those found in Step 2.
 
  We now apply continuity of polynomials and rational functions to determine the points at which a given rational function is continuous.
 For what values of [image: x] is [image: f(x)=\dfrac{x+1}{x-5}] continuous?
 Show Solution 
 The rational function [image: f(x)=\frac{x+1}{x-5}] is continuous for every value of [image: x] except [image: x=5].
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				Types of Discontinuities
 As we have seen in the earlier examples, discontinuities take on several different appearances. We classify the types of discontinuities we have seen thus far as removable discontinuities, infinite discontinuities, or jump discontinuities.
 	A removable discontinuity is a discontinuity for which there is a hole in the graph
 	A jump discontinuity is a noninfinite discontinuity for which the sections of the function do not meet up
 	An infinite discontinuity is a discontinuity located at a vertical asymptote.
 
 The figure below illustrates the differences in these types of discontinuities.
 [image: ""Three]
 These three discontinuities are formally defined as follows:
 types of discontinuities
 If [image: f(x)] is discontinuous at [image: a], then
 	[image: f] has a removable discontinuity at [image: a] if [image: \underset{x\to a}{\lim}f(x)] exists. 
 (Note: When we state that [image: \underset{x\to a}{\lim}f(x)] exists, we mean that [image: \underset{x\to a}{\lim}f(x)=L], where [image: L] is a real number.)
 	[image: f] has a jump discontinuity at [image: a] if [image: \underset{x\to a^-}{\lim}f(x)] and [image: \underset{x\to a^+}{\lim}f(x)] both exist, but [image: \underset{x\to a^-}{\lim}f(x)\ne \underset{x\to a^+}{\lim}f(x)]. 
 (Note: When we state that [image: \underset{x\to a^-}{\lim}f(x)] and [image: \underset{x\to a^+}{\lim}f(x)] both exist, we mean that both are real-valued and that neither take on the values [image: \pm \infty].)
 	[image: f] has an infinite discontinuity at [image: a] if [image: \underset{x\to a^-}{\lim}f(x)=\pm \infty] or [image: \underset{x\to a^+}{\lim}f(x)=\pm \infty].
 
  Although these terms provide a handy way of describing three common types of discontinuities, keep in mind that not all discontinuities fit neatly into these categories.
  In an earlier example, we showed that [image: f(x)=\dfrac{x^2-4}{x-2}] is discontinuous at [image: x=2]. Classify this discontinuity as removable, jump, or infinite.
 Show Solution 
 To classify the discontinuity at [image: 2] we must evaluate [image: \underset{x\to 2}{\lim}f(x)]:
 [image: \begin{array}{cc}\underset{x\to 2}{\lim}f(x) & =\underset{x\to 2}{\lim}\frac{x^2-4}{x-2} \\ & =\underset{x\to 2}{\lim}\frac{(x-2)(x+2)}{x-2} \\ & =\underset{x\to 2}{\lim}(x+2) \\ & = 4 \end{array}]
 Since [image: f] is discontinuous at [image: 2] and [image: \underset{x\to 2}{\lim}f(x)] exists, [image: f] has a removable discontinuity at [image: x=2].
   In an earlier example, we showed that [image: f(x)=\begin{cases} -x^2+4 & \text{ if } \, x \le 3 \\ 4x-8 & \text{ if } \, x > 3 \end{cases}] is discontinuous at [image: x=3]. Classify this discontinuity as removable, jump, or infinite.
 Show Solution 
 Earlier, we showed that [image: f] is discontinuous at [image: 3] because [image: \underset{x\to 3}{\lim}f(x)] does not exist. However, since [image: \underset{x\to 3^-}{\lim}f(x)=-5] and [image: \underset{x\to 3^+}{\lim}f(x)=4] both exist, we conclude that the function has a jump discontinuity at [image: 3].
   Determine whether [image: f(x)=\dfrac{x+2}{x+1}] is continuous at [image: −1]. If the function is discontinuous at [image: −1], classify the discontinuity as removable, jump, or infinite.
 Show Solution 
 The function value [image: f(-1)] is undefined. Therefore, the function is not continuous at [image: −1]. To determine the type of discontinuity, we must determine the limit at [image: −1]. We see that [image: \underset{x\to -1^-}{\lim}\frac{x+2}{x+1}=−\infty] and [image: \underset{x\to -1^+}{\lim}\frac{x+2}{x+1}=+\infty]. Therefore, the function has an infinite discontinuity at [image: −1].
   Watch the following video to see the worked solutions to the three previous examples.
 https://youtube.com/watch?v=BXUu5bG1CXU%3Fcontrols%3D0%26start%3D529%26end%3D591%26autoplay%3D0 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.4 Continuity” here (opens in new window).
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				Continuity Over an Interval
 Now that we have explored the concept of continuity at a point, let’s extend it to continuity over an interval. A function is continuous over an interval if you can trace it without lifting your pencil between any two points within that interval.
 	Open Interval: A function is continuous on an open interval [image: (a,b)] if it is continuous at every point within that interval.
 	Closed Interval: A function is continuous on a closed interval [image: [a,b]] if it is continuous on [image: (a,b)], continuous from the right at [image: a], and continuous from the left at [image: b].
 
 continuity over an interval
 	A function is continuous over an open interval if it is continuous at every point in the interval.
 	A function [image: f(x)] is continuous over a closed interval of the form [image: [a,b]] if it is continuous at every point in [image: (a,b)] and is continuous from the right at [image: a] and is continuous from the left at [image: b].
 	Analogously, a function [image: f(x)] is continuous over an interval of the form [image: (a,b]] if it is continuous over [image: (a,b)] and is continuous from the left at [image: b].
 
  Requiring that [image: \underset{x\to a^+}{\lim}f(x)=f(a)] and [image: \underset{x\to b^-}{\lim}f(x)=f(b)] ensures that we can trace the graph of the function from the point [image: (a,f(a))] to the point [image: (b,f(b))] without lifting the pencil. If, for example, [image: \underset{x\to a^+}{\lim}f(x)\ne f(a)], we would need to lift our pencil to jump from [image: f(a)] to the graph of the rest of the function over [image: (a,b]].
 How To: Determine Continuity Over an Interval
 	Check Continuity on Open Interval: Verify the function is continuous at all points within [image: (a, b)].
 	Check Right Continuity at  [image: a]: Ensure [image: \lim_{x \to a^+} f(x) = f(a).]
 	Check Left Continuity at [image: b]: Ensure [image: \lim_{x \to b^-} f(x) = f(b)].
 
  State the interval(s) over which the function [image: f(x)=\dfrac{x-1}{x^2+2x}] is continuous.
 Show Solution 
 Since [image: f(x)=\frac{x-1}{x^2+2x}] is a rational function, it is continuous at every point in its domain. 
 The domain of [image: f(x)] is the set [image: (−\infty ,-2) \cup (-2,0) \cup (0,+\infty)]. 
 Thus, [image: f(x)] is continuous over each of the intervals [image: (−\infty ,-2), \, (-2,0)], and [image: (0,+\infty)].
   State the interval(s) over which the function [image: f(x)=\sqrt{4-x^2}] is continuous.
 Show Solution 
 From the limit laws, we know that [image: \underset{x\to a}{\lim}\sqrt{4-x^2}=\sqrt{4-a^2}] for all values of [image: a] in [image: (-2,2)]. 
 We also know that [image: \underset{x\to -2^+}{\lim}\sqrt{4-x^2}=0] exists and [image: \underset{x\to 2^-}{\lim}\sqrt{4-x^2}=0] exists. 
 Therefore, [image: f(x)] is continuous over the interval [image: [-2,2]].
   [ohm_question hide_question_numbers=1]204644[/ohm_question]
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				Composite Function Theorem
 The Composite Function Theorem helps expand our ability to compute limits, particularly demonstrating the continuity of trigonometric functions over their domains.
 composite function theorem
 If [image: f(x)] is continuous at [image: L] and [image: \underset{x\to a}{\lim}g(x)=L], then
 [image: \underset{x\to a}{\lim}f(g(x))=f(\underset{x\to a}{\lim}g(x))=f(L)].
  This theorem allows us to demonstrate that the composition of functions is continuous if the inner function approaches a limit where the outer function is continuous.
 Before we move on to the next example, recall that earlier, in the section on limit laws, we showed [image: \underset{x\to 0}{\lim} \cos x=1= \cos (0)]. Consequently, we know that [image: f(x)= \cos x] is continuous at [image: 0]. In the next example we see how to combine this result with the composite function theorem.
  Evaluate [image: \underset{x\to \pi/2}{\lim}\cos(x-\dfrac{\pi }{2})].
 Show Solution 
 The given function is a composite of [image: \cos x] and [image: x-\frac{\pi}{2}]. Since [image: \underset{x\to \pi/2}{\lim}(x-\frac{\pi}{2})=0] and [image: \cos x] is continuous at [image: 0], we may apply the composite function theorem. Thus,
 [image: \underset{x\to \pi/2}{\lim}\cos(x-\frac{\pi}{2})= \cos (\underset{x\to \pi/2}{\lim}(x-\frac{\pi}{2}))= \cos (0)=1].
 
  Evaluate [image: \underset{x\to \pi}{\lim}\sin(x-\pi)].
 Hint 
 [image: f(x)= \sin x] is continuous at [image: 0]. 
  Show Solution 
 [image: 0]
   Watch the following video to see examples of solving limits of composite functions.
 https://youtube.com/watch?v=RgfKNIkpFWc%3Fcontrols%3D0 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for “Limits of composite functions | Limits and continuity | AP Calculus AB | Khan Academy” here (opens in new window).
  The proof of the next theorem uses the composite function theorem and the continuity of [image: f(x)= \sin x] and [image: g(x)= \cos x] at the point [image: 0] to demonstrate that trigonometric functions are continuous over their entire domains.
 Proof
 
 We begin by demonstrating that [image: \cos x] is continuous at every real number. To do this, we must show that [image: \underset{x\to a}{\lim}\cos x = \cos a] for all values of [image: a].
 [image: \begin{array}{lllll}\underset{x\to a}{\lim}\cos x & =\underset{x\to a}{\lim}\cos((x-a)+a) & & & \text{rewrite} \, x \, \text{as} \, x-a+a \, \text{and group} \, (x-a) \\ & =\underset{x\to a}{\lim}(\cos(x-a)\cos a - \sin(x-a)\sin a) & & & \text{apply the identity for the cosine of the sum of two angles} \\ & = \cos(\underset{x\to a}{\lim}(x-a)) \cos a - \sin(\underset{x\to a}{\lim}(x-a))\sin a & & & \underset{x\to a}{\lim}(x-a)=0, \, \text{and} \, \sin x \, \text{and} \, \cos x \, \text{are continuous at 0} \\ & = \cos(0)\cos a - \sin(0)\sin a & & & \text{evaluate cos(0) and sin(0) and simplify} \\ & =1 \cdot \cos a - 0 \cdot \sin a = \cos a \end{array}]
 The proof that [image: \sin x] is continuous at every real number is analogous. Because the remaining trigonometric functions may be expressed in terms of [image: \sin x] and [image: \cos x,] their continuity follows from the quotient limit law.
 [image: _\blacksquare]
 
 continuity of trigonometric functions
 Trigonometric functions are continuous over their entire domains.
  The Intermediate Value Theorem
 Functions that are continuous over intervals of the form [image: [a,b]], where [image: a] and [image: b] are real numbers, exhibit many useful properties. Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The first of these theorems is the intermediate value theorem.
 the intermediate value theorem
 Let [image: f] be continuous over a closed, bounded interval [image: [a,b]]. If [image: z] is any real number between [image: f(a)] and [image: f(b)], then there is a number [image: c] in [image: [a,b]] satisfying [image: f(c)=z]. 
 [image: A diagram illustrating the intermediate value theorem. There is a generic continuous curved function shown over the interval [a,b]. The points fa. and fb. are marked, and dotted lines are drawn from a, b, fa., and fb. to the points (a, fa.) and (b, fb.). A third point, c, is plotted between a and b. Since the function is continuous, there is a value for fc. along the curve, and a line is drawn from c to (c, fc.) and from (c, fc.) to fc., which is labeled as z on the y axis.]Figure 7. There is a number [image: c \in [a,b]] that satisfies [image: f(c)=z].  Show that [image: f(x)=x- \cos x] has at least one zero.
 Show Solution 
 Since [image: f(x)=x-\cos x] is continuous over [image: (−\infty,+\infty)], it is continuous over any closed interval of the form [image: [a,b]]. If you can find an interval [image: [a,b]] such that [image: f(a)] and [image: f(b)] have opposite signs, you can use the Intermediate Value Theorem to conclude there must be a real number [image: c] in [image: (a,b)] that satisfies [image: f(c)=0]. Note that
 [image: f(0)=0 - \cos (0)=-1<0]
 and
 [image: f(\frac{\pi}{2})=\frac{\pi}{2} - \cos \frac{\pi}{2}=\frac{\pi}{2}>0]
  
 Using the Intermediate Value Theorem, we can see that there must be a real number [image: c] in [image: [0,\pi/2]] that satisfies [image: f(c)=0]. Therefore, [image: f(x)=x- \cos x] has at least one zero.
   If [image: f(x)] is continuous over [image: [0,2], \, f(0)>0], and [image: f(2)>0,] can we use the Intermediate Value Theorem to conclude that [image: f(x)] has no zeros in the interval [image: [0,2]]? Explain.
 Show Solution 
 No. The Intermediate Value Theorem only allows us to conclude that we can find a value between [image: f(0)] and [image: f(2)]; it doesn’t allow us to conclude that we can’t find other values. To see this more clearly, consider the function [image: f(x)=(x-1)^2]. It satisfies [image: f(0)=1>0, \, f(2)=1>0], and [image: f(1)=0].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=BXUu5bG1CXU%3Fcontrols%3D0%26start%3D804%26end%3D860%26autoplay%3D0
 Closed Captioning and Transcript Information for Video 
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.4 Continuity” here (opens in new window).
   Show that [image: f(x)=x^3-x^2-3x+1] has a zero over the interval [image: [0,1]].
 Show Solution 
 [image: f(0)=1>0, \, f(1)=-2<0]; [image: f(x)] is continuous over [image: [0,1]]. It must have a zero on this interval.
   [ohm_question hide_question_numbers=1]288280[/ohm_question]
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				 	Outline the three criteria a function must meet to be continuous at a specific point
 	Explain the different types of breaks a function can have that make it not continuous
 	Explain what it means for a function to be continuous over a range of values
 	Explain the rule for calculating limits of functions that are combined
 	Show how a continuous function reaches every value between its start and end points using the Intermediate Value Theorem
 
  Continuity
 Understanding continuity and discontinuities is crucial in the study of functions and their behavior. These concepts play a vital role in various fields, from pure mathematics to real-world applications in physics, engineering, and economics. In this activity, you’ll explore different types of functions and their continuity properties, identify various forms of discontinuities, and apply these concepts to specific examples. By working through these questions, you’ll deepen your understanding of how functions behave across their domains and sharpen your ability to analyze and classify discontinuities.
 [ohm_question hide_question_numbers=1]288210[/ohm_question]
  [ohm_question hide_question_numbers=1]288211[/ohm_question]
  [ohm_question hide_question_numbers=1]288212[/ohm_question]
  [ohm_question hide_question_numbers=1]288213[/ohm_question]
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				 	Use the epsilon-delta method to determine the limit of a function
 	Explain the epsilon-delta definitions of one-sided limits and infinite limits
 
  By now you have progressed from the very informal definition of a limit in the introduction of this module to the intuitive understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means and how you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise mathematical language.
 Epsilon-Delta Definition of the Limit
 Before stating the formal definition of a limit, we must introduce a few preliminary ideas. The distance between two points [image: a] and [image: b] on a number line is given by [image: |a-b|].
 	The statement [image: |f(x)-L|<\varepsilon] means the distance between [image: f(x)] and [image: L] is less than [image: \varepsilon].
 	The statement [image: 0<|x-a|<\delta] means [image: x\ne a] and the distance between [image: x] and [image: a] is less than [image: \delta].
 
 It’s important to recognize these equivalences for absolute value:
 	The statement [image: |f(x)-L|<\varepsilon] is equivalent to the statement [image: L-\varepsilon < f(x) < L+\varepsilon].
 	The statement [image: 0<|x-a|<\delta] is equivalent to the statement [image: a-\delta < x < +\delta] and [image: x\ne a].
 
 With these clarifications, we can state the formal epsilon-delta definition of the limit.
 epsilon-delta definition of the limit
 Let [image: f(x)] be defined for all [image: x\ne a] over an open interval containing [image: a]. Let [image: L] be a real number. Then
 [image: \underset{x\to a}{\lim}f(x)=L]
 if, for every [image: \varepsilon >0], there exists a [image: \delta >0] such that if [image: 0<|x-a|<\delta], then [image: |f(x)-L|<\varepsilon].
  This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we break it down phrase by phrase. 
 Translation of the Epsilon-Delta Definition of the Limit 	Definition 	Meaning 
  	For every [image: \varepsilon >0], 	For every positive distance [image: \varepsilon] from [image: L], 
 	there exists a [image: \delta >0], 	There is a positive distance [image: \delta] from [image: a], 
 	such that 	such that 
 	if [image: 0<|x-a|<\delta], then [image: |f(x)-L|<\varepsilon]. 	if [image: x] is closer than [image: \delta] to [image: a] and [image: x\ne a], then [image: f(x)] is closer than [image: \varepsilon] to [image: L]. 
  
 By breaking down the definition into these parts, we can better understand and apply the formal epsilon-delta definition of a limit. [ohm_question hide_question_numbers=1]6242[/ohm_question]
  We can get a better handle on this definition by looking at the definition geometrically. Figure 1 shows possible values of [image: \delta] for various choices of [image: \varepsilon >0] for a given function [image: f(x)], a number [image: a], and a limit [image: L] at [image: a].
 Notice that as we choose smaller values of [image: \varepsilon] (the distance between the function and the limit), we can always find a [image: \delta] small enough so that if we have chosen an [image: x] value within [image: \delta] of [image: a], then the value of [image: f(x)] is within [image: \varepsilon] of the limit [image: L].
 [image: There are three graphs side by side showing possible values of delta, given successively smaller choices of epsilon. Each graph has a decreasing, concave down curve in quadrant one. Each graph has the point (a, L) marked on the curve, where L is the limit of the function at the point where x=a. On either side of L on the y axis, a distance epsilon is marked off - namely, a line is drawn through the function at y = L + epsilon and L – epsilon. As smaller values of epsilon are chosen going from graph one to graph three, smaller values of delta to the left and right of point a can be found so that if we have chosen an x value within delta of a, then the value of f(x) is within epsilon of the limit L.]Figure 1. These graphs show possible values of [image: \delta], given successively smaller choices of [image: \varepsilon]. Visit the following applet to experiment with finding values of [image: \delta] for selected values of [image: \varepsilon].
  The example below shows how you can use this definition to prove a statement about the limit of a specific function at a specified value.
 Prove that [image: \underset{x\to 1}{\lim}(2x+1)=3].
 Show Solution 
 Let [image: \varepsilon >0].
 The first part of the definition begins “For every [image: \varepsilon >0].” This means we must prove that whatever follows is true no matter what positive value of [image: \varepsilon] is chosen. By stating “Let [image: \varepsilon >0],” we signal our intent to do so.
 Choose [image: \delta =\frac{\varepsilon}{2}].
 The definition continues with “there exists a [image: \delta >0].” The phrase “there exists” in a mathematical statement is always a signal for a scavenger hunt. In other words, we must go and find [image: \delta]. So, where exactly did [image: \delta =\varepsilon/2] come from? There are two basic approaches to tracking down [image: \delta]. One method is purely algebraic and the other is geometric.
 We begin by tackling the problem from an algebraic point of view. Since ultimately we want [image: |(2x+1)-3|<\varepsilon], we begin by manipulating this expression: [image: |(2x+1)-3|<\varepsilon] is equivalent to [image: |2x-2|<\varepsilon], which in turn is equivalent to [image: |2||x-1|<\varepsilon]. Last, this is equivalent to [image: |x-1|<\varepsilon/2]. Thus, it would seem that [image: \delta =\varepsilon/2] is appropriate.
 We may also find [image: \delta] through geometric methods. Figure 2 demonstrates how this is done.
 [image: This graph shows how to find delta geometrically. The function 2x + 1 is drawn in red from x=0 to 2. A straight line is drawn at y=3 in green, which intersects the function at (1,3). Two blues lines are drawn at 3 + epsilon and 3 – epsilon, which are graphed here between 5 and 6 and between 0 and 1, respectively. Finally, two pink lines are drawn down from the points of intersection of the function and the blue lines – the taller between 1 and 2, and the shorter between 0 and 1. Since the blue lines and the function intersect, we can solve for x. For the shorter, corresponding to the line y = 3 – epsilon, we have 3 – epsilon = 2x + 1, which simplifies to x = 1 – epsilon / 2. For the taller, corresponding to the line y = 3 + epsilon, we have 3 + epsilon = 2x + 1, which simplifies to x = 1 + epsilon / 2. Delta is the smaller of the two distances between 1 and where the pink lines intersect with the x axis. We have delta is the min of 1 + epsilon / 2 -1 and 1 – (1 – epsilon / 2), which is the min of epsilon / 2 and epsilon / 2, which is simply epsilon / 2.]Figure 2. This graph shows how we find [image: \delta] geometrically. Assume [image: 0<|x-1|<\delta]. When [image: \delta] has been chosen, our goal is to show that if [image: 0<|x-1|<\delta], then [image: |(2x+1)-3|<\varepsilon]. To prove any statement of the form “If this, then that,” we begin by assuming “this” and trying to get “that.”
 Thus,
 [image: \begin{array}{lllll}|(2x+1)-3| & =|2x-2| & & & \\ & =|2(x-1)| \\ & =|2||x-1| & & & \text{property of absolute values:} \, |ab|=|a||b| \\ & =2|x-1| & & & \\ & <2 \cdot \delta & & & \text{here’s where we use the assumption that} \, 0<|x-1|<\delta \\ & =2 \cdot \frac{\varepsilon}{2}=\varepsilon & & & \text{here’s where we use our choice of} \, \delta =\varepsilon/2 \end{array}]
 Analysis
 In this part of the proof, we started with [image: |(2x+1)-3|] and used our assumption [image: 0<|x-1|<\delta] in a key part of the chain of inequalities to get [image: |(2x+1)-3|] to be less than [image: \varepsilon]. We could just as easily have manipulated the assumed inequality [image: 0<|x-1|<\delta] to arrive at [image: |(2x+1)-3| < \varepsilon] as follows:
 [image: \begin{array}{ll} 0<|x-1|< \delta & \implies |x-1|< \delta \\ & \implies -\delta < x-1< \delta \\ & \implies -\frac{\varepsilon}{2} < x-1 < \frac{\varepsilon}{2} \\ & \implies -\varepsilon < 2x-2 < \varepsilon \\ & \implies |2x-2| < \varepsilon \\ & \implies |(2x+1)-3| < \varepsilon \end{array}]
 Therefore, [image: \underset{x\to 1}{\lim}(2x+1)=3]. (Having completed the proof, we state what we have accomplished.)
 After removing all the remarks, here is a final version of the proof:
 Let [image: \varepsilon >0].
 Choose [image: \delta =\varepsilon/2].
 Assume [image: 0<|x-1|<\delta].
 Thus,
 [image: \begin{array}{ll} |(2x+1)-3|& =|2x-2| \\ & =|2(x-1)| \\ & =|2||x-1| \\ & =2|x-1| \\ & <2 \cdot \delta \\ & =2 \cdot \frac{\varepsilon}{2} \\ & =\varepsilon \end{array}]
 Therefore, [image: \underset{x\to 1}{\lim}(2x+1)=3].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=5_q7_Zx26RY%3Fcontrols%3D0%26start%3D149%26end%3D335%26autoplay%3D0
 Closed Captioning and Transcript Information for Video
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.5 Precise Definition of a Limit” here (opens in new window).
   The following Problem-Solving Strategy summarizes the type of proof we worked out above.
 How to: Prove That [image: \underset{x\to a}{\lim}f(x)=L] for a Specific Function [image: f(x)]
 	Let’s begin the proof with the following statement: Let [image: \varepsilon >0].
 	Next, we need to obtain a value for [image: \delta]. After we have obtained this value, we make the following statement, filling in the blank with our choice of [image: \delta]: Choose [image: \delta =] _______.
 	The next statement in the proof should be (filling in our given value for [image: a]):
 Assume [image: 0<|x-a|<\delta].
 	Next, based on this assumption, we need to show that [image: |f(x)-L|<\varepsilon], where [image: f(x)] and [image: L] are our function [image: f(x)] and our limit [image: L]. At some point, we need to use [image: 0<|x-a|<\delta].
 	We conclude our proof with the statement: Therefore, [image: \underset{x\to a}{\lim}f(x)=L].
 
  Complete the proof that [image: \underset{x\to -1}{\lim}(4x+1)=-3] by filling in the blanks.
 Let _____.
 Choose [image: \delta =] ________.
 Assume [image: 0<|x-\text{___}|<\delta].
 Thus, [image: |\text{________}-\text{___}| =|\text{_________}| = |\text{___}||\text{_________}| = \text{___} \, |\text{_______}| < \text{______} = \text{_______} = \varepsilon].
 Therefore, [image: \underset{x \to -1}{\lim}(4x+1)=-3].
 Show Solution 
 We begin by filling in the blanks where the choices are specified by the definition. Thus, we have
 Let [image: \varepsilon >0].
 Choose [image: \delta =] _______. (Leave this one blank for now — we’ll choose [image: \delta] later)
 Assume [image: 0<|x-(-1)|<\delta] (or equivalently, [image: 0<|x+1|<\delta]).
 Thus, [image: |(4x+1)-(-3)|=|4x+4|=|4||x+1|<4\delta = \text{_______} = \varepsilon].
 Focusing on the final line of the proof, we see that we should choose [image: \delta =\frac{\varepsilon}{4}].
 We now complete the final write-up of the proof:
 Let [image: \varepsilon >0].
 Choose [image: \delta =\frac{\varepsilon}{4}].
 Assume [image: 0<|x-(-1)|<\delta] (or equivalently, [image: 0<|x+1|<\delta]).
 Thus, [image: |(4x+1)-(-3)|=|4x+4|=|4||x+1|<4\delta =4(\varepsilon/4)=\varepsilon].
   In the example above, the proof was fairly straightforward, since the function with which we were working with was linear. In the example below, we see how to modify the proof to accommodate a nonlinear function.
 Prove that [image: \underset{x\to 2}{\lim}x^2=4].
 Solution 	Let [image: \varepsilon >0]. The first part of the definition begins “For every [image: \varepsilon >0],” so we must prove that whatever follows is true no matter what positive value of [image: \varepsilon] is chosen. By stating “Let [image: \varepsilon >0],” we signal our intent to do so.
 	Without loss of generality, assume [image: \varepsilon \le 4]. Two questions present themselves: Why do we want [image: \varepsilon \le 4] and why is it okay to make this assumption? In answer to the first question: Later on, in the process of solving for [image: \delta], we will discover that [image: \delta] involves the quantity [image: \sqrt{4-\varepsilon}]. Consequently, we need [image: \varepsilon \le 4]. In answer to the second question: If we can find [image: \delta >0] that “works” for [image: \varepsilon \le 4], then it will “work” for any [image: \varepsilon >4] as well. Keep in mind that, although it is always okay to put an upper bound on [image: \varepsilon], it is never okay to put a lower bound (other than zero) on [image: \varepsilon].
 	Choose [image: \delta =\text{min}\{2-\sqrt{4-\varepsilon},\sqrt{4+\varepsilon}-2\}]. Figure 3 shows how we made this choice of [image: \delta].
 [image: This graph shows how to find delta geometrically for a given epsilon for the above proof. First, the function f(x) = x^2 is drawn from [-1, 3]. On the y axis, the proposed limit 4 is marked, and the line y=4 is drawn to intersect with the function at (2,4). For a given epsilon, point 4 + epsilon and 4 – epsilon are marked on the y axis above and below 4. Blue lines are drawn from these points to intersect with the function, where pink lines are drawn from the point of intersection to the x axis. These lines land on either side of x=2. Next, we solve for these x values, which have to be positive here. The first is x^2 = 4 – epsilon, which simplifies to x = sqrt(4-epsilon). The next is x^2 = 4 + epsilon, which simplifies to x = sqrt(4 + epsilon). Delta is the smaller of the two distances, so it is the min of (2 – sqrt(4 – epsilon) and sqrt(4 + epsilon) – 2).]Figure 3. This graph shows how we find [image: \delta] geometrically for a given [image: \varepsilon] for the proof in this example. 
 	We must show: If [image: 0<|x-2|<\delta], then [image: |x^2-4|<\varepsilon], so we must begin by assuming [image: 0<|x-2|<\delta].
 We don’t really need [image: 0<|x-2|] (in other words, [image: x\ne 2]) for this proof. Since [image: 0<|x-2|<\delta \implies |x-2|<\delta], it is okay to drop [image: 0<|x-2|].
 So, [image: |x-2|<\delta], which implies [image: -\delta < x-2 < \delta].
  
 Recall that [image: \delta =\text{min}\{2-\sqrt{4-\varepsilon},\sqrt{4+\varepsilon}-2\}]. Thus, [image: \delta \le 2-\sqrt{4-\varepsilon}] and consequently [image: -(2-\sqrt{4-\varepsilon})\le -\delta]. We also use [image: \delta \le \sqrt{4+\varepsilon}-2] here. We might ask at this point: Why did we substitute [image: 2-\sqrt{4-\varepsilon}] for [image: \delta] on the left-hand side of the inequality and [image: \sqrt{4+\varepsilon}-2] on the right-hand side of the inequality? If we look at Figure 3, we see that [image: 2-\sqrt{4-\varepsilon}] corresponds to the distance on the left of 2 on the [image: x]-axis and [image: \sqrt{4+\varepsilon}-2] corresponds to the distance on the right. Thus,
 [image: -(2-\sqrt{4-\varepsilon})\le -\delta < x-2 < \delta \le \sqrt{4+\varepsilon}-2].
 We simplify the expression on the left:
 [image: -2+\sqrt{4-\varepsilon} < x-2 < \sqrt{4+\varepsilon}-2].
 Then, we add 2 to all parts of the inequality:
 [image: \sqrt{4-\varepsilon} < x < \sqrt{4+\varepsilon}].
 We square all parts of the inequality. It is okay to do so, since all parts of the inequality are positive:
 [image: 4-\varepsilon < x^2 < 4+\varepsilon].
 We subtract 4 from all parts of the inequality:
 [image: -\varepsilon < x^2-4 < \varepsilon].
 Last,
 [image: |x^2-4| < \varepsilon].
 
 	Therefore, [image: \underset{x\to 2}{\lim}x^2=4].
 
 
   The geometric approach to proving limits works well for some functions and offers valuable insight into the formal definition of limits. However, an algebraic approach can also be useful. It often provides additional insight and can be simpler. Algebraic methods are the primary tools for proving statements about limits. The example below demonstrates a purely algebraic approach to limit proofs.
 Prove that [image: \underset{x\to -1}{\lim}(x^2-2x+3)=6].
 Show Solution 
 Let’s use our outline from the How To:
 	Let [image: \varepsilon >0].
 	Choose [image: \delta =\text{min}\{1,\varepsilon/5\}]. This choice of [image: \delta] may appear odd at first glance, but it was obtained by taking a look at our ultimate desired inequality: [image: |(x^2-2x+3)-6|<\varepsilon]. This inequality is equivalent to [image: |x+1|\cdot |x-3|<\varepsilon]. At this point, the temptation simply to choose [image: \delta =\frac{\varepsilon}{x-3}] is very strong. Unfortunately, our choice of [image: \delta] must depend on [image: \varepsilon] only and no other variable. If we can replace [image: |x-3|] by a numerical value, our problem can be resolved. This is the place where assuming [image: \delta \le 1] comes into play. The choice of [image: \delta \le 1] here is arbitrary. We could have just as easily used any other positive number. In some proofs, greater care in this choice may be necessary. Now, since [image: \delta \le 1] and [image: |x+1|<\delta \le 1], we are able to show that [image: |x-3|<5]. Consequently, [image: |x+1| \cdot |x-3|<|x+1| \cdot 5]. At this point we realize that we also need [image: \delta \le \varepsilon/5]. Thus, we choose [image: \delta =\text{min}\{1,\varepsilon/5\}].
 	Assume [image: 0<|x+1|<\delta]. Thus, [image: |x+1|<1] and [image: |x+1|<\frac{\varepsilon}{5}]
 Since [image: |x+1|<1], we may conclude that [image: -1 < x+1 < 1]. Thus, by subtracting 4 from all parts of the inequality, we obtain [image: -5 < x-3 < −1]. Consequently, [image: |x-3| < 5]. This gives us
 [image: |(x^2-2x+3)-6|=|x+1| \cdot |x-3|<\frac{\varepsilon}{5} \cdot 5=\varepsilon]
 Therefore,
 [image: \underset{x\to -1}{\lim}(x^2-2x+3)=6]
 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=5_q7_Zx26RY%3Fcontrols%3D0%26start%3D789%26end%3D988%26autoplay%3D0
 Closed Captioning and Transcript Information for Video
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.5 Precise Definition of a Limit” here (opens in a new window).
   You will find that, in general, the more complex a function, the more likely it is that the algebraic approach is the easiest to apply. The algebraic approach is also more useful in proving statements about limits.
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				Advanced Applications of the Epsilon-Delta Definition: Proofs, Non-Existence, and Algebraic Calculations
 Using the Epsilon-Delta Definition of Limits
 We will demonstrate how to use the epsilon-delta definition of a limit to construct a rigorous proof of one of the limit laws. The triangle inequality is a key component of this proof, so let’s review it first.
 triangle inequality
 The triangle inequality states that if [image: a] and [image: b] are any real numbers, then [image: |a+b|\le |a|+|b|].
  Proof
 
 We prove the following limit law: If [image: \underset{x\to a}{\lim}f(x)=L] and [image: \underset{x\to a}{\lim}g(x)=M], then [image: \underset{x\to a}{\lim}(f(x)+g(x))=L+M].
 Let [image: \varepsilon >0].
 Choose [image: \delta_1>0] so that if [image: 0<|x-a|<\delta_1], then [image: |f(x)-L|<\varepsilon/2].
 Choose [image: \delta_2>0] so that if [image: 0<|x-a|<\delta_2], then [image: |g(x)-M|<\varepsilon/2].
 Choose [image: \delta =\text{min}\{\delta_1,\delta_2\}].
 Assume [image: 0<|x-a|<\delta].
 Thus,
 [image: 0<|x-a|<\delta_1] and [image: 0<|x-a|<\delta_2]
 Hence,
 [image: \begin{array}{ll} |(f(x)+g(x))-(L+M)| & =|(f(x)-L)+(g(x)-M)| \\ & \le |f(x)-L|+|g(x)-M| \\ & <\dfrac{\varepsilon}{2}+\dfrac{\varepsilon}{2}=\varepsilon \end{array}]
 [image: \blacksquare]
 Exploring the Non-Existence of Limits
 We now explore what it means for a limit not to exist. The limit [image: \underset{x\to a}{\lim}f(x)] does not exist if there is no real number [image: L] for which [image: \underset{x\to a}{\lim}f(x)=L]. For all real numbers [image: L], [image: \underset{x\to a}{\lim}f(x)\ne L].
 To understand what this means, we look at each part of the definition of [image: \underset{x\to a}{\lim}f(x)=L] together with its opposite. 
 <table id="fs-id1170571696614" summary="A table with two columns and four rows. The top row contains the headers “definition” and “opposite.” The second row contains the definition “for every epsilon 
 Translation of the Definition of [image: \underset{x\to a}{\lim}f(x)=L] and its Opposite Definition Opposite 1. For every [image: \varepsilon >0], 1. There exists [image: \varepsilon >0] so that 2. there exists a [image: \delta >0] so that 2. for every [image: \delta >0], 3. if [image: 0<|x-a|<\delta], then [image: |f(x)-L|<\varepsilon]. 3. There is an [image: x] satisfying [image: 0<|x-a|<\delta] so that [image: |f(x)-L|\ge \varepsilon]. Finally, we may state what it means for a limit not to exist. The limit [image: \underset{x\to a}{\lim}f(x)] does not exist if for every real number [image: L], there exists a real number [image: \varepsilon >0] so that for all [image: \delta >0], there is an [image: x] satisfying [image: 0<|x-a|<\delta], so that [image: |f(x)-L|\ge \varepsilon].
 Let’s apply this in the example to show that a limit does not exist.
 Show that [image: \underset{x\to 0}{\lim}\dfrac{|x|}{x}] does not exist. The graph of [image: f(x)=\dfrac{|x|}{x}] is shown here:
 [image: "A]
 Show Solution 
 Suppose that [image: L] is a candidate for a limit. Choose [image: \varepsilon =\frac{1}{2}].
 Let [image: \delta >0]. Either [image: L\ge 0] or [image: L<0]. If [image: L\ge 0], then let [image: x=-\delta/2]. Thus,
 [image: |x-0|=|-\frac{\delta}{2}-0|=\frac{\delta}{2}<\delta]
 and
 [image: |\frac{|-\frac{\delta}{2}|}{-\frac{\delta}{2}}-L|=|-1-L|=L+1\ge 1>\frac{1}{2}=\varepsilon]
 On the other hand, if [image: L<0], then let [image: x=\delta/2]. Thus,
 [image: |x-0|=|\frac{\delta}{2}-0|=\frac{\delta}{2}<\delta]
 and
 [image: |\frac{|\frac{\delta}{2}|}{\frac{\delta}{2}}-L|=|1-L|=|L|+1\ge 1>\frac{1}{2}=\varepsilon]
 Thus, for any value of [image: L], [image: \underset{x\to 0}{\lim}\frac{|x|}{x}\ne L].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=5_q7_Zx26RY%3Fcontrols%3D0%26start%3D1380%26end%3D1657%26autoplay%3D0
 Closed Captioning and Transcript Information for Video
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.5 Precise Definition of a Limit” here (opens in new window).
   Finding Deltas Algebraically for Given Epsilons
 Now that we have proven limits, we can now apply them with actual numbers for [image: \varepsilon] and [image: \delta]. Think of [image: \varepsilon] as the error in the [image: x]-direction and [image: \delta] to be the error in the [image: y]-direction. These have applications in engineering when these errors are considered tolerances. We want to know what the error intervals are, and we are trying to minimize these errors.
 Find an open interval about [image: x_0] on which the inequality [image: |f(x)-L| < 0] holds. Then give the largest value [image: \delta > 0] such that for all [image: x] satisfying [image: 0 < |x-x_0| < \delta] the inequality [image: |f(x)-L| < \varepsilon] holds.
 [image: f(x)=2x-8, \,\, L=6, \,\, x_0=7, \,\, \varepsilon=0.14]
 Show Solution First we will need to start with the inequality [image: |f(x)-L| < \varepsilon] and plug in our numbers. Then we will solve for [image: x].
 [image: |2x-8 - 6| < \varepsilon][image: |2x-14| < \varepsilon][image: -0.14 < 2x - 14 &lt 0.14][image: 13.86 < 2x < 14.14][image: 6.93 < x < 7.07]
 Therefore, the interval is [image: (7.93,8.07)]. For the second answer, we will start with [image: 0 < |x-x_0| < \delta].  We will plug in our value and solve:
 [image: |x-7| < \delta][image: -\delta < x-7 < \delta][image: 7-\delta &lt x < 7+\delta]
 Now we will set each piece equal to the endpoints we found above.
 [image: 7-\delta=7.93] and [image: 7+\delta=8.07]
 After solving we will get the same answer for each equation: [image: \delta=0.07].
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				One-Sided and Infinite Limits
 One-Sided Limits
 After gaining an intuitive understanding of limits and moving to a more rigorous definition, we now revisit one-sided limits. We modify the epsilon-delta definition of a limit to give formal definitions for limits from the right and left at a point. These definitions only require slight modifications from the standard limit definition. In the definition of the limit from the right, the inequality [image: 0 < x-a < \delta] replaces [image: 0 < |x-a| < \delta], which ensures that we only consider values of [image: x] that are greater than (to the right of) [image: a]. Similarly, in the definition of the limit from the left, the inequality [image: -\delta < x-a < 0] replaces [image: 0 < |x-a| < \delta], which ensures that we only consider values of [image: x] that are less than (to the left of) [image: a].
 one-sided limits definitions
 Limit from the Right: Let [image: f(x)] be defined over an open interval of the form [image: (a,b)] where [image: a < b]. Then,
 [image: \underset{x\to a^+}{\lim}f(x)=L]
  
 if for every [image: \varepsilon >0], there exists a [image: \delta >0] such that if [image: 0 < x-a < \delta], then [image: |f(x)-L|<\varepsilon].
  
 Limit from the Left: Let [image: f(x)] be defined over an open interval of the form [image: (a,b)] where [image: a < b]. Then,
 [image: \underset{x\to b^-}{\lim}f(x)=L]
  
 if for every [image: \varepsilon >0], there exists a [image: \delta >0] such that if [image: 0 < b-x < \delta], then [image: |f(x)-L|<\varepsilon].
  Prove that [image: \underset{x\to 4^+}{\lim}\sqrt{x-4}=0].
 Show Solution 
 Let [image: \varepsilon >0.]
 Choose [image: \delta =\varepsilon^2]. Since we ultimately want [image: |\sqrt{x-4}-0|<\varepsilon], we manipulate this inequality to get [image: \sqrt{x-4}<\varepsilon] or, equivalently, [image: 0 < x-4 < \varepsilon^2], making [image: \delta =\varepsilon^2] a clear choice. [image: "A]
 Assume [image: 0 < x-4 < \delta]. Thus, [image: 0 < x-4 < \varepsilon^2]. Hence, [image: 0<\sqrt{x-4}<\varepsilon]. Finally, [image: |\sqrt{x-4}-0|<\varepsilon].
 Therefore, [image: \underset{x\to 4^+}{\lim}\sqrt{x-4}=0].
 Watch the following video to see the worked solution to this example. 
 
  One or more interactive elements has been excluded from this version of the text. You can view them online here: https://printed.lumenlearning.com/calc1/?p=93#oembed-1 
 
 Closed Captioning and Transcript Information for Video
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.5 Precise Definition of a Limit” here (opens in new window).
  
  Infinite Limits
 To understand infinite limits, we look at how functions behave as [image: x] approaches a certain value [image: a]. For [image: \underset{x\to a}{\lim}f(x)=+\infty], we want [image: f(x)] to get arbitrarily large as [image: x] approaches [image: a]. Instead of the requirement that [image: |f(x)-L|<\varepsilon] for arbitrarily small [image: \varepsilon] when [image: 0<|x-a|<\delta] for small enough [image: \delta], we want [image: f(x)>M] for arbitrarily large positive [image: M] when [image: 0<|x-a|<\delta] for small enough [image: \delta]. The figure below illustrates this idea by showing the value of [image: \delta] for successively larger values of [image: M].
 [image: Two graphs side by side. Each graph contains two curves above the x axis separated by an asymptote at x=a. The curves on the left go to infinity as x goes to a and to 0 as x goes to negative infinity. The curves on the right go to infinity as x goes to a and to 0 as x goes to infinity. The first graph has a value M greater than zero marked on the y axis and a horizontal line drawn from there (y=M) to intersect with both curves. Lines are drawn down from the points of intersection to the x axis. Delta is the smaller of the distances between point a and these new spots on the x axis. The same lines are drawn on the second graph, but this M is larger, and the distances from the x axis intersections to point a are smaller.]Figure 6. These graphs plot values of [image: \delta] for [image: M] to show that [image: \underset{x\to a}{\lim}f(x)=+\infty]. 
 infinite limit definition
 Let [image: f(x)] be defined for all [image: x\ne a] in an open interval containing [image: a]. Then, we have an infinite limit
 [image: \underset{x\to a}{\lim}f(x)=+\infty]
  
 if for every [image: M>0], there exists [image: \delta >0] such that if [image: 0<|x-a|<\delta], then [image: f(x)>M].
  
 Let [image: f(x)] be defined for all [image: x\ne a] in an open interval containing [image: a]. Then, we have a negative infinite limit
 [image: \underset{x\to a}{\lim}f(x)=−\infty]
  
 if for every [image: M>0], there exists [image: \delta >0] such that if [image: 0<|x-a|<\delta], then [image: f(x)<−M].
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				 	Use the epsilon-delta method to determine the limit of a function
 	Explain the epsilon-delta definitions of one-sided limits and infinite limits
 
  Advanced Limit Concepts Analysis
 As we delve deeper into the study of limits, we encounter more sophisticated applications of the epsilon-delta definition. This apply-it task is designed to test your understanding of these advanced concepts, including rigorous proofs of limits, exploring the non-existence of limits, algebraic calculations of deltas, one-sided limits, and infinite limits. These concepts form the foundation for many important ideas in calculus and analysis. By working through these problems, you’ll strengthen your ability to think critically about function behavior and develop a more intuitive understanding of limit processes.
 [ohm_question hide_question_numbers=1]288214[/ohm_question]
  [ohm_question hide_question_numbers=1]288215[/ohm_question]
  [ohm_question hide_question_numbers=1]288216[/ohm_question]
  [ohm_question hide_question_numbers=1]288217[/ohm_question]
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				 	Add, subtract, multiply, and break down polynomial expressions into simpler parts
 
  Adding and Subtracting Polynomials
 The process of adding and subtracting polynomials is a fundamental skill in algebra that involves combining like terms. Like terms are terms that have exactly the same variable factors raised to the same powers, or exponents.
 When working with polynomials, it’s essential to identify like terms because these are the only terms that can be combined through addition or subtraction.
 [image: 5{x}^{2}] and [image: -2{x}^{2}] are like terms because they both contain the variable [image: x] raised to the second power. Thus, combining them is straightforward: [image: 3{x}^{2}].
 In contrast [image: 3x] and [image: 3{x}^{2}] are not like terms and therefore cannot be added. are not like terms since their exponents differ ([image: x^1] vs. [image: x^2]). They cannot be combined through addition or subtraction.
  How To: Combining Polynomials using Addition of Subtraction
 
 	Identify and Group Like Terms: Begin by scanning the polynomial expression for terms that have the same variables raised to the same powers. Group these terms together for simplification.
 	Combine Like Terms: Add or subtract the coefficients (numerical parts) of like terms. The variable part will remain unchanged.
 	Simplify and Write in Standard Form: Once the like terms are combined, ensure that the polynomial is written in standard form. 
 
  The standard form of a polynomial starts with the term that has the highest power (degree) and proceeds in descending order of degree.
  Add the following polynomials:
 [image: \left(12{x}^{2}+9x - 21\right)+\left(4{x}^{3}+8{x}^{2}-5x+20\right)]
 Show Solution 
 [image: \begin{array}{cc}4{x}^{3}+\left(12{x}^{2}+8{x}^{2}\right)+\left(9x - 5x\right)+\left(-21+20\right) \hfill & \text{Combine like terms}.\hfill \\ 4{x}^{3}+20{x}^{2}+4x - 1\hfill & \text{Simplify}.\hfill \end{array}]
 We can check our answers to these types of problems using a graphing calculator.
 To check, graph the original problem as given along with the simplified answer. The two graphs should be the same.
 Be sure to use the same window to compare the graphs. Using different windows can make the expressions seem equivalent when they are not.
   [ohm_question hide_question_number=1]288283[/ohm_question]
  Be careful When subtracting polynomials
 When subtracting a polynomial from another, be careful to subtract each term in the second from the first. That is, use the distributive property to distribute the minus sign through the second polynomial.
 [image: \begin{array}{cc}\left(3x^2-2x+9\right)-\left(x^2-4x+5\right)\text{}\hfill &\text{Distribute the negative in front of the parenthesis} \hfill \\<br> 3x^2-2x+9 -x^2 -\left(-4x\right) - 5\hfill & \text{Be careful when subtracting a negative}.\hfill \\ 3x^2 - x^2 -2x+4x+9-5\hfill & \text{Rearrange terms in descending order of degree} \hfill \\ 2x^2 +2x +4 \hfill & \text{Combine like terms}. \hfill \end{array}]
 Subtract the following polynomials:
 [image: \left(7{x}^{4}-{x}^{2}+6x+1\right)-\left(5{x}^{3}-2{x}^{2}+3x+2\right)]
 Show Solution 
 [image: \begin{array}{cc}7{x}^{4}-5{x}^{3}+\left(-{x}^{2}+2{x}^{2}\right)+\left(6x - 3x\right)+\left(1 - 2\right)\text{ }\hfill & \text{Combine like terms}.\hfill \\ 7{x}^{4}-5{x}^{3}+{x}^{2}+3x - 1\hfill & \text{Simplify}.\hfill \end{array}]
 Note that finding the difference between two polynomials is the same as adding the opposite of the second polynomial to the first.
   [ohm_question hide_question_number=1]288284[/ohm_question]
  Watch this video to see more examples of adding and subtracting polynomials.
 
  One or more interactive elements has been excluded from this version of the text. You can view them online here: https://printed.lumenlearning.com/calc1/?p=96#oembed-1 
 
  Multiplying Polynomials
 While adding and subtracting polynomials is straightforward, multiplication is a bit more intricate. It hinges on the distributive property, which necessitates multiplying every term of the first polynomial by each term of the second. For the special case of binomials, we have a helpful shortcut—the FOIL method, which stands for First, Outer, Inner, Last. This and other special multiplication patterns, like squaring a binomial, are tools that can make the process more efficient and are valuable to recognize.
 Multiplying Polynomials Using the Distributive Property
 The distributive property is the key to multiplying polynomials. It requires us to distribute, or multiply, each term of one polynomial by every term of the other polynomial.
 How To: Use the Distributive Property to Multiply Polynomials
 	Distribute: Multiply every term in the first polynomial by every term in the second polynomial.
 	Combine: Look for like terms — terms with the same variables raised to the same power — and sum them.
 	Simplify: Arrange the resulting polynomial in standard form, terms written in descending order of their degree.
 
  Find the product.
 [image: \left(2x+1\right)\left(3{x}^{2}-x+4\right)]
 Show Solution 
 [image: \begin{array}{cc}2x\left(3{x}^{2}-x+4\right)+1\left(3{x}^{2}-x+4\right) \hfill & \text{Use the distributive property}.\hfill \\ \left(6{x}^{3}-2{x}^{2}+8x\right)+\left(3{x}^{2}-x+4\right)\hfill & \text{Multiply}.\hfill \\ 6{x}^{3}+\left(-2{x}^{2}+3{x}^{2}\right)+\left(8x-x\right)+4\hfill & \text{Combine like terms}.\hfill \\ 6{x}^{3}+{x}^{2}+7x+4 \hfill & \text{Simplify}.\hfill \end{array}]
 We can use a table to keep track of our work, as shown in the table below. Write one polynomial across the top and the other down the side. For each box in the table, multiply the term for that row by the term for that column. Then add all of the terms together, combine like terms, and simplify.
 	  	[image: 3{x}^{2}] 	[image: -x] 	[image: +4] 
 	[image: 2x] 	[image: 6{x}^{3}\\] 	[image: -2{x}^{2}] 	[image: 8x] 
 	[image: +1] 	[image: 3{x}^{2}] 	[image: -x] 	[image: 4] 
  
   When multiplying a binomial and another polynomial with two or more terms, be sure to multiply each term in the first to each term in the second.
  [ohm_question hide_question_number=1]288285[/ohm_question]
  Watch this video to see more examples of how to use the distributive property to multiply polynomials.
 
  One or more interactive elements has been excluded from this version of the text. You can view them online here: https://printed.lumenlearning.com/calc1/?p=96#oembed-2 
 
  Using FOIL to Multiply Binomials
 [image: Two quantities in parentheses are being multiplied, the first being: a times x plus b and the second being: c times x plus d. This expression equals ac times x squared plus ad times x plus bc times x plus bd. The terms ax and cx are labeled: First Terms. The terms ax and d are labeled: Outer Terms. The terms b and cx are labeled: Inner Terms. The terms b and d are labeled: Last Terms.]
 FOIL is a mnemonic that stands for First, Outer, Inner, Last, and it’s a technique used to multiply two binomials efficiently. Each word in the acronym FOIL represents a pair of terms to be multiplied together:
 	First terms from each binomial
 	Outer terms from each binomial
 	Inner terms from each binomial
 	Last terms from each binomial
 
 The products from these multiplications are then added together to get the final expanded form of the polynomial.
 How To: Multiplying Binomials Using FOIL
 	Multiply the First terms of each binomial.
 	Multiply the Outer terms.
 	Multiply the Inner terms.
 	Multiply the Last terms.
 	Sum all the products.
 	Combine any like terms to simplify the expression.
 
  Use the FOIL method to find the product of the following:
 [image: \left(2x-18\right)\left(3x + 3\right)]
 Show Solution Find the product of the first terms.
 [image: ]
 Find the product of the outer terms.
 [image: ]
 Find the product of the inner terms.
 [image: ]
 Find the product of the last terms.
 [image: ]
 [image: \begin{array}{cc}6{x}^{2}+6x - 54x - 54\hfill & \text{Add the products}.\hfill \\ 6{x}^{2}+\left(6x - 54x\right)-54\hfill & \text{Combine like terms}.\hfill \\ 6{x}^{2}-48x - 54\hfill & \text{Simplify}.\hfill \end{array}]
   [ohm_question hide_question_number=1]288286[/ohm_question]
  Perfect Square Trinomials
 When squaring a binomial, the result is known as a perfect square trinomial, which has a recognizable form. Instead of multiplying the binomial by itself, we can use a formula that simplifies the process.
 Here are some examples of perfect square trinomials and the general pattern they follow:
 [image: \begin{array}{ccc}\hfill \text{ }{\left(x+5\right)}^{2}& =& \text{ }{x}^{2}+10x+25\hfill \\ \hfill {\left(x - 3\right)}^{2}& =& \text{ }{x}^{2}-6x+9\hfill \\ \hfill {\left(4x - 1\right)}^{2}& =& 4{x}^{2}-8x+1\hfill \end{array}]
 The pattern here is clear: the first and last terms of the trinomial are the squares of the first and last terms of the binomial, respectively. The middle term is twice the product of the two terms in the binomial. The sign of the middle term matches the sign of the binomial.
 How To: Squaring a Binomial Using the Perfect Square Trinomial Formula
 	Square the first term of the binomial.
 	Square the second term of the binomial.
 	Double the product of the two terms for the middle term.
 	Combine these to form your perfect square trinomial.
 
 [image: {\left(x+a\right)}^{2}=\left(x+a\right)\left(x+a\right)={x}^{2}+2ax+{a}^{2}]
 Expand [image: {\left(3x - 8\right)}^{2}]. 
 Show Solution Begin by squaring the first term and the last term. For the middle term of the trinomial, double the product of the two terms.
 [image: {\left(3x\right)}^{2}-2\left(3x\right)\left(8\right)+{\left(-8\right)}^{2}]
 [image: 9{x}^{2}-48x+64].
   [ohm_question hide_question_numbers=1]288287[/ohm_question]
  Difference of Squares
 When we multiply a binomial by another with the same terms but opposite signs, we arrive at a product known as the difference of squares. This occurs because the middle terms of the binomials, which are opposites, cancel each other out. The result is the square of the first term minus the square of the second term.
 Let’s see what happens when we multiply [image: \left(x+1\right)\left(x - 1\right)] using the FOIL method.
 [image: \begin{array}{ccc}\hfill \left(x+1\right)\left(x - 1\right)& =& {x}^{2}-x+x - 1\hfill \\ & =& {x}^{2}-1\hfill \end{array}]
 The [image: +x] and [image: −x] terms cancel out, leaving us with the difference of squares.
 Here are more examples:
 [image: \begin{array}{ccc}\hfill \left(x+5\right)\left(x - 5\right)& =& {x}^{2}-25\hfill \\ \hfill \left(x+11\right)\left(x - 11\right)& =& {x}^{2}-121\hfill \\ \hfill \left(2x+3\right)\left(2x - 3\right)& =& 4{x}^{2}-9\hfill \end{array}]
 In each case, the middle terms cancel, and we are left with the square of the first term minus the square of the second term.
  When a binomial is multiplied by a binomial with the same terms separated by the opposite sign, the result is the square of the first term minus the square of the last term.
 [image: \left(a+b\right)\left(a-b\right)={a}^{2}-{b}^{2}]
  How To: Calculating the Difference of Squares
 	Square the first term of each binomial.
 	Square the second term of each binomial.
 	Subtract the square of the second term from the square of the first term to find the difference of squares.
 
  Multiply [image: \left(9x+4\right)\left(9x - 4\right)]. 
 Show Solution Square the first term to get [image: {\left(9x\right)}^{2}=81{x}^{2}]. 
 Square the last term to get [image: {4}^{2}=16]. 
 Subtract the square of the last term from the square of the first term to find the product of [image: 81{x}^{2}-16]. 
  [ohm_question hide_question_numbers=1]288288[/ohm_question]
  	Add, subtract, multiply, and break down polynomial expressions into simpler parts
 
  Adding and Subtracting Polynomials
 The process of adding and subtracting polynomials is a fundamental skill in algebra that involves combining like terms. Like terms are terms that have exactly the same variable factors raised to the same powers, or exponents.
 When working with polynomials, it’s essential to identify like terms because these are the only terms that can be combined through addition or subtraction.
 [image: 5{x}^{2}] and [image: -2{x}^{2}] are like terms because they both contain the variable [image: x] raised to the second power. Thus, combining them is straightforward: [image: 3{x}^{2}].
 In contrast [image: 3x] and [image: 3{x}^{2}] are not like terms and therefore cannot be added. are not like terms since their exponents differ ([image: x^1] vs. [image: x^2]). They cannot be combined through addition or subtraction.
  How To: Combining Polynomials using Addition of Subtraction
 
 	Identify and Group Like Terms: Begin by scanning the polynomial expression for terms that have the same variables raised to the same powers. Group these terms together for simplification.
 	Combine Like Terms: Add or subtract the coefficients (numerical parts) of like terms. The variable part will remain unchanged.
 	Simplify and Write in Standard Form: Once the like terms are combined, ensure that the polynomial is written in standard form. 
 
  The standard form of a polynomial starts with the term that has the highest power (degree) and proceeds in descending order of degree.
  Add the following polynomials:
 [image: \left(12{x}^{2}+9x - 21\right)+\left(4{x}^{3}+8{x}^{2}-5x+20\right)]
 Show Solution 
 [image: \begin{array}{cc}4{x}^{3}+\left(12{x}^{2}+8{x}^{2}\right)+\left(9x - 5x\right)+\left(-21+20\right) \hfill & \text{Combine like terms}.\hfill \\ 4{x}^{3}+20{x}^{2}+4x - 1\hfill & \text{Simplify}.\hfill \end{array}]
 We can check our answers to these types of problems using a graphing calculator.
 To check, graph the original problem as given along with the simplified answer. The two graphs should be the same.
 Be sure to use the same window to compare the graphs. Using different windows can make the expressions seem equivalent when they are not.
   [ohm_question hide_question_number=1]288283[/ohm_question]
  Be careful When subtracting polynomials
 When subtracting a polynomial from another, be careful to subtract each term in the second from the first. That is, use the distributive property to distribute the minus sign through the second polynomial.
 [image: \begin{array}{cc}\left(3x^2-2x+9\right)-\left(x^2-4x+5\right)\text{}\hfill &\text{Distribute the negative in front of the parenthesis} \hfill \\<br> 3x^2-2x+9 -x^2 -\left(-4x\right) - 5\hfill & \text{Be careful when subtracting a negative}.\hfill \\ 3x^2 - x^2 -2x+4x+9-5\hfill & \text{Rearrange terms in descending order of degree} \hfill \\ 2x^2 +2x +4 \hfill & \text{Combine like terms}. \hfill \end{array}]
 Subtract the following polynomials:
 [image: \left(7{x}^{4}-{x}^{2}+6x+1\right)-\left(5{x}^{3}-2{x}^{2}+3x+2\right)]
 Show Solution 
 [image: \begin{array}{cc}7{x}^{4}-5{x}^{3}+\left(-{x}^{2}+2{x}^{2}\right)+\left(6x - 3x\right)+\left(1 - 2\right)\text{ }\hfill & \text{Combine like terms}.\hfill \\ 7{x}^{4}-5{x}^{3}+{x}^{2}+3x - 1\hfill & \text{Simplify}.\hfill \end{array}]
 Note that finding the difference between two polynomials is the same as adding the opposite of the second polynomial to the first.
   [ohm_question hide_question_number=1]288284[/ohm_question]
  Watch this video to see more examples of adding and subtracting polynomials.
 
  One or more interactive elements has been excluded from this version of the text. You can view them online here: https://printed.lumenlearning.com/calc1/?p=96#oembed-3 
 
  Multiplying Polynomials
 While adding and subtracting polynomials is straightforward, multiplication is a bit more intricate. It hinges on the distributive property, which necessitates multiplying every term of the first polynomial by each term of the second. For the special case of binomials, we have a helpful shortcut—the FOIL method, which stands for First, Outer, Inner, Last. This and other special multiplication patterns, like squaring a binomial, are tools that can make the process more efficient and are valuable to recognize.
 Multiplying Polynomials Using the Distributive Property
 The distributive property is the key to multiplying polynomials. It requires us to distribute, or multiply, each term of one polynomial by every term of the other polynomial.
 How To: Use the Distributive Property to Multiply Polynomials
 	Distribute: Multiply every term in the first polynomial by every term in the second polynomial.
 	Combine: Look for like terms — terms with the same variables raised to the same power — and sum them.
 	Simplify: Arrange the resulting polynomial in standard form, terms written in descending order of their degree.
 
  Find the product.
 [image: \left(2x+1\right)\left(3{x}^{2}-x+4\right)]
 Show Solution 
 [image: \begin{array}{cc}2x\left(3{x}^{2}-x+4\right)+1\left(3{x}^{2}-x+4\right) \hfill & \text{Use the distributive property}.\hfill \\ \left(6{x}^{3}-2{x}^{2}+8x\right)+\left(3{x}^{2}-x+4\right)\hfill & \text{Multiply}.\hfill \\ 6{x}^{3}+\left(-2{x}^{2}+3{x}^{2}\right)+\left(8x-x\right)+4\hfill & \text{Combine like terms}.\hfill \\ 6{x}^{3}+{x}^{2}+7x+4 \hfill & \text{Simplify}.\hfill \end{array}]
 We can use a table to keep track of our work, as shown in the table below. Write one polynomial across the top and the other down the side. For each box in the table, multiply the term for that row by the term for that column. Then add all of the terms together, combine like terms, and simplify.
 	  	[image: 3{x}^{2}] 	[image: -x] 	[image: +4] 
 	[image: 2x] 	[image: 6{x}^{3}\\] 	[image: -2{x}^{2}] 	[image: 8x] 
 	[image: +1] 	[image: 3{x}^{2}] 	[image: -x] 	[image: 4] 
  
   When multiplying a binomial and another polynomial with two or more terms, be sure to multiply each term in the first to each term in the second.
  [ohm_question hide_question_number=1]288285[/ohm_question]
  Watch this video to see more examples of how to use the distributive property to multiply polynomials.
 
  One or more interactive elements has been excluded from this version of the text. You can view them online here: https://printed.lumenlearning.com/calc1/?p=96#oembed-4 
 
  Using FOIL to Multiply Binomials
 [image: Two quantities in parentheses are being multiplied, the first being: a times x plus b and the second being: c times x plus d. This expression equals ac times x squared plus ad times x plus bc times x plus bd. The terms ax and cx are labeled: First Terms. The terms ax and d are labeled: Outer Terms. The terms b and cx are labeled: Inner Terms. The terms b and d are labeled: Last Terms.]
 FOIL is a mnemonic that stands for First, Outer, Inner, Last, and it’s a technique used to multiply two binomials efficiently. Each word in the acronym FOIL represents a pair of terms to be multiplied together:
 	First terms from each binomial
 	Outer terms from each binomial
 	Inner terms from each binomial
 	Last terms from each binomial
 
 The products from these multiplications are then added together to get the final expanded form of the polynomial.
 How To: Multiplying Binomials Using FOIL
 	Multiply the First terms of each binomial.
 	Multiply the Outer terms.
 	Multiply the Inner terms.
 	Multiply the Last terms.
 	Sum all the products.
 	Combine any like terms to simplify the expression.
 
  Use the FOIL method to find the product of the following:
 [image: \left(2x-18\right)\left(3x + 3\right)]
 Show Solution Find the product of the first terms.
 [image: ]
 Find the product of the outer terms.
 [image: ]
 Find the product of the inner terms.
 [image: ]
 Find the product of the last terms.
 [image: ]
 [image: \begin{array}{cc}6{x}^{2}+6x - 54x - 54\hfill & \text{Add the products}.\hfill \\ 6{x}^{2}+\left(6x - 54x\right)-54\hfill & \text{Combine like terms}.\hfill \\ 6{x}^{2}-48x - 54\hfill & \text{Simplify}.\hfill \end{array}]
   [ohm_question hide_question_number=1]288286[/ohm_question]
  Perfect Square Trinomials
 When squaring a binomial, the result is known as a perfect square trinomial, which has a recognizable form. Instead of multiplying the binomial by itself, we can use a formula that simplifies the process.
 Here are some examples of perfect square trinomials and the general pattern they follow:
 [image: \begin{array}{ccc}\hfill \text{ }{\left(x+5\right)}^{2}& =& \text{ }{x}^{2}+10x+25\hfill \\ \hfill {\left(x - 3\right)}^{2}& =& \text{ }{x}^{2}-6x+9\hfill \\ \hfill {\left(4x - 1\right)}^{2}& =& 4{x}^{2}-8x+1\hfill \end{array}]
 The pattern here is clear: the first and last terms of the trinomial are the squares of the first and last terms of the binomial, respectively. The middle term is twice the product of the two terms in the binomial. The sign of the middle term matches the sign of the binomial.
 How To: Squaring a Binomial Using the Perfect Square Trinomial Formula
 	Square the first term of the binomial.
 	Square the second term of the binomial.
 	Double the product of the two terms for the middle term.
 	Combine these to form your perfect square trinomial.
 
 [image: {\left(x+a\right)}^{2}=\left(x+a\right)\left(x+a\right)={x}^{2}+2ax+{a}^{2}]
 Expand [image: {\left(3x - 8\right)}^{2}]. 
 Show Solution Begin by squaring the first term and the last term. For the middle term of the trinomial, double the product of the two terms.
 [image: {\left(3x\right)}^{2}-2\left(3x\right)\left(8\right)+{\left(-8\right)}^{2}]
 [image: 9{x}^{2}-48x+64].
   [ohm_question hide_question_numbers=1]288287[/ohm_question]
  Difference of Squares
 When we multiply a binomial by another with the same terms but opposite signs, we arrive at a product known as the difference of squares. This occurs because the middle terms of the binomials, which are opposites, cancel each other out. The result is the square of the first term minus the square of the second term.
 Let’s see what happens when we multiply [image: \left(x+1\right)\left(x - 1\right)] using the FOIL method.
 [image: \begin{array}{ccc}\hfill \left(x+1\right)\left(x - 1\right)& =& {x}^{2}-x+x - 1\hfill \\ & =& {x}^{2}-1\hfill \end{array}]
 The [image: +x] and [image: −x] terms cancel out, leaving us with the difference of squares.
 Here are more examples:
 [image: \begin{array}{ccc}\hfill \left(x+5\right)\left(x - 5\right)& =& {x}^{2}-25\hfill \\ \hfill \left(x+11\right)\left(x - 11\right)& =& {x}^{2}-121\hfill \\ \hfill \left(2x+3\right)\left(2x - 3\right)& =& 4{x}^{2}-9\hfill \end{array}]
 In each case, the middle terms cancel, and we are left with the square of the first term minus the square of the second term.
  When a binomial is multiplied by a binomial with the same terms separated by the opposite sign, the result is the square of the first term minus the square of the last term.
 [image: \left(a+b\right)\left(a-b\right)={a}^{2}-{b}^{2}]
  How To: Calculating the Difference of Squares
 	Square the first term of each binomial.
 	Square the second term of each binomial.
 	Subtract the square of the second term from the square of the first term to find the difference of squares.
 
  Multiply [image: \left(9x+4\right)\left(9x - 4\right)]. 
 Show Solution Square the first term to get [image: {\left(9x\right)}^{2}=81{x}^{2}]. 
 Square the last term to get [image: {4}^{2}=16]. 
 Subtract the square of the last term from the square of the first term to find the product of [image: 81{x}^{2}-16]. 
  [ohm_question hide_question_numbers=1]288288[/ohm_question]
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				 	Break down different types of polynomial expressions into simpler parts using several factoring methods
 
  Factor Polynomials
 Factoring is central to simplifying expressions, solving equations, and understanding polynomial behavior. Factoring involves breaking down expressions into simpler, constituent parts. A key step in this process is identifying the greatest common factor (GCF), which simplifies polynomials by dividing out commonalities and reducing complexity.
 Greatest Common Factor
 The greatest common factor (GCF) of two numbers is the largest number that divides evenly into both numbers. 
 [image: 4] is the GCF of [image: 16] and [image: 20] because it is the largest number that divides evenly into both [image: 16] and [image: 20].
  The GCF of polynomials works the same way. The greatest common factor (GCF) of a polynomial is the largest polynomial that divides evenly into each term of the polynomial.
 [image: 4x] is the GCF of [image: 16x] and [image: 20{x}^{2}] because it is the largest polynomial that divides evenly into both [image: 16x] and [image: 20{x}^{2}].
  When factoring a polynomial expression, our first step is to check to see if each term contains a common factor. If so, we factor out the greatest amount we can from each term. 
 To make it less challenging to find this GCF of the polynomial terms, first look for the GCF of the coefficients, and then look for the GCF of the variables.
  To factor out a GCF from a polynomial, first identify the greatest common factor of the terms. You can then use the distributive property “backwards” to rewrite the polynomial in a factored form.
 The distributive property allows us to multiply a number by a sum or difference inside parentheses and add or subtract the results. Conversely, when we see a common factor shared by all terms, we can factor it out, effectively reversing the distributive process.
 	Using the distributive property: [image: a\left(b+c\right)=ab+ac].
 	Factoring out a common factor: [image: ab+ac=a\left(b+c\right)].
 
 This principle shows us that multiplication distributed across a sum can be “undone” through factoring, revealing the GCF and the remaining terms of the polynomial.
  How To: Given a Polynomial Expression, Factor Out the Greatest Common Factor
 	Identify the GCF of the coefficients.
 	Identify the GCF of the variables.
 	Combine to find the GCF of the expression.
 	Determine what the GCF needs to be multiplied by to obtain each term in the expression.
 	Write the factored expression as the product of the GCF and the sum of the terms we need to multiply by.
 
  Factor [image: 6{x}^{3}{y}^{3}+45{x}^{2}{y}^{2}+21xy].
 Show Solution 
 First find the GCF of the expression. 
 The GCF of [image: 6,45], and [image: 21] is [image: 3]. 
 The GCF of [image: {x}^{3},{x}^{2}], and [image: x] is [image: x]. (Note that the GCF of a set of expressions of the form [image: {x}^{n}] will always be the lowest exponent.) 
 The GCF of [image: {y}^{3},{y}^{2}], and [image: y] is [image: y]. 
 Combine these to find the GCF of the polynomial, [image: 3xy].
 Next, determine what the GCF needs to be multiplied by to obtain each term of the polynomial. 
 We find that:
 [image: \begin{array}{c} 3xy(2x^2y^2) = 6x^3y^3, \\ 3xy(15xy) = 45x^2y^2, \\ 3xy(7) = 21xy \end{array}]
 Finally, write the factored expression as the product of the GCF and the sum of the terms we needed to multiply by.
 [image: \left(3xy\right)\left(2{x}^{2}{y}^{2}+15xy+7\right)]
 After factoring, we can check our work by multiplying. Use the distributive property to confirm that
 [image: \left(3xy\right)\left(2{x}^{2}{y}^{2}+15xy+7\right)=6{x}^{3}{y}^{3}+45{x}^{2}{y}^{2}+21xy]
   Factoring Quadratic Trinomials with a Leading Coefficient of [image: 1]
 When factoring polynomials, starting with the greatest common factor (GCF) is standard. However, the GCF is not always the key to simplification, particularly for polynomials without a common factor. Let’s look at some examples.
 The quadratic trinomial [image: {x}^{2}+5x+6] has a GCF of [image: 1], but it can be written as the product of the factors [image: \left(x+2\right)] and [image: \left(x+3\right)].
 The trinomial [image: {x}^{2}+10x+16] can be factored using the numbers [image: 2] and [image: 8], because [image: 2 \times 8 =16] and [image: 2 + 8 = 10]. The trinomial can be rewritten as the product of [image: \left(x+2\right)] and [image: \left(x+8\right)].
  To factor trinomials like [image: {x}^{2}+bx+c], find two numbers that multiply to [image: c] and add up to [image: b].
 It’s a common misconception that all trinomials can be broken down into binomial factors, but this isn’t always the case. While many polynomials can be factored in this way, revealing a product of simpler binomials, there are instances where a trinomial is prime and cannot be factored further using real numbers
  How To: Factoring a Trinomial of the Form [image: {x}^{2}+bx+c]
 	Identify all the numbers that multiple together to get [image: c].
 	Of these numbers, find the pair of numbers where the sum equals [image: b].
 	Write the trinomial as the product of two binomials, [image: \left(x+p\right)\left(x+q\right)].
 
  Factor [image: {x}^{2}+2x - 15]. 
 Show Solution We have a trinomial with leading coefficient [image: 1,b=2], and [image: c=-15]. 
 We need to find two numbers with a product of [image: -15] and a sum of [image: 2]. 
 In the table, we list factors until we find a pair with the desired sum.
 	Factors of [image: -15] 	Sum of Factors 
  	[image: 1,-15] 	[image: -14] 
 	[image: -1,15] 	[image: 14] 
 	[image: 3,-5] 	[image: -2] 
 	[image: -3,5] 	[image: 2] 
  
 Now that we have identified [image: p] and [image: q] as [image: -3] and [image: 5], write the factored form as [image: \left(x - 3\right)\left(x+5\right)].
 We can check our work by multiplying. 
 Use FOIL to confirm that [image: \left(x - 3\right)\left(x+5\right)={x}^{2}+2x - 15]. 
  [ohm_question hide_question_numbers=1]288370[/ohm_question]
  Factoring by Grouping
 When we have trinomials with leading coefficients other than 1, they can often be factored by grouping. This method involves breaking the middle term into two terms that can be factored separately, and then extracting the greatest common factor (GCF). 
 The trinomial [image: 2{x}^{2}+5x+3] can be approached by writing it as [image: (2x^2+2x)+(3x+3)] and then factoring each group separately. This gives us [image: 2x(x+1)+3(x+1)]. We then factor out the common binomial [image: \left(x+1\right)] to get the final factored form [image: (2x+3)(x+1)]
  How To: Given a Trinomial in the Form [image: a{x}^{2}+bx+c], Factor by Grouping
 	Multiply [image: a] and [image: c] to find the key number.
 	Find two numbers that multiply to the key number and add to [image: b].
 	Split the middle term, [image: bx], using these two numbers and rewrite the trinomial.
 	Group the terms into pairs and factor out the common factor from each group.
 	Extract the common binomial factor from the groups.
 	Write the original expression as the product of two binomials.
 
  Factor [image: 5{x}^{2}+7x - 6] by grouping.
 Show Solution 
 We have a trinomial with [image: a=5,b=7], and [image: c=-6]. First, determine [image: ac=-30]. We need to find two numbers with a product of [image: -30] and a sum of [image: 7]. In the table, we list factors until we find a pair with the desired sum.
 	Factors of [image: -30] 	Sum of Factors 
  	[image: 1,-30] 	[image: -29] 
 	[image: -1,30] 	[image: 29] 
 	[image: 2,-15] 	[image: -13] 
 	[image: -2,15] 	[image: 13] 
 	[image: 3,-10] 	[image: -7] 
 	[image: -3,10] 	[image: 7] 
  
 So [image: p=-3] and [image: q=10].
 [image: \begin{array}{cc}5{x}^{2}-3x+10x - 6 \hfill & \text{Rewrite the original expression as }a{x}^{2}+px+qx+c.\hfill \\ x\left(5x - 3\right)+2\left(5x - 3\right)\hfill & \text{Factor out the GCF of each part}.\hfill \\ \left(5x - 3\right)\left(x+2\right)\hfill & \text{Factor out the GCF}\text{ }\text{ of the expression}.\hfill \end{array}]
 We can check our work by multiplying. Use FOIL to confirm that [image: \left(5x - 3\right)\left(x+2\right)=5{x}^{2}+7x - 6].
 
 
  [ohm_question hide_question_numbers=1]288372[/ohm_question]
  Factoring a Perfect Square Trinomial
 A perfect square trinomial is one that can be expressed as a binomial squared. It occurs when you square a binomial, resulting in a trinomial where the first and last terms are perfect squares and the middle term is twice the product of the terms being squared.
 [image: \begin{array}{ccc}\hfill {a}^{2}+2ab+{b}^{2}& =& {\left(a+b\right)}^{2} \text{         When adding.} \hfill \\ & \text{and}& \\ \hfill {a}^{2}-2ab+{b}^{2}& =& {\left(a-b\right)}^{2} \text{        When subtracting.}\hfill \end{array}]
 These formulas allow us to rewrite any perfect square trinomial in its factored form.
 The trinomial [image: 49{x}^{2}-14x+1] factors into a binomial squared.
 The first term [image: 49x^2] is the square of [image: 7x], and the last term [image: 1] is the square of [image: 1]. The middle term, [image: −14x], is equal to twice the product of [image: 7x] and [image: −1].
 Therefore, the trinomial is a perfect square and its factored form is [image: {\left(7x - 1\right)}^{2}].
  How to: Factor a Perfect Square Trinomial:
 	Check that both the first and last terms are perfect squares.
 	Verify that the middle term is double the product of the square roots of the first and last terms.
 	Express the trinomial as a squared binomial, [image: {\left(a+b\right)}^{2}] or [image: {\left(a-b\right)}^{2}], based on the sign of the middle term.
 
  Factor [image: 25{x}^{2}+20x+4].
 Show Solution 
 Notice that [image: 25{x}^{2}] and [image: 4] are perfect squares because [image: 25{x}^{2}={\left(5x\right)}^{2}] and [image: 4={2}^{2}]. Then check to see if the middle term is twice the product of [image: 5x] and [image: 2]. The middle term is, indeed, twice the product: [image: 2\left(5x\right)\left(2\right)=20x]. Therefore, the trinomial is a perfect square trinomial and can be written as [image: {\left(5x+2\right)}^{2}].
   [ohm_question hide_question_numbers=1]288373[/ohm_question]
  Factoring a Difference of Squares
 A difference of squares occurs when you subtract one perfect square from another. It’s a special pattern in algebra where two square terms are separated by a minus sign, and it can be factored into two binomials with opposite signs.
 [image: {a}^{2}-{b}^{2}=\left(a+b\right)\left(a-b\right)]
 This equation represents the factored form of a difference of squares.
 Take the expression [image: 81y^2-100], for example.
 Both [image: 81y^2] and [image: 100] are perfect squares, with [image: 81y^2] being [image: (9y)^2] and [image: 100] being [image: 10^2].
 This expression can be factored into binomials as follows:
 The factored form of [image: 81{y}^{2}-100] is [image: \left(9y+10\right)\left(9y - 10\right)].
 How To: Factor a Difference of Squares
 	Identify the Squares: Start by ensuring both terms are perfect squares. In other words, each term can be written as some expression squared, such as [image: a^2] and [image: b^2].
 	Determine the Roots: Find the square root of each term. The square root of [image: a^2] is [image: a], and the square root of [image: b^2] is [image: b].
 	Set Up Binomials: Create two binomial expressions. One binomial will have a plus sign, and the other will have a minus sign between the terms.
 	Write the Factored Form: Combine the binomials to form the factored expression: [image: \left(a+b\right)\left(a-b\right)]
 
  Factor [image: 9{x}^{2}-25]. 
 Show Solution Notice that [image: 9{x}^{2}] and [image: 25] are perfect squares because [image: 9{x}^{2}={\left(3x\right)}^{2}] and [image: 25={5}^{2}]. The polynomial represents a difference of squares and can be rewritten as [image: \left(3x+5\right)\left(3x - 5\right)]. 
  [ohm_question hide_question_numbers=1]288374[/ohm_question]
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				 	Calculate the slope of a tangent line to a curve and find its equation
 	Find the derivative of a function at a given point
 	Explain how velocity measures speed over time, and compare average velocity over a period with the exact speed at a specific moment
 
  Now that we understand limits and can compute them, we have established the foundation for studying calculus, the branch of mathematics involving derivatives and integrals. Calculus was independently developed by the Englishman Isaac Newton (1643-1727) and the German Gottfried Leibniz (1646-1716).
 When we credit Newton and Leibniz with developing calculus, we refer to their understanding of the relationship between the derivative and the integral. Both benefitted from the work of predecessors like Barrow, Fermat, and Cavalieri. Initially, Newton and Leibniz had an amicable relationship, but a controversy later erupted over who developed calculus first. Although it appears Newton arrived at the ideas first, we are indebted to Leibniz for the notation that we commonly use today.
 Tangent Lines
 Let’s start by revisiting the notion of secant lines and tangent lines. The slope of a secant line to a function at a point [image: (a,f(a))] helps estimate the rate of change. We can find the slope of the secant by choosing a value of [image: x] near [image: a] and drawing a line through the points [image: (a,f(a))] and [image: (x,f(x))]. The slope of this line is given by the difference quotient:
 [image: m_{\sec}=\dfrac{f(x)-f(a)}{x-a}]
 We can also calculate the slope of a secant line to a function at a value [image: a] by using this equation and replacing [image: x] with [image: a+h], where [image: h] is a value close to [image: 0]. This gives us the slope of the secant line through the points [image: (a,f(a))] and [image: (a+h,f(a+h))]:
 [image: m_{\sec}=\dfrac{f(a+h)-f(a)}{a+h-a}=\dfrac{f(a+h)-f(a)}{h}]
 difference quotient
 Let [image: f] be a function defined on an interval [image: I] containing [image: a]. If [image: x\ne a] is in [image: I], then
 [image: Q=\dfrac{f(x)-f(a)}{x-a}]
 is a difference quotient.
  
 Also, if [image: h\ne 0] is chosen so that [image: a+h] is in [image: I], then
 [image: Q=\dfrac{f(a+h)-f(a)}{h}]
 is a difference quotient with increment [image: h].
  These two expressions for calculating the slope of a secant line are illustrated in Figure 2. Depending on the setting, we can choose either method based on ease of calculation.
 [image: This figure consists of two graphs labeled a and b. Figure a shows the Cartesian coordinate plane with 0, a, and x marked on the x-axis. There is a curve labeled y = f(x) with points marked (a, f(a)) and (x, f(x)). There is also a straight line that crosses these two points (a, f(a)) and (x, f(x)). At the bottom of the graph, the equation msec = (f(x) - f(a))/(x - a) is given. Figure b shows a similar graph, but this time a + h is marked on the x-axis instead of x. Consequently, the curve labeled y = f(x) passes through (a, f(a)) and (a + h, f(a + h)) as does the straight line. At the bottom of the graph, the equation msec = (f(a + h) - f(a))/h is given.]Figure 2. We can calculate the slope of a secant line in either of two ways. In Figure 3(a), as the values of [image: x] approach [image: a], the slopes of the secant lines provide better estimates of the rate of change of the function at [image: a]. The secant lines themselves approach the tangent line to the function at [image: a], which represents the limit of the secant lines. Similarly, Figure 3(b) shows that as the values of [image: h] get closer to [image: 0], the secant lines also approach the tangent line. The slope of the tangent line at [image: a] is the rate of change of the function at [image: a], as shown in Figure 3(c).
 [image: This figure consists of three graphs labeled a, b, and c. Figure a shows the Cartesian coordinate plane with 0, a, x2, and x1 marked in order on the x-axis. There is a curve labeled y = f(x) with points marked (a, f(a)), (x2, f(x2)), and (x1, f(x1)). There are three straight lines: the first crosses (a, f(a)) and (x1, f(x1)); the second crosses (a, f(a)) and (x2, f(x2)); and the third only touches (a, f(a)), making it the tangent. At the bottom of the graph, the equation mtan = limx → a (f(x) - f(a))/(x - a) is given. Figure b shows a similar graph, but this time a + h2 and a + h1 are marked on the x-axis instead of x2 and x1. Consequently, the curve labeled y = f(x) passes through (a, f(a)), (a + h2, f(a + h2)), and (a + h1, f(a + h1)) and the straight lines similarly cross the graph as in Figure a. At the bottom of the graph, the equation mtan = limh → 0 (f(a + h) - f(a))/h is given. Figure c shows only the curve labeled y = f(x) and its tangent at point (a, f(a)).]Figure 3. The secant lines approach the tangent line (shown in green) as the second point approaches the first. Figure 4 shows the graph of [image: f(x)=\sqrt{x}] and its tangent line at [image: (1,1)] in a series of tighter intervals about [image: x=1]. As the intervals narrow, the graph of the function and its tangent line appear to coincide, making the values on the tangent line a goodapproximation of the function near [image: x =1]. In fact, the graph of [image: f(x)] appears locally linear close to [image: x=1].
 [image: This figure consists of four graphs labeled a, b, c, and d. Figure a shows the graphs of the square root of x and the equation y = (x + 1)/2 with the x-axis going from 0 to 4 and the y-axis going from 0 to 2.5. The graphs of these two functions look very close near 1; there is a box around where these graphs look close. Figure b shows a close up of these same two functions in the area of the box from Figure a, specifically x going from 0 to 2 and y going from 0 to 1.4. Figure c is the same graph as Figure b, but this one has a box from 0 to 1.1 in the x coordinate and 0.8 and 1 on the y coordinate. There is an arrow indicating that this is blown up in Figure d. Figure d shows a very close picture of the box from Figure c, and the two functions appear to be touching for almost the entire length of the graph.]Figure 4. For values of [image: x] close to 1, the graph of [image: f(x)=\sqrt{x}] and its tangent line appear to coincide. Formally we may define the tangent line to the graph of a function as follows.
 tangent line
 Let [image: f(x)] be a function defined in an open interval containing [image: a]. The tangent line to [image: f(x)] at [image: a] is the line passing through the point [image: (a,f(a))] having slope
 [image: m_{\tan}=\underset{x\to a}{\lim}\dfrac{f(x)-f(a)}{x-a}]
 provided this limit exists.
 Equivalently, we may define the tangent line to [image: f(x)] at [image: a] to be the line passing through the point [image: (a,f(a))] having slope
 [image: m_{\tan}=\underset{h\to 0}{\lim}\dfrac{f(a+h)-f(a)}{h}]
 provided this limit exists.
  Just as we used two expressions to define the slope of a secant line, we use two forms to define the slope of a tangent line. In this text, we use both definitions depending on the context.
 Now that we have defined a tangent line to a function at a point, we can find equations of tangent lines. This requires recalling two algebraic techniques: evaluating a function with variable inputs and using point-slope form to write an equation of a line.
 	Evaluating Functions: Functions can be evaluated for inputs that are variables or expressions. The process is the same as evaluating with a constant, but the simplified answer will contain a variable.
 	Point-Slope Form: The point-slope form of a linear equation takes the form:[image: y-{y}_{1}=m\left(x-{x}_{1}\right)]where [image: m] is the slope, and [image: (x_1,y_1)] are the coordinates of a specific point through which the line passes.
 
  Find the equation of the line tangent to the graph of [image: f(x)=x^2] at [image: x=3].
 Show Solution 
 First find the slope of the tangent line. In this example, use the first definition above.
 [image: \begin{array}{lllll}m_{\tan} & =\underset{x\to 3}{\lim}\frac{f(x)-f(3)}{x-3} & & & \text{Apply the definition.} \\ & =\underset{x\to 3}{\lim}\frac{x^2-9}{x-3} & & & \text{Substitute} \, f(x)=x^2 \, \text{and} \, f(3)=9. \\ & =\underset{x\to 3}{\lim}\frac{(x-3)(x+3)}{x-3}=\underset{x\to 3}{\lim}(x+3)=6 & & & \text{Factor the numerator to evaluate the limit.} \end{array}]
  
 Next, find a point on the tangent line. Since the line is tangent to the graph of [image: f(x)] at [image: x=3], it passes through the point [image: (3,f(3))]. We have [image: f(3)=9], so the tangent line passes through the point [image: (3,9)].
 Using the point-slope equation of the line with the slope [image: m=6] and the point [image: (3,9)], we obtain the line [image: y-9=6(x-3)]. Simplifying, we have [image: y=6x-9]. The graph of [image: f(x)=x^2] and its tangent line at [image: x=3] are shown in Figure 5.
 [image: This figure consists of the graphs of f(x) = x squared and y = 6x - 9. The graphs of these functions appear to touch at x = 3.]Figure 5. The tangent line to [image: f(x)] at [image: x=3]. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=VnDnInldaMM%3Fcontrols%3D0%26start%3D418%26end%3D506%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.1 Defining the Derivative” here (opens in new window).
   Use the second definition to find the slope of the line tangent to the graph of [image: f(x)=x^2] at [image: x=3].
 Show Solution 
 The steps are very similar to the previous example.
 [image: \begin{array}{lllll}m_{\tan} & =\underset{h\to 0}{\lim}\frac{f(3+h)-f(3)}{h} & & & \text{Apply the definition.} \\ & =\underset{h\to 0}{\lim}\frac{(3+h)^2-9}{h} & & & \text{Substitute} \, f(3+h)=(3+h)^2 \, \text{and} \, f(3)=9. \\ & =\underset{h\to 0}{\lim}\frac{9+6h+h^2-9}{h} & & & \text{Expand and simplify to evaluate the limit.} \\ & =\underset{h\to 0}{\lim}\frac{h(6+h)}{h}=\underset{h\to 0}{\lim}(6+h)=6 \end{array}]
 We obtained the same value for the slope of the tangent line by using the other definition, demonstrating that the formulas can be interchanged.
   [ohm_question hide_question_numbers=1]204652[/ohm_question]
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				The Derivative of a Function at a Point
 The type of limit we compute to find the slope of the tangent line to a function at a point has many applications across various disciplines. These include velocity and acceleration in physics, marginal profit functions in business, and growth rates in biology. This limit occurs so frequently that we give it a special name: the derivative. The process of finding a derivative is called differentiation.
 derivative
 Let [image: f(x)] be a function defined in an open interval containing [image: a]. The derivative of the function [image: f(x)] at [image: a], denoted by [image: f^{\prime}(a)], is defined by
 [image: f^{\prime}(a)=\underset{x\to a}{\lim}\dfrac{f(x)-f(a)}{x-a}]
 provided this limit exists.
  
 Alternatively, we may also define the derivative of [image: f(x)] at [image: a] as
 [image: f^{\prime}(a)=\underset{h\to 0}{\lim}\dfrac{f(a+h)-f(a)}{h}]
 provided this limit exists.
  For [image: f(x)=x^2], estimate [image: f^{\prime}(3)] using the first definition of the derivative.
 Show Answer 
 Start by creating a table using values of [image: x] just below [image: 3] and just above [image: 3].
 	[image: x] 	[image: \frac{x^2-9}{x-3}] 
  	[image: 2.9] 	[image: 5.9] 
 	[image: 2.99] 	[image: 5.99] 
 	[image: 2.999] 	[image: 5.999] 
 	[image: 3.001] 	[image: 6.001] 
 	[image: 3.01] 	[image: 6.01] 
 	[image: 3.1] 	[image: 6.1] 
  
  
 Look at the values in the table. As [image: x] gets closer to [image: 3], the values of [image: \frac{x^2-9}{x-3}] get closer to [image: 6].
 Based on the table, we can estimate that [image: f^{\prime}(3) \approx 6].
   For [image: f(x)=3x^2-4x+1], find [image: f^{\prime}(2)] by using the second definition.
 Show Solution 
 Using the second definition, we can substitute two values of the function into the equation.
 [image: \begin{array}{lllll}f^{\prime}(2) & =\underset{h\to 0}{\lim}\frac{f(2+h)-f(2)}{h} & & & \text{Apply the definition.} \\ & =\underset{h\to 0}{\lim}\frac{(3(2+h)^2-4(2+h)+1)-5}{h} & & & \begin{array}{l}\text{Substitute} \, f(2)=5 \, \text{and} \\ f(2+h)=3(2+h)^2-4(2+h)+1. \end{array} \\ & =\underset{h\to 0}{\lim}\frac{3h^2+8h}{h} & & & \text{Simplify the numerator.} \\ & =\underset{h\to 0}{\lim}\frac{h(3h+8)}{h} & & & \text{Factor the numerator.} \\ & =\underset{h\to 0}{\lim}(3h+8) & & & \text{Cancel the common factor.} \\ & =8 & & & \text{Evaluate the limit.} \end{array}]
 The results are the same whether we use the first or second definition.
   [ohm_question hide_question_numbers=1]162456[/ohm_question]
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				Velocities and Rates of Change
 Now that we can evaluate a derivative, we can apply it to velocity problems. Recall that if [image: s(t)] is the position of an object moving along a coordinate axis, the average velocity of the object over a time interval [image: [a,t]] if [image: t>a] or [image: [t,a]] if [image: t<a] is:
 [image: v_{\text{avg}}=\dfrac{s(t)-s(a)}{t-a}]
 As the values of [image: t] approach [image: a], the values of [image: v_{\text{avg}}] approach the value we call the instantaneous velocity at [image: a]. That is, instantaneous velocity at [image: a], denoted [image: v(a)], is given by
 [image: v(a)=s^{\prime}(a)=\underset{t\to a}{\lim}\dfrac{s(t)-s(a)}{t-a}]
 To better understand the relationship between average velocity and instantaneous velocity, see Figure 7. In this figure, the slope of the tangent line (shown in red) is the instantaneous velocity of the object at time [image: t=a]. The slope of the secant line (shown in green) is the average velocity of the object over the time interval [image: [a,t]].
 [image: This figure consists of the Cartesian coordinate plane with 0, a, and t1 marked on the t-axis. The function y = s(t) is graphed in the first quadrant along with two lines marked tangent and secant. The tangent line touches y = s(t) at only one point, (a, s(a)). The secant line touches y = s(t) at two points: (a, s(a)) and (t1, s(t1)).]Figure 7. The slope of the secant line is the average velocity over the interval [image: [a,t]]. The slope of the tangent line is the instantaneous velocity. We can use the definitions to calculate the instantaneous velocity, or we can estimate the velocity of a moving object by using a table of values. We can then confirm the estimate by using the difference quotient.
 A lead weight on a spring is oscillating up and down. Its position at time [image: t] with respect to a fixed horizontal line is given by [image: s(t)= \sin t]. Use a table of values to estimate [image: v(0)]. Check the estimate by using the definition of a derivative.
 [image: A picture of a spring hanging down with a weight at the end. There is a horizontal dashed line marked 0 a little bit above the weight.]Figure 8. A lead weight suspended from a spring in vertical oscillatory motion. Show Solution 
 We can estimate the instantaneous velocity at [image: t=0] by computing a table of average velocities using values of [image: t] approaching [image: 0], as shown in the table below.
 Average velocities using values of [image: t] approaching [image: 0] 	[image: t] 	[image: \frac{\sin t - \sin 0}{t-0}=\frac{\sin t}{t}] 
  	[image: -0.1] 	[image: 0.998334166] 
 	[image: -0.01] 	[image: 0.9999833333] 
 	[image: -0.001] 	[image: 0.999999833] 
 	[image: 0.001] 	[image: 0.999999833] 
 	[image: 0.01] 	[image: 0.9999833333] 
 	[image: 0.1] 	[image: 0.998334166] 
  
 From the table we see that the average velocity over the time interval [image: [-0.1,0]] is [image: 0.998334166], the average velocity over the time interval [image: [-0.01,0]] is [image: 0.9999833333], and so forth. Using this table of values, it appears that a good estimate is [image: v(0)=1].
 By using the definition of a derivative, we can see that
 [image: v(0)=s^{\prime}(0)=\underset{t\to 0}{\lim}\dfrac{\sin t- \sin 0}{t-0}=\underset{t\to 0}{\lim}\dfrac{\sin t}{t}=1].
 Thus, in fact, [image: v(0)=1].
   As we have seen throughout this section, the slope of a tangent line to a function and instantaneous velocity are related concepts. Each is calculated by computing a derivative and each measures the instantaneous rate of change of a function, or the rate of change of a function at any point along the function.
 instantaneous rate of change
 The instantaneous rate of change of a function [image: f(x)] at a value [image: a] is its derivative [image: f^{\prime}(a)].
  A homeowner sets the thermostat so that the temperature in the house begins to drop from [image: 70^{\circ}\text{F}] at 9 p.m., reaches a low of [image: 60^{\circ}] during the night, and rises back to [image: 70^{\circ}] by 7 a.m. the next morning.
 Suppose that the temperature in the house is given by [image: T(t)=0.4t^2-4t+70] for [image: 0\le t\le 10], where [image: t] is the number of hours past 9 p.m. Find the instantaneous rate of change of the temperature at midnight.
 Show Solution 
 Since midnight is [image: 3] hours past 9 p.m., we want to compute [image: T^{\prime }(3)]. Refer to the definition of a derivative.
 [image: \begin{array}{lllll}T^{\prime}(3) & =\underset{t\to 3}{\lim}\frac{T(t)-T(3)}{t-3} & & & \text{Apply the definition.} \\ & =\underset{t\to 3}{\lim}\frac{0.4t^2-4t+70-61.6}{t-3} & & & \begin{array}{l}\text{Substitute }T(t)=0.4t^2-4t+70 \, \text{and} \\ T(3)=61.6. \end{array} \\ & =\underset{t\to 3}{\lim}\frac{0.4t^2-4t+8.4}{t-3} & & & \text{Simplify.} \\ & =\underset{t\to 3}{\lim}\frac{0.4(t-3)(t-7)}{t-3} & & & =\underset{t\to 3}{\lim}\frac{0.4(t-3)(t-7)}{t-3} \\ & =\underset{t\to 3}{\lim}0.4(t-7) & & & \text{Cancel.} \\ & =-1.6 & & & \text{Evaluate the limit.} \end{array}]
 The instantaneous rate of change of the temperature at midnight is [image: -1.6^{\circ}\text{F}] per hour.
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				 	Calculate the slope of a tangent line to a curve and find its equation
 	Find the derivative of a function at a given point
 	Explain how velocity measures speed over time, and compare average velocity over a period with the exact speed at a specific moment
 
  Race to the Finish: Using Derivatives to Analyze Drag Racing Speeds
 Two cars are drag racing down a long straight highway. A few bystanders have decided to analyze some pieces of the race, including how fast the cars are traveling and who might win. 
 [image: Two cars drag racing]
  
 The first car’s position, in feet, after [image: t] seconds can be described by the function [image: p(t)=25t^{2}]. The second car’s position, in feet, after [image: t] seconds can be described by the graph.
 [image: A graph showing a linear function with a positive slope. The x-axis represents time in seconds, and the y-axis represents the position in feet. The line starts at the origin (0, 0) and increases steadily, indicating constant speed.]Graph of the second car’s position, in feet. [ohm_question hide_question_numbers=1]287750[/ohm_question]
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				 	Find the derivative of a function
 	Draw the derivative’s graph using the original function’s graph
 	Explain what it means for a function to be differentiable and how this is connected to being continuous
 	Calculate derivatives beyond the first order
 
  Derivative Functions
 As we have seen, the derivative of a function at a given point gives us the rate of change or slope of the tangent line to the function at that point. If we differentiate a position function at a given time, we obtain the velocity at that time. It seems reasonable to conclude that knowing the derivative of the function at every point would produce valuable information about the behavior of the function. However, the process of finding the derivative at even a handful of values using the techniques of the preceding section would quickly become quite tedious.
 The derivative function gives the derivative of a function at each point in the domain of the original function for which the derivative is defined. We can formally define a derivative function as follows.
 derivative function
 Let [image: f] be a function. The derivative function, denoted by [image: f^{\prime}], is the function whose domain consists of those values of [image: x] such that the following limit exists:
 [image: f^{\prime}(x)=\underset{h\to 0}{\lim}\dfrac{f(x+h)-f(x)}{h}]
  A function [image: f(x)] is said to be differentiable at [image: a] if [image: f^{\prime}(a)] exists. More generally, a function is said to be differentiable on [image: S] if it is differentiable at every point in an open set [image: S], and a differentiable function is one in which [image: f^{\prime}(x)] exists on its domain.
  In the next few examples we use the definition to find the derivative of a function. There are a few algebraic techniques that are commonly used when using this definition. It may be useful to recall these techniques.
 	Greatest Common Factor (GCF): The GCF of a polynomial is the largest polynomial that divides evenly into each term of the polynomial. When using the difference quotient, you will often need to factor out a GCF of [image: h]
 	Conjugate: For a numerator or a denominator containing the sum or difference of a rational and an irrational term, multiply the numerator and denominator by the conjugate, which is found by changing the sign of the radical portion of the denominator. If the denominator is [image: a+b\sqrt{c}], then the conjugate is [image: a-b\sqrt{c}].
 
  Find the derivative of [image: f(x)=\sqrt{x}].
 Show Solution 
 Start directly with the definition of the derivative function. Use the definition.
 [image: \begin{array}{lllll}f^{\prime}(x)& =\underset{h\to 0}{\lim}\frac{\sqrt{x+h}-\sqrt{x}}{h} & & & \begin{array}{l}\text{Substitute} \, f(x+h)=\sqrt{x+h} \, \text{and} \, f(x)=\sqrt{x} \\ \text{into} \, f^{\prime}(x)=\underset{h\to 0}{\lim}\frac{f(x+h)-f(x)}{h}. \end{array} \\ & =\underset{h\to 0}{\lim}\frac{\sqrt{x+h}-\sqrt{x}}{h}\cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} & & & \begin{array}{l}\text{Multiply numerator and denominator by} \\ \sqrt{x+h}+\sqrt{x} \, \text{without distributing in the} \\ \text{denominator.} \end{array} \\ & =\underset{h\to 0}{\lim}\frac{h}{h(\sqrt{x+h}+\sqrt{x})} & & & \text{Multiply the numerators and simplify.} \\ & =\underset{h\to 0}{\lim}\frac{1}{(\sqrt{x+h}+\sqrt{x})} & & & \text{Cancel the} \, h. \\ & =\frac{1}{2\sqrt{x}} & & & \text{Evaluate the limit.} \end{array}]
 
  Find the derivative of the function [image: f(x)=x^2-2x].
 Show Solution 
 Follow the same procedure here, but without having to multiply by the conjugate.
 [image: \begin{array}{lllll}f^{\prime}(x) & =\underset{h\to 0}{\lim}\frac{((x+h)^2-2(x+h))-(x^2-2x)}{h} & & & \begin{array}{l}\text{Substitute} \, f(x+h)=(x+h)^2-2(x+h) \, \text{and} \\ f(x)=x^2-2x \, \text{into} \\ f^{\prime}(x)=\underset{h\to 0}{\lim}\frac{f(x+h)-f(x)}{h}. \end{array} \\ & =\underset{h\to 0}{\lim}\frac{x^2+2xh+h^2-2x-2h-x^2+2x}{h} & & & \text{Expand} \, (x+h)^2-2(x+h). \\ & =\underset{h\to 0}{\lim}\frac{2xh-2h+h^2}{h} & & & \text{Simplify.} \\ & =\underset{h\to 0}{\lim}\frac{h(2x-2+h)}{h} & & & \text{Factor out} \, h \, \text{from the numerator.} \\ & =\underset{h\to 0}{\lim}(2x-2+h) & & & \text{Cancel the common factor of} \, h. \\ & =2x-2 & & & \text{Evaluate the limit.} \end{array}]
 
  [ohm_question hide_question_numbers=1]288379[/ohm_question]
  We use a variety of different notations to express the derivative of a function. In the previous example, we showed that if [image: f(x)=x^2-2x], then [image: f^{\prime}(x)=2x-2].
 If we had expressed this function in the form [image: y=x^2-2x], we could have expressed the derivative as [image: y^{\prime}=2x-2] or [image: \frac{dy}{dx}=2x-2]. We could have conveyed the same information by writing [image: \frac{d}{dx}(x^2-2x)=2x-2]. 
 Thus, for the function [image: y=f(x)], each of the following notations represents the derivative of [image: f(x)]:
 [image: f^{\prime}(x), \,\, \dfrac{dy}{dx}, \,\, y^{\prime}, \,\, \dfrac{d}{dx}(f(x))]
  In place of [image: f^{\prime}(a)] we may also use [image: \frac{dy}{dx}\Big|_{x=a}]. Using the [image: \frac{dy}{dx}] notation (called Leibniz notation) is quite common in engineering and physics. 
 To understand this notation better, recall that the derivative of a function at a point is the limit of the slopes of secant lines as the secant lines approach the tangent line. 
 The slopes of these secant lines are often expressed in the form [image: \frac{\Delta y}{\Delta x}] where [image: \Delta y] is the difference in the [image: y] values corresponding to the difference in the [image: x] values, which are expressed as [image: \Delta x] (Figure 1). 
 Thus the derivative, which can be thought of as the instantaneous rate of change of [image: y] with respect to [image: x], is expressed as
 [image: \dfrac{dy}{dx}=\underset{\Delta x\to 0}{\lim}\dfrac{\Delta y}{\Delta x}]
 [image: The function y = f(x) is graphed and it shows up as a curve in the first quadrant. The x-axis is marked with 0, a, and a + Δx. The y-axis is marked with 0, f(a), and f(a) + Δy. There is a straight line crossing y = f(x) at (a, f(a)) and (a + Δx, f(a) + Δy). From the point (a, f(a)), a horizontal line is drawn; from the point (a + Δx, f(a) + Δy), a vertical line is drawn. The distance from (a, f(a)) to (a + Δx, f(a)) is denoted Δx; the distance from (a + Δx, f(a) + Δy) to (a + Δx, f(a)) is denoted Δy.]Figure 1. The derivative is expressed as [image: \frac{dy}{dx}=\underset{\Delta x\to 0}{\lim}\frac{\Delta y}{\Delta x}].  
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				Graphing a Derivative
 Given the equation of a function or its derivative, we can graph it to understand the relationship between the two. The derivative [image: f^{\prime}(x)] gives the rate of change of a function [image: f(x)] or the slope of the tangent line to [image: f(x)]. To understand this relationship better, it is helpful to recall the characteristics of lines with certain slopes.
 	Positive Slope: A line has a positive slope if it is increasing from left to right.
 	Negative Slope: A line has a negative slope if it is decreasing from left to right.
 	Zero Slope: A horizontal line has a slope of [image: 0].
 	Undefined Slope: A vertical line has an undefined slope.
 
  In the first example on the previous page, we found that for [image: f(x)=\sqrt{x}, \, f^{\prime}(x)=\frac{1}{2}\sqrt{x}]. If we graph these functions on the same axes, as in Figure 2, we can use the graphs to understand the relationship between these two functions.
 [image: The function f(x) = the square root of x is graphed as is its derivative f’(x) = 1/(2 times the square root of x).]Figure 2. The derivative [image: f^{\prime}(x)] is positive everywhere because the function [image: f(x)] is increasing. Looking at the graphs, notice that [image: f(x)] is increasing over its entire domain, meaning the slopes of its tangent lines at all points are positive. Consequently, [image: f^{\prime}(x)>0] for all values of [image: x] in its domain. As [image: x] increases, the slopes of the tangent lines to [image: f(x)] decrease, leading to a corresponding decrease in [image: f^{\prime}(x)]. Additionally, [image: f(0)] is undefined and that [image: \underset{x\to 0^+}{\lim}f^{\prime}(x)=+\infty], corresponding to a vertical tangent to [image: f(x)] at [image: 0].
 In the second example, we found that for [image: f(x)=x^2-2x, \, f^{\prime}(x)=2x-2]. The graphs of these functions are shown in Figure 3. 
 [image: The function f(x) = x squared – 2x is graphed as is its derivative f’(x) = 2x − 2.]Figure 3. The derivative [image: f^{\prime}(x)<0] where the function [image: f(x)] is decreasing and [image: f^{\prime}(x)>0] where [image: f(x)] is increasing. The derivative is zero where the function has a horizontal tangent. Observe that [image: f(x)] is decreasing for [image: x<1]. For these values of [image: x, \, f^{\prime}(x)<0]. For [image: x>1, \, f(x)] is increasing and [image: f^{\prime}(x)>0]. Also, [image: f(x)] has a horizontal tangent at [image: x=1] and [image: f^{\prime}(1)=0].
 Use the following graph of [image: f(x)] to sketch a graph of [image: f^{\prime}(x)].
 [image: The function f(x) is roughly sinusoidal, starting at (−4, 3), decreasing to a local minimum at (−2, 2), then increasing to a local maximum at (3, 6), and getting cut off at (7, 2).]Figure 4. Graph of [image: f(x)]. Show Solution 
 The solution is shown in the following graph. Observe that [image: f(x)] is increasing and [image: f^{\prime}(x)>0] on [image: (–2,3)]. Also, [image: f(x)] is decreasing and [image: f^{\prime}(x)<0] on [image: (−\infty ,-2)] and on [image: (3,+\infty)]. Also note that [image: f(x)] has horizontal tangents at [image: -2] and [image: 3], and [image: f^{\prime}(-2)=0] and [image: f^{\prime}(3)=0].
 [image: Two functions are graphed here: f(x) and f’(x). The function f(x) is the same as the above graph, that is, roughly sinusoidal, starting at (−4, 3), decreasing to a local minimum at (−2, 2), then increasing to a local maximum at (3, 6), and getting cut off at (7, 2). The function f’(x) is an downward-facing parabola with vertex near (0.5, 1.75), y-intercept (0, 1.5), and x-intercepts (−1.9, 0) and (3, 0).]Figure 5. Graph of [image: f^{\prime}(x)]. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=w9m4h4i47-M%3Fcontrols%3D0%26start%3D415%26end%3D535%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.2 The Derivative as a Function” here (opens in new window).
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				Derivatives and Continuity
 Now that we can graph a derivative, let’s examine the behavior of the graphs. 
 First, we consider the relationship between differentiability and continuity. We will see that if a function is differentiable at a point, it must be continuous there; however, a function that is continuous at a point need not be differentiable at that point. In fact, a function may be continuous at a point and fail to be differentiable at the point for one of several reasons.
 differentiability implies continuity
 Let [image: f(x)] be a function and [image: a] be in its domain. If [image: f(x)] is differentiable at [image: a], then [image: f] is continuous at [image: a].
  Proof
 
 If [image: f(x)] is differentiable at [image: a], then [image: f^{\prime}(a)] exists and
 [image: f^{\prime}(a)=\underset{x\to a}{\lim}\dfrac{f(x)-f(a)}{x-a}]
  
 We want to show that [image: f(x)] is continuous at [image: a] by showing that [image: \underset{x\to a}{\lim}f(x)=f(a)]. Thus,
 [image: \begin{array}{lllll} \underset{x\to a}{\lim}f(x) & =\underset{x\to a}{\lim}(f(x)-f(a)+f(a)) & & & \\ & =\underset{x\to a}{\lim}(\frac{f(x)-f(a)}{x-a}\cdot (x-a)+f(a)) & & & \text{Multiply and divide} \, f(x)-f(a) \, \text{by} \, x-a. \\ & =(\underset{x\to a}{\lim}\frac{f(x)-f(a)}{x-a}) \cdot (\underset{x\to a}{\lim}(x-a))+\underset{x\to a}{\lim}f(a) & & & \\ & =f^{\prime}(a) \cdot 0+f(a) & & & \\ & =f(a). & & & \end{array}]
  
 Therefore, since [image: f(a)] is defined and [image: \underset{x\to a}{\lim}f(x)=f(a)], we conclude that [image: f] is continuous at [image: a].
 [image: _\blacksquare]
 
 We have just proven that differentiability implies continuity, but now we consider whether continuity implies differentiability. 
 To determine an answer to this question, we examine the function [image: f(x)=|x|]. This function is continuous everywhere; however, [image: f^{\prime}(0)] is undefined. This observation leads us to believe that continuity does not imply differentiability. Let’s explore further.
 For [image: f(x)=|x|],
 [image: f^{\prime}(0)=\underset{x\to 0}{\lim}\dfrac{f(x)-f(0)}{x-0}=\underset{x\to 0}{\lim}\dfrac{|x|-|0|}{x-0}=\underset{x\to 0}{\lim}\dfrac{|x|}{x}]
 This limit does not exist because
 [image: \underset{x\to 0^-}{\lim}\dfrac{|x|}{x}=-1 \, \text{and} \, \underset{x\to 0^+}{\lim}\dfrac{|x|}{x}=1]
 [image: The function f(x) = the absolute value of x is graphed. It consists of two straight line segments: the first follows the equation y = −x and ends at the origin; the second follows the equation y = x and starts at the origin.]Figure 6. The function [image: f(x)=|x|] is continuous at 0 but is not differentiable at 0.  Let’s consider some additional situations in which a continuous function fails to be differentiable.
 Consider the function [image: f(x)=\sqrt[3]{x}]:
 [image: f^{\prime}(0)=\underset{x\to 0}{\lim}\dfrac{\sqrt[3]{x}-0}{x-0}=\underset{x\to 0}{\lim}\dfrac{1}{\sqrt[3]{x^2}}=+\infty]
 Thus [image: f^{\prime}(0)] does not exist. A quick look at the graph of [image: f(x)=\sqrt[3]{x}] clarifies the situation. The function has a vertical tangent line at [image: 0] (Figure 7).
 [image: The function f(x) = the cube root of x is graphed. It has a vertical tangent at x = 0.]Figure 7. The function [image: f(x)=\sqrt[3]{x}] has a vertical tangent at [image: x=0]. It is continuous at 0 but is not differentiable at 0.  The function [image: f(x)=\begin{cases} x \sin\left(\frac{1}{x}\right) & \text{ if } \, x \ne 0 \\ 0 & \text{ if } \, x = 0 \end{cases}] also has a derivative that exhibits interesting behavior at [image: 0].
 We see that,
 [image: f^{\prime}(0)=\underset{x\to 0}{\lim}\dfrac{x \sin\left(\frac{1}{x}\right)-0}{x-0}=\underset{x\to 0}{\lim} \sin\left(\dfrac{1}{x}\right)]
 This limit does not exist, essentially because the slopes of the secant lines continuously change direction as they approach zero (Figure 8).
 [image: The function f(x) = x sin (1/2) if x does not equal 0 and f(x) = 0 if x = 0 is graphed. It looks like a rapidly oscillating sinusoidal function with amplitude decreasing to 0 at the origin.]Figure 8. The function [image: f(x)=\begin{cases} x \sin(\frac{1}{x}) & \text{ if } \, x \ne 0 \\ 0 & \text{ if } \, x = 0 \end{cases}] is not differentiable at 0.  In summary:
 	We observe that if a function is not continuous, it cannot be differentiable, since every differentiable function must be continuous. However, if a function is continuous, it may still fail to be differentiable.
 	We saw that [image: f(x)=|x|] failed to be differentiable at [image: 0] because the limit of the slopes of the tangent lines on the left and right were not the same. Visually, this resulted in a sharp corner on the graph of the function at [image: 0]. From this we conclude that in order to be differentiable at a point, a function must be “smooth” at that point.
 	As we saw in the example of [image: f(x)=\sqrt[3]{x}], a function fails to be differentiable at a point where there is a vertical tangent line.
 	As we saw with [image: f(x)=\begin{cases} x \sin(\frac{1}{x}) & \text{ if } \, x \ne 0 \\ 0 & \text{ if } \, x = 0 \end{cases}] a function may fail to be differentiable at a point in more complicated ways as well.
 
 A toy company wants to design a track for a toy car that starts out along a parabolic curve and then converts to a straight line (Figure 9). The function that describes the track is to have the form
 [image: f(x)=\begin{cases} \frac{1}{10}x^2 + bx + c & \text{ if } \, x < -10 \\ -\frac{1}{4}x + \frac{5}{2} & \text{ if } \, x \ge -10 \end{cases}],
 where [image: x] and [image: f(x)] are in inches. 
 For the car to move smoothly along the track, the function [image: f(x)] must be both continuous and differentiable at [image: -10]. Find values of [image: b] and [image: c] that make [image: f(x)] both continuous and differentiable.
 [image: A cart is drawn on a line that curves through (−10, 5) to (10, 0) with y-intercept roughly (0, 2).]Figure 9. For the car to move smoothly along the track, the function must be both continuous and differentiable. Show Solution 
 For the function to be continuous at [image: x=-10, \, \underset{x\to 10^-}{\lim}f(x)=f(-10)]. Thus, since
 [image: \underset{x\to −10^-}{\lim}f(x)=\frac{1}{10}(-10)^2-10b+c=10-10b+c]
 and [image: f(-10)=5], we must have [image: 10-10b+c=5]. Equivalently, we have [image: c=10b-5].
 For the function to be differentiable at [image: -10],
 [image: f^{\prime}(10)=\underset{x\to −10}{\lim}\frac{f(x)-f(-10)}{x+10}]
 must exist.
 Since [image: f(x)] is defined using different rules on the right and the left, we must evaluate this limit from the right and the left and then set them equal to each other:
 [image: \begin{array}{lllll} \underset{x\to −10^-}{\lim}\frac{f(x)-f(-10)}{x+10} & =\underset{x\to −10^-}{\lim}\frac{\frac{1}{10}x^2+bx+c-5}{x+10} & & & \\ & =\underset{x\to −10^-}{\lim}\frac{\frac{1}{10}x^2+bx+(10b-5)-5}{x+10} & & & \text{Substitute} \, c=10b-5. \\ & =\underset{x\to −10^-}{\lim}\frac{x^2-100+10bx+100b}{10(x+10)} & & & \\ & =\underset{x\to −10^-}{\lim}\frac{(x+10)(x-10+10b)}{10(x+10)} & & & \text{Factor by grouping.} \\ & =b-2 & & & \end{array}]
 We also have
 [image: \begin{array}{ll} \underset{x\to −10^+}{\lim}\frac{f(x)-f(-10)}{x+10} & =\underset{x\to −10^+}{\lim}\frac{-\frac{1}{4}x+\frac{5}{2}-5}{x+10} \\ & =\underset{x\to −10^+}{\lim}\frac{−(x+10)}{4(x+10)} \\ & =-\frac{1}{4} \end{array}]
 This gives us [image: b-2=-\frac{1}{4}].
 Thus [image: b=\frac{7}{4}] and [image: c=10(\frac{7}{4})-5=\frac{25}{2}].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=w9m4h4i47-M%3Fcontrols%3D0%26start%3D904%26end%3D1275%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.2 The Derivative as a Function” here (opens in new window).
   Find values of [image: a] and [image: b] that make [image: f(x)=\begin{cases} ax+b & \text{ if } \, x < 3 \\ x^2 & \text{ if } \, x \ge 3 \end{cases}] both continuous and differentiable at [image: 3].
 Show Solution 
 [image: a=6] and [image: b=-9]
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				Higher-Order Derivatives
 The derivative of a function is itself a function, so we can find the derivative of a derivative. For example, the derivative of a position function is the rate of change of position, or velocity. The derivative of velocity is the rate of change of velocity, which is acceleration. The new function obtained by differentiating the derivative is called the second derivative. 
 Furthermore, we can continue to take derivatives to obtain the third derivative, fourth derivative, and so on. Collectively, these are referred to as higher-order derivatives. The notation for the higher-order derivatives of [image: y=f(x)] can be expressed in any of the following forms:
 [image: f''(x), \, f'''(x), \, f^{(4)}(x), \cdots ,f^{(n)}(x)]
 [image: y'', \, y''', \, y^{(4)}, \cdots ,y^{(n)}]
 [image: \dfrac{d^2y}{dx^2}, \, \dfrac{d^3y}{dx^3}, \, \dfrac{d^4y}{dx^4}, \cdots,\dfrac{d^ny}{dx^n}]
 It is interesting to note that the notation for [image: \frac{d^2y}{dx^2}] may be viewed as an attempt to express [image: \frac{d}{dx}\left(\frac{dy}{dx}\right)] more compactly. Analogously,
 [image: \frac{d}{dx}\left(\frac{d}{dx}\left(\frac{dy}{dx}\right)\right)=\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right)=\frac{d^3y}{dx^3}]
  higher-order derivatives
 Higher-order derivatives are the derivatives of a function taken multiple times. The first derivative is the rate of change of the function, the second derivative is the rate of change of the first derivative, and so on.
  
 Notation: Common notations for higher-order derivatives include:
 [image: f''(x), \, f'''(x), \, f^{(4)}(x), \cdots ,f^{(n)}(x)][image: y'', \, y''', \, y^{(4)}, \cdots ,y^{(n)}][image: \dfrac{d^2y}{dx^2}, \, \dfrac{d^3y}{dx^3}, \, \dfrac{d^4y}{dx^4}, \cdots,\dfrac{d^ny}{dx^n}]
 For [image: f(x)=2x^2-3x+1], find [image: f''(x)].
 Show Solution 
 First find [image: f^{\prime}(x)].
 [image: \begin{array}{lllll}f^{\prime}(x) & =\underset{h\to 0}{\lim}\frac{(2(x+h)^2-3(x+h)+1)-(2x^2-3x+1)}{h} & & & \begin{array}{l}\text{Substitute} \, f(x)=2x^2-3x+1 \\ \text{and} \\ f(x+h)=2(x+h)^2-3(x+h)+1 \\ \text{into} \, f^{\prime}(x)=\underset{h\to 0}{\lim}\frac{f(x+h)-f(x)}{h}. \end{array} \\ & =\underset{h\to 0}{\lim}\frac{4xh+h^2-3h}{h} & & & \text{Simplify the numerator.} \\ & =\underset{h\to 0}{\lim}(4x+h-3) & & & \begin{array}{l}\text{Factor out the} \, h \, \text{in the numerator} \\ \text{and cancel with the} \, h \, \text{in the} \\ \text{denominator.} \end{array} \\ & =4x-3 & & & \text{Take the limit.} \end{array}]
 Next, find [image: f''(x)] by taking the derivative of [image: f^{\prime}(x)=4x-3].
 [image: \begin{array}{lllll} f''(x)& =\underset{h\to 0}{\lim}\frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} & & & \begin{array}{l}\text{Use} \, f^{\prime}(x)=\underset{h\to 0}{\lim}\frac{f(x+h)-f(x)}{h} \, \text{with} \, f^{\prime}(x) \, \text{in} \\ \text{place of} \, f(x). \end{array} \\ & =\underset{h\to 0}{\lim}\frac{(4(x+h)-3)-(4x-3)}{h} & & & \begin{array}{l}\text{Substitute} \, f^{\prime}(x+h)=4(x+h)-3 \, \text{and} \\ f^{\prime}(x)=4x-3. \end{array} \\ & =\underset{h\to 0}{\lim}4 & & & \text{Simplify.} \\ & =4 & & & \text{Take the limit.} \end{array}]
   The position of a particle along a coordinate axis at time [image: t] (in seconds) is given by [image: s(t)=3t^2-4t+1] (in meters). Find the function that describes its acceleration at time [image: t].
 Show Solution 
 Since [image: v(t)=s^{\prime}(t)] and [image: a(t)=v^{\prime}(t)=s''(t)], we begin by finding the derivative of [image: s(t)]:
 [image: \begin{array}{ll}s^{\prime}(t) & =\underset{h\to 0}{\lim}\frac{s(t+h)-s(t)}{h} \\ & =\underset{h\to 0}{\lim}\frac{3(t+h)^2-4(t+h)+1-(3t^2-4t+1)}{h} \\ & =6t-4 \end{array}]
  
 Next,
 [image: \begin{array}{ll} s''(t) & =\underset{h\to 0}{\lim}\frac{s^{\prime}(t+h)-s^{\prime}(t)}{h} \\ & =\underset{h\to 0}{\lim}\frac{6(t+h)-4-(6t-4)}{h} \\ & =6 \end{array}]
  
 Thus, [image: a=6 \, \text{m/s}^2].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=w9m4h4i47-M%3Fcontrols%3D0%26start%3D1513%26end%3D1713%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.2 The Derivative as a Function” here (opens in new window).
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				 	Find the derivative of a function
 	Draw the derivative’s graph using the original function’s graph
 	Explain what it means for a function to be differentiable and how this is connected to being continuous
 	Calculate derivatives beyond the first order
 
  City Transportation Calculus: Analyzing Motion and Planning
 As a transportation engineer in a growing city, you’re tasked with analyzing various aspects of movement and planning using calculus. Your insights will help improve traffic flow, design safer roads, and optimize public transportation. Let’s explore how derivatives and their graphs can aid in understanding and solving real-world transportation challenges.
 [ohm_question hide_question_numbers=1]288365[/ohm_question]
  [ohm_question hide_question_numbers=1]288366[/ohm_question]
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				 	Use basic rules to differentiate functions that involve adding, subtracting, scaling, and raising to powers
 	Apply specific rules to find derivatives of functions multiplied or divided by each other
 	Use a combination of rules to calculate derivatives for polynomial and rational functions
 
  The Basic Rules
 Finding derivatives of functions by using the definition of the derivative can be a lengthy and, for certain functions, a rather challenging process. In this section, we develop rules for finding derivatives that allow us to bypass this process. We begin with the basics.
 The functions [image: f(x)=c] and [image: g(x)=x^n] where [image: n] is a positive integer are the building blocks from which all polynomials and rational functions are constructed. To find derivatives of polynomials and rational functions efficiently without resorting to the limit definition of the derivative, we must first develop formulas for differentiating these basic functions.
 The Constant Rule
 We first apply the limit definition of the derivative to find the derivative of the constant function, [image: f(x)=c]. For this function, both [image: f(x)=c] and [image: f(x+h)=c], so we obtain the following result:
 [image: \begin{array}{ll}f^{\prime}(x) & =\underset{h\to 0}{\lim}\dfrac{f(x+h)-f(x)}{h} \\ & =\underset{h\to 0}{\lim}\dfrac{c-c}{h} \\ & =\underset{h\to 0}{\lim}\dfrac{0}{h} \\ & =\underset{h\to 0}{\lim}0=0 \end{array}]
 The rule for differentiating constant functions is called the constant rule. It states that the derivative of a constant function is zero; that is, since a constant function is a horizontal line, the slope, or the rate of change, of a constant function is 0. 
 the constant rule
 Let [image: c] be a constant.
 If [image: f(x)=c], then [image: f^{\prime}(c)=0]
 Alternatively, we may express this rule as
 [image: \dfrac{d}{dx}(c)=0]
  Find the derivative of [image: f(x)=8].
 Show Solution 
 This is just a one-step application of the rule:
 [image: f^{\prime}(8)=0].
   The Power Rule
 We have previously shown that,
 [image: \dfrac{d}{dx}\left(x^2\right)=2x]   and   [image: \dfrac{d}{dx}\left(x^{\frac{1}{2}}\right)=\dfrac{1}{2}x^{−\frac{1}{2}}]
 At this point, you might see a pattern beginning to develop for derivatives of the form [image: \frac{d}{dx}(x^n)]. 
 We continue our examination of derivative formulas by differentiating power functions of the form [image: f(x)=x^n] where [image: n] is a positive integer. We develop formulas for derivatives of this type of function in stages, beginning with positive integer powers. 
 Before stating and proving the general rule for derivatives of functions of this form, we take a look at a specific case, [image: \frac{d}{dx}(x^3)].
 Find [image: \frac{d}{dx}(x^3)]
 Show Solution 
 [image: \begin{array}{lllll}\frac{d}{dx}(x^3) & =\underset{h\to 0}{\lim}\frac{(x+h)^3-x^3}{h} & & & \\ & =\underset{h\to 0}{\lim}\frac{x^3+3x^2h+3xh^2+h^3-x^3}{h} & & & \begin{array}{l}\text{Notice that the first term in the expansion of} \\ (x+h)^3 \, \text{is} \, x^3 \, \text{and the second term is} \, 3x^2h. \, \text{All} \\ \text{other terms contain powers of} \, h \, \text{that are two or} \\ \text{greater.} \end{array} \\ & =\underset{h\to 0}{\lim}\frac{3x^2h+3xh^2+h^3}{h} & & & \begin{array}{l}\text{In this step the} \, x^3 \, \text{terms have been cancelled,} \\ \text{leaving only terms containing} \, h. \end{array} \\ & =\underset{h\to 0}{\lim}\frac{h(3x^2+3xh+h^2)}{h} & & & \text{Factor out the common factor of} \, h. \\ & =\underset{h\to 0}{\lim}(3x^2+3xh+h^2) & & & \begin{array}{l}\text{After cancelling the common factor of} \, h, \, \text{the} \\ \text{only term not containing} \, h \, \text{is} \, 3x^2. \end{array} \\ & =3x^2 & & & \text{Let} \, h \, \text{go to 0.} \end{array}]
 
  As we shall see, the procedure for finding the derivative of the general form [image: f(x)=x^n] is straightforward. Although it is often unwise to draw general conclusions from specific examples, we note that when we differentiate [image: f(x)=x^3], the power on [image: x] becomes the coefficient, and the new exponent decreases by [image: 1], resulting in [image: \frac{d}{dx}(x^3)=3x^2]
 The following theorem states that this power rule holds for all positive integer powers of [image: x]. We will eventually extend this result to negative and rational powers of [image: x]. 
 Be aware that this rule does not apply to functions where a constant is raised to a variable power, such as [image: f(x)=3^x].
  the power rule
 Let [image: n] be a positive integer. If [image: f(x)=x^n], then
 [image: f^{\prime}(x)=nx^{n-1}]
  
 Alternatively, we may express this rule as
 [image: \dfrac{d}{dx}(x^n)=nx^{n-1}]
  Proof
 
 For [image: f(x)=x^n] where [image: n] is a positive integer, we have
 [image: f^{\prime}(x)=\underset{h\to 0}{\lim}\frac{(x+h)^n-x^n}{h}].
  
 Since [image: (x+h)^n=x^n+nx^{n-1}h+\binom{n}{2}x^{n-2}h^2+\binom{n}{3}x^{n-3}h^3+\cdots+nxh^{n-1}+h^n],
 we see that
 [image: (x+h)^n-x^n=nx^{n-1}h+\binom{n}{2}x^{n-2}h^2+\binom{n}{3}x^{n-3}h^3+\cdots+nxh^{n-1}+h^n]
  
 Next, divide both sides by [image: h]:
 [image: \large \frac{(x+h)^n-x^n}{h}=\frac{nx^{n-1}h+\binom{n}{2}x^{n-2}h^2+\binom{n}{3}x^{n-3}h^3+\cdots+nxh^{n-1}+h^n}{h}]
  
 Thus,
 [image: \frac{(x+h)^n-x^n}{h}=nx^{n-1}+\binom{n}{2}x^{n-2}h+\binom{n}{3}x^{n-3}h^2+\cdots+nxh^{n-2}+h^{n-1}]
  
 Finally,
 [image: \begin{array}{ll}f^{\prime}(x) & =\underset{h\to 0}{\lim}(nx^{n-1}+\binom{n}{2}x^{n-2}h+\binom{n}{3}x^{n-3}h^2+\cdots+nxh^{n-1}+h^n) \\ & =nx^{n-1} \end{array}]
 [image: _\blacksquare]
 
 Find the derivative of the function [image: f(x)=x^{10}] by applying the power rule.
 Show Solution 
 Using the power rule with [image: n=10], we obtain
 [image: f^{\prime}(x)=10x^{10-1}=10x^9].
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				The Basic Rules Cont.
 The Sum, Difference, and Constant Multiple Rules
 We find our next differentiation rules by looking at derivatives of sums, differences, and constant multiples of functions. Just as when we work with functions, there are rules that make it easier to find derivatives of functions that we add, subtract, or multiply by a constant. 
 sum, difference, and constant multiple rules
 Let [image: f(x)] and [image: g(x)] be differentiable functions and [image: k] be a constant. Then each of the following equations holds.
  
 Sum Rule: The derivative of the sum of a function [image: f] and a function [image: g] is the same as the sum of the derivative of [image: f] and the derivative of [image: g].
 [image: \frac{d}{dx}(f(x)+g(x))=\frac{d}{dx}(f(x))+\frac{d}{dx}(g(x))];
 that is,
 for [image: j(x)=f(x)+g(x), \, j^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)]
  
 Difference Rule: The derivative of the difference of a function [image: f] and a function [image: g] is the same as the difference of the derivative of [image: f] and the derivative of [image: g].
 [image: \frac{d}{dx}(f(x)-g(x))=\frac{d}{dx}(f(x))-\frac{d}{dx}(g(x))];
  
 that is,
 for [image: j(x)=f(x)-g(x), \, j^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)]
  
 Constant Multiple Rule: The derivative of a constant [image: k] multiplied by a function [image: f] is the same as the constant multiplied by the derivative:
 [image: \frac{d}{dx}(kf(x))=k\frac{d}{dx}(f(x))];
 that is,
 for [image: j(x)=kf(x), \, j^{\prime}(x)=kf^{\prime}(x)]
  Proof
 
 We provide only the proof of the sum rule here. The rest follow in a similar manner.
 For differentiable functions [image: f(x)] and [image: g(x)], we set [image: j(x)=f(x)+g(x)]. Using the limit definition of the derivative we have
 [image: j^{\prime}(x)=\underset{h\to 0}{\lim}\dfrac{j(x+h)-j(x)}{h}]
 By substituting [image: j(x+h)=f(x+h)+g(x+h)] and [image: j(x)=f(x)+g(x)], we obtain
 [image: j^{\prime}(x)=\underset{h\to 0}{\lim}\dfrac{(f(x+h)+g(x+h))-(f(x)+g(x))}{h}]
 Rearranging and regrouping the terms, we have
 [image: j^{\prime}(x)=\underset{h\to 0}{\lim}(\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h})]
 We now apply the sum law for limits and the definition of the derivative to obtain
 [image: j^{\prime}(x)=\underset{h\to 0}{\lim}(\frac{f(x+h)-f(x)}{h})+\underset{h\to 0}{\lim}(\frac{g(x+h)-g(x)}{h})=f^{\prime}(x)+g^{\prime}(x)]
 [image: _\blacksquare]
 
 Find the derivative of [image: g(x)=3x^2] and compare it to the derivative of [image: f(x)=x^2].
 Show Solution 
 We use the power rule directly:
 [image: g^{\prime}(x)=\dfrac{d}{dx}(3x^2)=3\dfrac{d}{dx}(x^2)=3(2x)=6x].
 Since [image: f(x)=x^2] has derivative [image: f^{\prime}(x)=2x], we see that the derivative of [image: g(x)] is [image: 3] times the derivative of [image: f(x)]. This relationship is illustrated in the graphs below.
 [image: Two graphs are shown. The first graph shows g(x) = 3x2 and f(x) = x squared. The second graph shows g’(x) = 6x and f’(x) = 2x. In the first graph, g(x) increases three times more quickly than f(x). In the second graph, g’(x) increases three times more quickly than f’(x).]Figure 1. The derivative of [image: g(x)] is 3 times the derivative of [image: f(x)].   Find the derivative of [image: f(x)=2x^5+7].
 Show Solution 
 We begin by applying the rule for differentiating the sum of two functions, followed by the rules for differentiating constant multiples of functions and the rule for differentiating powers. To better understand the sequence in which the differentiation rules are applied, we use Leibniz notation throughout the solution:
 [image: \begin{array}{lllll}f^{\prime}(x) & =\frac{d}{dx}(2x^5+7) & & & \\ & =\frac{d}{dx}(2x^5)+\frac{d}{dx}(7) & & & \text{Apply the sum rule.} \\ & =2\frac{d}{dx}(x^5)+\frac{d}{dx}(7) & & & \text{Apply the constant multiple rule.} \\ & =2(5x^4)+0 & & & \text{Apply the power rule and the constant rule.} \\ & =10x^4. & & & \text{Simplify.} \end{array}]
   Find the equation of the line tangent to the graph of [image: f(x)=x^2-4x+6] at [image: x=1].
 Show Solution 
 To find the equation of the tangent line, we need a point and a slope. To find the point, compute
 [image: f(1)=1^2-4(1)+6=3].
 This gives us the point [image: (1,3)]. Since the slope of the tangent line at [image: 1] is [image: f^{\prime}(1)], we must first find [image: f^{\prime}(x)]. Using the definition of a derivative, we have
 [image: f^{\prime}(x)=2x-4]
 so the slope of the tangent line is [image: f^{\prime}(1)=-2]. Using the point-slope formula, we see that the equation of the tangent line is
 [image: y-3=-2(x-1)].
 Putting the equation of the line in slope-intercept form, we obtain
 [image: y=-2x+5].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=ruACLHzWT3g%3Fcontrols%3D0%26start%3D338%26end%3D444%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.3 Differentiation Rules” here (opens in new window).
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				The Advanced Rules
 The Product Rule
 Now that we have examined the basic rules, we can begin looking at some of the more advanced rules. The first one examines the derivative of the product of two functions. Although it might be tempting to assume that the derivative of the product is the product of the derivatives, similar to the sum and difference rules, the product rule does not follow this pattern.
 To see why we cannot use this pattern, consider the function [image: f(x)=x^2], whose derivative is,
 [image: f^{\prime}(x)=2x]
 which is not the same as,
 [image: \frac{d}{dx}(x)\cdot \frac{d}{dx}(x)=1\cdot 1=1].
 the product rule
 Let [image: f(x)] and [image: g(x)] be differentiable functions. Then
 [image: \frac{d}{dx}(f(x)g(x))=\frac{d}{dx}(f(x))\cdot g(x)+\frac{d}{dx}(g(x))\cdot f(x)]
  
 That is,
 if [image: j(x)=f(x)g(x)] then [image: j^{\prime}(x)=f^{\prime}(x)g(x)+g^{\prime}(x)f(x)]
  
 This means that the derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the second function times the first function.
  Proof
 
 We begin by assuming that [image: f(x)] and [image: g(x)] are differentiable functions. At a key point in this proof we need to use the fact that, since [image: g(x)] is differentiable, it is also continuous. In particular, we use the fact that since [image: g(x)] is continuous, [image: \underset{h\to 0}{\lim}g(x+h)=g(x)].
 By applying the limit definition of the derivative to [image: j(x)=f(x)g(x)], we obtain
 [image: j^{\prime}(x)=\underset{h\to 0}{\lim}\dfrac{f(x+h)g(x+h)-f(x)g(x)}{h}]
  
 By adding and subtracting [image: f(x)g(x+h)] in the numerator, we have
 [image: j^{\prime}(x)=\underset{h\to 0}{\lim}\dfrac{f(x+h)g(x+h)-f(x)g(x+h)+f(x)g(x+h)-f(x)g(x)}{h}]
  
 After breaking apart this quotient and applying the sum law for limits, the derivative becomes
 [image: j^{\prime}(x)=\underset{h\to 0}{\lim}\left(\frac{f(x+h)g(x+h)-f(x)g(x+h)}{h}\right)+\underset{h\to 0}{\lim}\left(\frac{f(x)g(x+h)-f(x)g(x)}{h}\right)]
  
 Rearranging, we obtain
 [image: j^{\prime}(x)=\underset{h\to 0}{\lim}\left(\frac{f(x+h)-f(x)}{h}\cdot g(x+h)\right)+\underset{h\to 0}{\lim}\left(\frac{g(x+h)-g(x)}{h}\cdot f(x)\right)]
  
 By using the continuity of [image: g(x)], the definition of the derivatives of [image: f(x)] and [image: g(x)], and applying the limit laws, we arrive at the product rule,
 [image: j^{\prime}(x)=f^{\prime}(x)g(x)+g^{\prime}(x)f(x)]
 [image: _\blacksquare]
 
 As you begin using the product rule, it may be useful to remember that addition and multiplication are commutative for all real numbers.
 The following properties hold for real numbers [image: a], [image: b], and [image: c].
 	  	Addition 	Multiplication 
  	Commutative Property 	[image: a+b=b+a] 	[image: a\cdot b=b\cdot a] 
  
  This is particularly useful for our product rule because our formula consists solely of these two operations. Due to the commutative property of addition:
 [image: j^{\prime}(x)=f^{\prime}(x)g(x)+g^{\prime}(x)f(x)=g^{\prime}(x)f(x)+f^{\prime}(x)g(x)]
 Additionally, the order in which you multiply each of these terms doesn’t matter, due to the commutative property of multiplication.
 For [image: j(x)=f(x)g(x)], use the product rule to find [image: j^{\prime}(2)] if [image: f(2)=3, \, f^{\prime}(2)=-4, \, g(2)=1], and [image: g^{\prime}(2)=6].
 Show Solution 
 Since [image: j(x)=f(x)g(x), \, j^{\prime}(x)=f^{\prime}(x)g(x)+g^{\prime}(x)f(x)], and hence
 [image: j^{\prime}(2)=f^{\prime}(2)g(2)+g^{\prime}(2)f(2)=(-4)(1)+(6)(3)=14].
   For [image: j(x)=(x^2+2)(3x^3-5x)], find [image: j^{\prime}(x)] by applying the product rule. Check the result by first finding the product and then differentiating.
 Show Solution 
 If we set [image: f(x)=x^2+2] and [image: g(x)=3x^3-5x], then [image: f^{\prime}(x)=2x] and [image: g^{\prime}(x)=9x^2-5]. Thus,
 [image: j^{\prime}(x)=f^{\prime}(x)g(x)+g^{\prime}(x)f(x)=(2x)(3x^3-5x)+(9x^2-5)(x^2+2)].
 Simplifying, we have
 [image: j^{\prime}(x)=15x^4+3x^2-10].
 To check, we see that [image: j(x)=3x^5+x^3-10x] and, consequently, [image: j^{\prime}(x)=15x^4+3x^2-10].
   [ohm_question hide_question_numbers=1]205283[/ohm_question]
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				The Advanced Rules Cont.
 The Quotient Rule
 Having developed and practiced the product rule, we now consider differentiating quotients of functions. 
 As we see in the following theorem, the derivative of a quotient is not simply the quotient of the derivatives. Instead, it involves the derivative of the function in the numerator multiplied by the function in the denominator, minus the derivative of the function in the denominator multiplied by the function in the numerator, all divided by the square of the function in the denominator.
 To better understand why we cannot just take the quotient of the derivatives, consider that:
 [image: \frac{d}{dx}(x^2)=2x],
 which is not the same as,
 [image: \dfrac{\frac{d}{dx}(x^3)}{\frac{d}{dx}(x)} =\dfrac{3x^2}{1}=3x^2]
  the quotient rule
 Let [image: f(x)] and [image: g(x)] be differentiable functions. Then
 [image: \frac{d}{dx}\left(\dfrac{f(x)}{g(x)}\right)=\dfrac{\frac{d}{dx}(f(x))\cdot g(x)-\dfrac{d}{dx}(g(x))\cdot f(x)}{(g(x))^2}]
  
 That is,
 if [image: j(x)=\dfrac{f(x)}{g(x)}], then [image: j^{\prime}(x)=\dfrac{f^{\prime}(x)g(x)-g^{\prime}(x)f(x)}{(g(x))^2}]
  The proof of the quotient rule is very similar to the proof of the product rule, so it is omitted here. Instead, we apply this new rule for finding derivatives in the next example.
 Use the quotient rule to find the derivative of [image: k(x)=\dfrac{5x^2}{4x+3}]
 Show Solution 
 Let [image: f(x)=5x^2] and [image: g(x)=4x+3]. Thus, [image: f^{\prime}(x)=10x] and [image: g^{\prime}(x)=4]. Substituting into the quotient rule, we have
 [image: k^{\prime}(x)=\dfrac{f^{\prime}(x)g(x)-g^{\prime}(x)f(x)}{(g(x))^2}=\dfrac{10x(4x+3)-4(5x^2)}{(4x+3)^2}].
  
 Simplifying, we obtain
 [image: k^{\prime}(x)=\dfrac{20x^2+30x}{(4x+3)^2}].
   We explored the flexibility of the product rule given to the commutative property under addition and multiplication. It is worth mentioning that for the quotient rule, the order of the terms in the numerator will matter, as the commutative property does not hold under subtraction. We can see this from the example above:
 [image: {10x(4x+3)-4(5x^2)=20x^2+30x}]
 however,
 [image: {4(5x^2)-10x(4x+3)=-20x^2-30x}].
 Find the derivative of [image: h(x)=\dfrac{3x+1}{4x-3}]
 Hint 
 Apply the quotient rule with [image: f(x)=3x+1] and [image: g(x)=4x-3].
  Show Solution 
 [image: k^{\prime}(x)=-\dfrac{13}{(4x-3)^2}].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=ruACLHzWT3g%3Fcontrols%3D0%26start%3D931%26end%3D998%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.3 Differentiation Rules” here (opens in new window).
   [ohm_question hide_question_numbers=1]158799[/ohm_question]
  Extended Power Rule
 It is now possible to use the quotient rule to extend the power rule to find derivatives of functions of the form [image: x^k] where [image: k] is a negative integer.
 extended power rule
 If [image: k] is a negative integer, then
 [image: \dfrac{d}{dx}(x^k)=kx^{k-1}]
  Proof
 
 If [image: k] is a negative integer, we may set [image: n=−k], so that [image: n] is a positive integer with [image: k=−n]. Since for each positive integer [image: n, \, x^{−n}=\frac{1}{x^n}], we may now apply the quotient rule by setting [image: f(x)=1] and [image: g(x)=x^n]. In this case, [image: f^{\prime}(x)=0] and [image: g^{\prime}(x)=nx^{n-1}]. Thus,
 [image: \frac{d}{dx}(x^{−n})=\dfrac{0(x^n)-1(nx^{n-1})}{(x^n)^2}].
  
 Simplifying, we see that
 [image: \frac{d}{dx}(x^{−n})=\dfrac{−nx^{n-1}}{x^{2n}}=−nx^{(n-1)-2n}=−nx^{−n-1}].
  
 Finally, observe that since [image: k=−n], by substituting we have
 [image: \frac{d}{dx}(x^k)=kx^{k-1}]
 [image: _\blacksquare]
 
 Find [image: \frac{d}{dx}(x^{-4})]
 Show Solution 
 By applying the extended power rule with [image: k=-4], we obtain
 [image: \frac{d}{dx}(x^{-4})=-4x^{-4-1}=-4x^{-5}].
 
  Use the extended power rule and the constant multiple rule to find [image: f(x)=\dfrac{6}{x^2}]
 Show Solution 
 It may seem tempting to use the quotient rule to find this derivative, and it would certainly not be incorrect to do so. However, it is far easier to differentiate this function by first rewriting it as [image: f(x)=6x^{-2}].
 [image: \begin{array}{lllll}f^{\prime}(x) & =\frac{d}{dx}(\frac{6}{x^2})=\frac{d}{dx}(6x^{-2}) & & & \text{Rewrite} \, \frac{6}{x^2} \, \text{as} \, 6x^{-2}. \\ & =6\frac{d}{dx}(x^{-2}) & & & \text{Apply the constant multiple rule.} \\ & =6(-2x^{-3}) & & & \text{Use the extended power rule to differentiate} \, x^{-2}. \\ & =-12x^{-3} & & & \text{Simplify.} \end{array}]
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				Combining Differentiation Rules
 As we have seen throughout the examples in this section, it seldom happens that we are called on to apply just one differentiation rule to find the derivative of a given function. At this point, by combining the differentiation rules, we may find the derivatives of any polynomial or rational function. Later on we will encounter more complex combinations of differentiation rules. 
 A good rule of thumb to use when applying several rules is to apply the rules in reverse of the order in which we would evaluate the function.
  For [image: k(x)=3h(x)+x^2g(x)], find [image: k^{\prime}(x)].
 Show Solution 
 Finding this derivative requires the sum rule, the constant multiple rule, and the product rule.
 [image: \begin{array}{lllll}k^{\prime}(x) & =\frac{d}{dx}(3h(x)+x^2g(x))=\frac{d}{dx}(3h(x))+\frac{d}{dx}(x^2g(x)) & & & \text{Apply the sum rule.} \\ & =3\frac{d}{dx}(h(x))+(\frac{d}{dx}(x^2)g(x)+\frac{d}{dx}(g(x))x^2) & & & \begin{array}{l}\text{Apply the constant multiple rule to} \\ \text{differentiate} \, 3h(x) \, \text{and the product} \\ \text{rule to differentiate} \, x^2g(x). \end{array} \\ & =3h^{\prime}(x)+2xg(x)+g^{\prime}(x)x^2 & & & \end{array}]
   For [image: h(x)=\large \frac{2x^3k(x)}{3x+2}], find [image: h^{\prime}(x)].
 Show Solution 
 This procedure is typical for finding the derivative of a rational function.
 [image: \begin{array}{lllll}h^{\prime}(x) & =\large \frac{\frac{d}{dx}(2x^3k(x))\cdot (3x+2)-\frac{d}{dx}(3x+2)\cdot (2x^3k(x))}{(3x+2)^2} & & & \text{Apply the quotient rule.} \\ & =\large \frac{(6x^2k(x)+k^{\prime}(x)\cdot 2x^3)(3x+2)-3(2x^3k(x))}{(3x+2)^2} & & & \begin{array}{l}\text{Apply the product rule to find} \\ \frac{d}{dx}(2x^3k(x)). \, \text{Use} \, \frac{d}{dx}(3x+2)=3. \end{array} \\ & =\large \frac{-6x^3k(x)+18x^3k(x)+12x^2k(x)+6x^4k^{\prime}(x)+4x^3k^{\prime}(x)}{(3x+2)^2} & & & \text{Simplify.} \end{array}]
   Determine the values of [image: x] for which [image: f(x)=x^3-7x^2+8x+1] has a horizontal tangent line.
 Show Solution 
 To find the values of [image: x] for which [image: f(x)] has a horizontal tangent line, we must solve [image: f^{\prime}(x)=0]. Since
 [image: f^{\prime}(x)=3x^2-14x+8=(3x-2)(x-4)],
  
 we must solve [image: (3x-2)(x-4)=0]. Thus we see that the function has horizontal tangent lines at [image: x=\frac{2}{3}] and [image: x=4] as shown in the following graph.
 [image: The graph shows f(x) = x3 – 7x2 + 8x + 1, and the tangent lines are shown as x = 2/3 and x = 4.]Figure 2. This function has horizontal tangent lines at [image: x = 2/3] and [image: x = 4]. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=ruACLHzWT3g%3Fcontrols%3D0%26start%3D1476%26end%3D1576%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.3 Differentiation Rules” here (opens in new window).
   The position of an object on a coordinate axis at time [image: t] is given by [image: s(t)=\dfrac{t}{t^2+1}].
 What is the initial velocity of the object?
 Show Solution 
 Since the initial velocity is [image: v(0)=s^{\prime}(0)], begin by finding [image: s^{\prime}(t)] by applying the quotient rule:
 [image: s^{\prime}(t)=\dfrac{1(t^2+1)-2t(t)}{(t^2+1)^2}=\dfrac{1-t^2}{(t^2+1)^2}].
 After evaluating, we see that [image: v(0)=1].
   [ohm_question hide_question_numbers=1]33700[/ohm_question]
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		Differentiation Rules: Apply It

								

	
				 	Use basic rules to differentiate functions that involve adding, subtracting, scaling, and raising to powers
 	Apply specific rules to find derivatives of functions multiplied or divided by each other
 	Use a combination of rules to calculate derivatives for polynomial and rational functions
 
  Racetrack Safety at the Formula One Grandstand
 Formula One car races can be very exciting to watch and attract a lot of spectators. Formula One track designers have to ensure sufficient grandstand space is available around the track to accommodate these viewers. However, car racing can be dangerous, and safety considerations are paramount. The grandstands must be placed where spectators will not be in danger should a driver lose control of a car (Figure 3).
 [image: A photo of a grandstand next to a straightaway of a race track.]Figure 3. The grandstand next to a straightaway of the Circuit de Barcelona-Catalunya race track, located where the spectators are not in danger. Safety is especially a concern on turns. If a driver does not slow down enough before entering the turn, the car may slide off the racetrack. Normally, this just results in a wider turn, which slows the driver down. But if the driver loses control completely, the car may fly off the track entirely, on a path tangent to the curve of the racetrack.
 Suppose you are designing a new Formula One track. One section of the track can be modeled by the function [image: f(x)=x^3+3x^2+x] (Figure 4). The current plan calls for grandstands to be built along the first straightaway and around a portion of the first curve. The plans call for the front corner of the grandstand to be located at the point [image: (-1.9,2.8)]. We want to determine whether this location puts the spectators in danger if a driver loses control of the car.
 [image: This figure has two parts labeled a and b. Figure a shows the graph of f(x) = x3 + 3x2 + x. Figure b shows the same graph but this time with two boxes on it. The first box appears along the left-hand side of the graph straddling the x-axis roughly parallel to f(x). The second box appears a little higher, also roughly parallel to f(x), with its front corner located at (−1.9, 2.8). Note that this corner is roughly in line with the direct path of the track before it started to turn.]Figure 4. (a) One section of the racetrack can be modeled by the function [image: f(x)=x^3+3x^2+x]. (b) The front corner of the grandstand is located at [image: (-1.9,2.8)]. [ohm_question hide_question_numbers=1]288218[/ohm_question]
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		Derivatives as Rates of Change: Learn It 1

								

	
				 	Calculate how quantities change on average over time
 	Use rates of change to figure out how an object’s position, speed, and acceleration are changing over time
 	Estimate future population sizes using current data and how fast the population is growing
 	Use derivatives to determine the cost and revenue of producing one more unit in a business
 
  Amount of Change Formula
 One application of derivatives is to estimate an unknown value of a function at a point by using a known value of the function at some given point together with its rate of change at that given point.
 If [image: f(x)] is a function defined on an interval [image: [a,a+h]], then the amount of change of [image: f(x)] over the interval is the change in the [image: y] values of the function over that interval and is given by:
 [image: f(a+h)-f(a)]
 The average rate of change of the function [image: f] over that same interval is the ratio of the amount of change over that interval to the corresponding change in the [image: x] values. It is given by:
 [image: \dfrac{f(a+h)-f(a)}{h}]
 As we already know, the instantaneous rate of change of [image: f(x)] at [image: a] is its derivative,
 [image: f^{\prime}(a)=\underset{h\to 0}{\lim}\dfrac{f(a+h)-f(a)}{h}]
 For small enough values of [image: h, \, f^{\prime}(a)\approx \frac{f(a+h)-f(a)}{h}]. We can then solve for [image: f(a+h)] to get the amount of change formula:
 [image: f(a+h)\approx f(a)+f^{\prime}(a)h]
 We can use this formula if we know only [image: f(a)] and [image: f^{\prime}(a)] and wish to estimate the value of [image: f(a+h)]. For example, we may use the current population of a city and the rate at which it is growing to estimate its population in the near future. 
 As we can see in Figure 1, we are approximating [image: f(a+h)] by the [image: y] coordinate at [image: a+h] on the line tangent to [image: f(x)] at [image: x=a]. Observe that the accuracy of this estimate depends on the value of [image: h] as well as the value of [image: f^{\prime}(a)].
 [image: On the Cartesian coordinate plane with a and a + h marked on the x axis, the function f is graphed. It passes through (a, f(a)) and (a + h, f(a + h)). A straight line is drawn through (a, f(a)) with its slope being the derivative at that point. This straight line passes through (a + h, f(a) + f’(a)h). There is a line segment connecting (a + h, f(a + h)) and (a + h, f(a) + f’(a)h), and it is marked that this is the error in using f(a) + f’(a)h to estimate f(a + h).]Figure 1. The new value of a changed quantity equals the original value plus the rate of change times the interval of change: [image: f(a+h)\approx f(a)+f^{\prime}(a)h]. average rate of change
 The average rate of change of a function [image: f] over the interval [image: [a,a+h]] is the ratio of the amount of change in [image: f] over that interval to the corresponding change in [image: x] values.
 The average rate of change is given by:
 [image: \dfrac{f(a+h)-f(a)}{h}]
 Here is an interesting demonstration of rate of change.
  If [image: f(3)=2] and [image: f^{\prime}(3)=5], estimate [image: f(3.2)].
 Show Solution 
 Begin by finding [image: h]. We have [image: h=3.2-3=0.2]. Thus,
 [image: f(3.2)=f(3+0.2)\approx f(3)+(0.2)f^{\prime}(3)=2+0.2(5)=3].
  
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=XOgb95xhWF0%3Fcontrols%3D0%26start%3D110%26end%3D190%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.4 Derivatives as Rates of Change” here (opens in new window).
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				Rate of Change Applications
 Motion Along a Line
 Another use for the derivative is to analyze motion along a line.
 Velocity is the rate of change of position. By taking the derivative of velocity, we can find acceleration, which is the rate of change of velocity. Additionally, it’s important to introduce the concept of speed, which is the magnitude of velocity. Thus, we can state the following mathematical definitions:
 velocity, speed and acceleration
 Let [image: s(t)] be a function giving the position of an object at time [image: t].
 	The velocity of the object at time [image: t] is given by [image: v(t)=s^{\prime}(t)].
 	The speed of the object at time [image: t] is given by [image: |v(t)|].
 	The acceleration of the object at [image: t] is given by [image: a(t)=v^{\prime}(t)=s''(t)].
 
  Many of the problems involving position, velocity and acceleration will require finding zeros of quadratic and higher order polynomial functions. To find these zeros, recall that factoring and setting each factor equal to zero will be the easiest way to solve these functions. If it doesn’t factor and it is a quadratic, the quadratic equation will always work.
  A ball is dropped from a height of [image: 64] feet. Its height above ground (in feet) [image: t] seconds later is given by [image: s(t)=-16t^2+64].
 [image: On the Cartesian coordinate plane, the function s(t) = −16t2 + 64 is graphed. This function starts at (0, 64) and decreases to (0, 2).]Figure 2. Dropped ball graph, height vs. time. 	What is the instantaneous velocity of the ball when it hits the ground?
 	What is the average velocity during its fall?
 
 Show Solution 
 The first thing to do is determine how long it takes the ball to reach the ground. To do this, set [image: s(t)=0]. Solving [image: -16t^2+64=0], we get [image: t=2], so it takes [image: 2] seconds for the ball to reach the ground.
 	The instantaneous velocity of the ball as it strikes the ground is [image: v(2)]. Since [image: v(t)=s^{\prime}(t)=-32t] m we obtain [image: v(t)=-64] ft/s.
 	The average velocity of the ball during its fall is [image: v_{avg}=\frac{s(2)-s(0)}{2-0}=\frac{0-64}{2}=-32] ft/s.
 
 
   The position of a particle moving along a coordinate axis is given by [image: s(t)=t^3-9t^2+24t+4, \, t\ge 0].
 	Find [image: v(t)].
 	At what time(s) is the particle at rest?
 	On what time intervals is the particle moving from left to right? From right to left?
 	Use the information obtained to sketch the path of the particle along a coordinate axis.
 
 Show Solution 
 	The velocity is the derivative of the position function: [image: v(t)=s^{\prime}(t)=3t^2-18t+24].
 
 	The particle is at rest when [image: v(t)=0], so set [image: 3t^2-18t+24=0]. Factoring the left-hand side of the equation produces [image: 3(t-2)(t-4)=0]. Solving, we find that the particle is at rest at [image: t=2] and [image: t=4].
 	The particle is moving from left to right when [image: v(t)>0] and from right to left when [image: v(t)<0]. The graph below gives the analysis of the sign of [image: v(t)] for [image: t\ge 0], but it does not represent the axis along which the particle is moving.
 [image: A number line marked with 0, 2, and 4. Between 0 and 2, there is a plus sign. Above 2, there is a 0. Between 2 and 4 there is a negative sign. Above 4 there is a 0. After 4 there is a plus sign and v(t).]Figure 3. The sign of v(t) determines the direction of the particle.  
 Since [image: 3t^2-18t+24>0] on [image: [0,2)\cup (2,+\infty)], the particle is moving from left to right on these intervals.
 Since [image: 3t^2-18t+24<0] on [image: (2,4)], the particle is moving from right to left on this interval.
 
 	Before we can sketch the graph of the particle, we need to know its position at the time it starts moving [image: (t=0)] and at the times that it changes direction [image: (t=2,4)]. We have [image: s(0)=4, \, s(2)=24], and [image: s(4)=20]. This means that the particle begins on the coordinate axis at 4 and changes direction at 0 and 20 on the coordinate axis. The path of the particle is shown on a coordinate axis in the graph below.
 [image: A number line is given and above it a line snakes, starting at t = 0 above 4 on the number line. Then the line at t = 2 is above 24 on the number line. Then the line decreases at t = 4 to be above 20 on the number line, at which point the line reverses direction again and increases indefinitely.]Figure 4. The path of the particle can be determined by analyzing [image: v(t)]. 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=XOgb95xhWF0%3Fcontrols%3D0%26start%3D527%26end%3D950%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.4 Derivatives as Rates of Change” here (opens in new window).
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				Rate of Change Applications Cont.
 Population Change
 In addition to analyzing velocity, speed, acceleration, and position, we can use derivatives to analyze various types of populations, including those as diverse as bacteria colonies and cities. We can use a current population, together with a growth rate, to estimate the size of a population in the future. 
 The population growth rate is the rate of change of a population and consequently can be represented by the derivative of the size of the population.
 population growth rate
 If [image: P(t)] is the number of entities present in a population, then the population growth rate of [image: P(t)] is defined to be [image: P^{\prime}(t)].
  The population of a city is tripling every [image: 5] years. If its current population is [image: 10,000], what will be its approximate population [image: 2] years from now?
 Show Solution 
 Let [image: P(t)] be the population (in thousands) [image: t] years from now. Thus, we know that [image: P(0)=10] and based on the information, we anticipate [image: P(5)=30]. Now estimate [image: P^{\prime}(0)], the current growth rate, using
 [image: P^{\prime}(0)\approx \frac{P(5)-P(0)}{5-0}=\frac{30-10}{5}=4].
 By applying the average rate of change formula to [image: P(t)], we can estimate the population [image: 2] years from now by writing
 [image: P(2)\approx P(0)+(2)P^{\prime}(0)\approx 10+2(4)=18];
 thus, in [image: 2] years the population will be approximately [image: 18,000].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=XOgb95xhWF0%3Fcontrols%3D0%26start%3D981%26end%3D1123%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.4 Derivatives as Rates of Change” here (opens in new window).
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				Rate of Change Applications Cont.
 Changes in Cost and Revenue
 In addition to analyzing motion along a line and population growth, derivatives are useful in analyzing changes in cost, revenue, and profit. The concept of a marginal function is common in the fields of business and economics and implies the use of derivatives.
 	The marginal cost is the derivative of the cost function.
 	The marginal revenue is the derivative of the revenue function.
 	The marginal profit is the derivative of the profit function, which is based on the cost function and the revenue function.
 
 Marginal Cost, Marginal Revenue and Marginal Profit
 	If [image: C(x)] is the cost of producing [image: x] items, then the marginal cost [image: MC(x)] is 
 [image: MC(x)=C^{\prime}(x)].
 	If [image: R(x)] is the revenue obtained from selling [image: x] items, then the marginal revenue [image: MR(x)] is 
 [image: MR(x)=R^{\prime}(x)].
 	If [image: P(x)=R(x)-C(x)] is the profit obtained from selling [image: x] items, then the marginal profit [image: MP(x)] is defined to be 
 [image: MP(x)=P^{\prime}(x)=MR(x)-MC(x)=R^{\prime}(x)-C^{\prime}(x)].
 
  We can roughly approximate
 [image: MC(x)=C^{\prime}(x)=\underset{h\to 0}{\lim}\dfrac{C(x+h)-C(x)}{h}]
 by choosing an appropriate value for [image: h].
 Since [image: x] represents objects, a reasonable and small value for [image: h] is [image: 1]. Thus, by substituting [image: h=1], we get the approximation [image: MC(x)=C^{\prime}(x)\approx C(x+1)-C(x)].
 Consequently, [image: C^{\prime}(x)] for a given value of [image: x] can be thought of as the change in cost associated with producing one additional item. In a similar way, [image: MR(x)=R^{\prime}(x)] approximates the revenue obtained by selling one additional item, and [image: MP(x)=P^{\prime}(x)] approximates the profit obtained by producing and selling one additional item.
 Assume that the number of barbeque dinners that can be sold, [image: x], can be related to the price charged, [image: p], by the equation
 [image: p(x)=9-0.03x, \, 0\le x\le 300].
 In this case, the revenue in dollars obtained by selling [image: x] barbeque dinners is given by
 [image: R(x)=xp(x)=x(9-0.03x)=-0.03x^2+9x] for [image: 0\le x\le 300].
 Use the marginal revenue function to estimate the revenue obtained from selling the [image: 101]st barbeque dinner.
 Compare this to the actual revenue obtained from the sale of this dinner.
 Show Solution 
 First, find the marginal revenue function: [image: MR(x)=R^{\prime}(x)=-0.06x+9].
 Next, use [image: R^{\prime}(100)] to approximate [image: R(101)-R(100)], the revenue obtained from the sale of the [image: 101]st  dinner. Since [image: R^{\prime}(100)=3], the revenue obtained from the sale of the [image: 101]st  dinner is approximately [image: $3].
 The actual revenue obtained from the sale of the [image: 101]st dinner is
 [image: R(101)-R(100)=602.97-600=2.97], or [image: \$2.97].
 The marginal revenue is a fairly good estimate in this case and has the advantage of being easy to compute.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=XOgb95xhWF0%3Fcontrols%3D0%26start%3D1168%26end%3D1320%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.4 Derivatives as Rates of Change” here (opens in new window).
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				 	Calculate how quantities change on average over time
 	Use rates of change to figure out how an object’s position, speed, and acceleration are changing over time
 	Estimate future population sizes using current data and how fast the population is growing
 	Use derivatives to determine the cost and revenue of producing one more unit in a business
 
  Rate of Change Applications in Real-World Scenarios
 In this Apply-It task, you’ll explore how the Amount of Change Formula and related concepts can be applied to various real-world situations, including motion analysis, population growth, and business economics.
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				 	Identify whether a function is given directly (explicit) or needs solving (implicit)
 
  Understanding Explicit and Implicit Functions
 In mathematical analysis, the distinction between explicit and implicit functions is pivotal in understanding how variables interact within an equation. This understanding is fundamental when approaching calculus, as it affects how we might differentiate or integrate expressions with respect to a given variable.
 Explicit Functions
 An explicit function is one where the dependent variable, typically denoted as [image: y], is expressed directly in terms of the independent variable [image: x]. In simpler terms, [image: y] is isolated on one side of the equation. This direct expression allows us to readily compute the value of [image: y] for any given value of [image: x] without the need for additional manipulation.
 explicit functions
 An explicit function clearly expresses the dependent variable, such as [image: y], in terms of the independent variable, such as [image: x]. It takes the form [image: y=f(x)], allowing for direct computation of [image: y] for any given [image: x].
  Consider the function:
 [image: y = 3x^2 +2x-5]
 For this quadratic equation, the value of [image: y] is defined explicitly for each [image: x], allowing for straightforward evaluation.
  Implicit Functions
 Conversely, an implicit function is one where the relationship between [image: y] and [image: x] is implied within an equation. [image: y] is not isolated, and the equation must be manipulated to solve for [image: y] in terms of [image: x] if it’s even possible. Implicit functions often arise in situations where two or more variables maintain a relationship, but one cannot be neatly expressed in terms of the others.
 implicit functions
 Implicit functions are those in which the relationship between variables is expressed indirectly. The dependent variable is not isolated on one side but is mixed with the independent variable within an equation. Solving for one variable in terms of the others may not be straightforward or sometimes even possible.
  The equation below defines a relationship between [image: x] and [image: y] where neither variable is isolated as the subject of the formula.
 [image: x^3+y^3=6xy]
  To determine if a function is explicit or implicit, look for the dependent variable ([image: y]) and assess whether it is written on its own with respect to [image: x].
 	If [image: y] is by itself on one side of the equation, then it’s an explicit function.
 	If [image: y] is mingled with [image: x] and cannot be easily isolated, then it’s an implicit function.
 
  Determine whether each of the following functions is explicit or implicit:
 	[image: y = 3x^2 - 7]
 	[image: x^2 + y^2 = 16]
 	[image: y^3 + 3y = x]
 	[image: e^y = x + y]
 	[image: \ln(x) + \ln(y) = 1]
 
 
 Show Answer 
 	The function [image: y = 3x^2 - 7] is explicit because [image: y] is isolated on one side and expressed directly in terms of [image: x].
 	The function [image: x^2 + y^2 = 16] is implicit because it represents a relationship between [image: x] and [image: y] that doesn’t explicitly solve for either variable.
 	The function [image: y^3 + 3y = x] is considered implicit. Although one might attempt to express [image: y] in terms of [image: x] by manipulating the equation, the term [image: y] cannot be easily isolated on one side due to its presence both as a cubic term and a linear term. This intermingling of [image: y] in multiple terms without a straightforward method to solve for [image: y] directly keeps the function in an implicit form.
 	The function [image: e^y = x + y] is implicit. Although it might appear possible to solve for [image: y], the presence of [image: y] on both sides of the equation, especially as part of an exponent and a linear term, indicates that the function is not explicitly solved for [image: y].
 	The function [image: \ln(x) + \ln(y) = 1] is implicit because both [image: x] and [image: y] are intertwined within the equation and there is no direct expression of [image: y] solely in terms of [image: x].
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				 	Use different methods to combine and change functions
 
  Combining and Composing Functions
 In mathematics, we often build upon basic functions by combining them with operations such as addition and multiplication or by creating composite functions. This process forms new functions that can better describe and analyze complex relationships.
 Combining Functions with Mathematical Operators
 To combine functions using mathematical operators, we simply write the functions with the operator and simplify. Given two functions [image: f] and [image: g,] we can define four new functions:
 [image: \begin{array}{cccc}(f+g)(x)=f(x)+g(x)\hfill & & & \text{Sum}\hfill \\ (f-g)(x)=f(x)-g(x)\hfill & & & \text{Difference}\hfill \\ (f·g)(x)=f(x)g(x)\hfill & & & \text{Product}\hfill \\ \Big(\frac{f}{g}\Big)(x)=\frac{f(x)}{g(x)} \, \text{for} \, g(x)\ne 0\hfill & & & \text{Quotient}\hfill \end{array}]
  
 Often these functions have more than one term, so when you perform operations on them you will need to remember how to work with polynomials.
 When given multiple polynomials, you can simplify expressions by adding or subtracting them, ensuring you combine like terms and rearrange the resulting polynomial into standard form, which is organized by descending powers.  Multiplying binomials requires a different approach. Use the FOIL method to multiply the first, outer, inner, and last terms, and then combine like terms in the resulting expression.
 Here’s a concise recap of both processes:
 	Adding/Subtracting Polynomials:
 	Combine like terms.
 	When subtracting, distribute the negative sign across the second polynomial.
 	Rearrange and combine terms into standard form.
 
 
 
 Be particularly cautious when subtracting polynomials to distribute the negative sign correctly.
 [image: Two quantities in parentheses are being multiplied, the first being: a times x plus b and the second being: c times x plus d. This expression equals ac times x squared plus ad times x plus bc times x plus bd. The terms ax and cx are labeled: First Terms. The terms ax and d are labeled: Outer Terms. The terms b and cx are labeled: Inner Terms. The terms b and d are labeled: Last Terms.]
 	Multiplying Binomials (FOIL):
 	Multiply the first terms of each binomial.
 	Multiply the outer terms.
 	Multiply the inner terms.
 	Multiply the last terms.
 	Combine like terms and simplify the product.
 
 
 
  
 Given the functions [image: f(x)=2x-3] and [image: g(x)=x^2-1], find each of the following functions and state its domain.
 	[image: (f+g)(x)]
 	[image: (f-g)(x)]
 	[image: (f·g)(x)]
 	[image: \Big(\frac{f}{g}\Big)(x)]
 
 Show Solution 
 	[image: (f+g)(x)=(2x-3)+(x^2-1)=x^2+2x-4]. The domain of this function is the interval [image: (−\infty ,\infty )].
 	[image: (f-g)(x)=(2x-3)-(x^2-1)=−x^2+2x-2]. The domain of this function is the interval [image: (−\infty ,\infty)].
 	[image: (f·g)(x)=(2x-3)(x^2-1)=2x^3-3x^2-2x+3]. The domain of this function is the interval [image: (−\infty ,\infty )].
 	[image: \Big(\frac{f}{g}\Big)(x)=\dfrac{2x-3}{x^2-1}]. The domain of this function is [image: \{x|x\ne \text{±}1\}].
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=qL2tyJhmrkg%3Fcontrols%3D0%26start%3D1025%26end%3D1238%26autoplay%3D0  For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end. You can view the transcript for this segmented clip of “1.1 Review of Functions” using this link(opens in new window).
   
 Composite Functions
 Composite functions merge two functions into one by using the output of one function as the input of another.
 For example, given the functions [image: f(x)=x^2] and [image: g(x)=3x+1], the composite function [image: f\circ g] is defined such that
 [image: (f\circ g)(x)=f(g(x))=(g(x))^2=(3x+1)^2]
  
 This composition is unique because [image: f\circ g] is not the same as [image: g\circ f].
 [image: (g\circ f)(x)=g(f(x))=3f(x)+1=3x^2+1]
  
 The order in which functions are composed matters
 composite functions
 A composite function, denoted as [image: f\circ g], is created when the output of one function, [image: g(x)], becomes the input for another, [image: f(x)]. The resulting function [image: f(g(x))] has the domain of [image: g] and the range of [image: f], provided that the range of [image: g] is contained within the domain of [image: f].[image: (f\circ g)(x)=f(g(x))]
 It is important to understand the order of operations in evaluating a composite function. We follow the usual convention with parentheses by starting with the innermost parentheses first, and then working to the outside.
 [image: Explanation of the composite function. g(x), the output of g is the input of f. X is the input of g.]
  Consider the functions [image: f(x)=x^2+1] and [image: g(x)=\frac{1}{x}].
 	Find [image: (f\circ g)(x)] and state its domain and range.
 	Evaluate [image: (f\circ g)(4)] and [image: (f\circ g)\left(-\frac{1}{2}\right)].
 
 Show Solution 
 	We can find a formula for [image: (f\circ g)(x)] in two ways. First, we could write [image: (f\circ g)(x)=f(g(x))=f\left(\frac{1}{x}\right)=\left(\frac{1}{x}\right)^2+1]
  
 Alternatively, we could write
 [image: (f\circ g)(x)=f(g(x))=(g(x))^2+1=\left(\frac{1}{x}\right)^2+1]
  
 The domain of [image: f\circ g] is the set of all real numbers [image: x] such that [image: x\ne 0]. To find the range of [image: f], we need to find all values [image: y] for which there exists a real number [image: x\ne 0] such that
 [image: \left(\frac{1}{x}\right)^2+1=y]
  
 Solving this equation for [image: x], we see that we need [image: x] to satisfy
 [image: \left(\frac{1}{x}\right)^2=y-1],
  
 which simplifies to
 [image: \frac{1}{x}=±\sqrt{y-1}]
  
 Finally, we obtain
 [image: x=±\frac{1}{\sqrt{y-1}}]
  
 Since [image: \frac{1}{\sqrt{y-1}}] is a real number if and only if [image: y>1], the range of [image: f] is the set [image: \{y|y\ge 1\}].
 
 	[image: (f\circ g)(4)=f(g(4))=f\left(\frac{1}{4}\right)=\left(\frac{1}{4}\right)^2+1=\frac{17}{16}]
 [image: (f\circ g)\left(-\frac{1}{2}\right)=f\left(g\left(-\frac{1}{2}\right)\right)=f(-2)=(-2)^2+1=5]
 
   Remember that [image: (f\circ g)(x)\ne (g\circ f)(x)].
  Consider the functions [image: f] and [image: g] described below.
 	[image: x] 	[image: -3] 	[image: -2] 	[image: -1] 	[image: 0] 	[image: 1] 	[image: 2] 	[image: 3] 	[image: 4] 
 	[image: f(x)] 	[image: 0] 	[image: 4] 	[image: 2] 	[image: 4] 	[image: -2] 	[image: 0] 	[image: -2] 	[image: 4] 
  
  
 	[image: x] 	[image: -4] 	[image: -2] 	[image: 0] 	[image: 2] 	[image: 4] 
 	[image: g(x)] 	[image: 1] 	[image: 0] 	[image: 3] 	[image: 0] 	[image: 5] 
  
 	Evaluate [image: (g\circ f)(3)] and [image: (g\circ f)(0)].
 	State the domain and range of [image: (g\circ f)(x)].
 
 Show Solution 
 	[image: (g\circ f)(3)=g(f(3))=g(-2)=0]
 [image: (g\circ f)(0)=g(4)=5]
 	The domain of [image: g\circ f] is the set [image: \{-3,-2,-1,0,1,2,3,4\}]. Since the range of [image: f] is the set [image: \{-2,0,2,4\}], the range of [image: g\circ f] is the set [image: \{0,3,5\}].
 
   A store is advertising a sale of [image: 20\%] off all merchandise. Caroline has a coupon that entitles her to an additional [image: 15\%] off any item, including sale merchandise. If Caroline decides to purchase an item with an original price of [image: x] dollars, how much will she end up paying if she applies her coupon to the sale price? Solve this problem by using a composite function.
 Show Solution 
 Since the sale price is [image: 20\%] off the original price, if an item is [image: x] dollars, its sale price is given by [image: f(x)=0.80x]. Since the coupon entitles an individual to [image: 15\%] off the price of any item, if an item is [image: y] dollars, the price, after applying the coupon, is given by [image: g(y)=0.85y]. Therefore, if the price is originally [image: x] dollars, its sale price will be [image: f(x)=0.80x] and then its final price after the coupon will be [image: g(f(x))=0.85(0.80x)=0.68x].
   [ohm_question hide_question_numbers=1]33467[/ohm_question]
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				 	Calculate the derivatives of sine and cosine functions, including second derivatives and beyond
 	Determine the derivatives for basic trig functions like tangent, cotangent, secant, and cosecant
 
  Derivatives of the Sine and Cosine Functions
 Simple harmonic motion, a type of periodic motion where the restoring force is directly proportional to the displacement, is best described using trigonometric functions like sine and cosine. The behavior of these functions, particularly how they change over time, is crucial in understanding motion dynamics. The derivatives of sine and cosine functions help us compute velocity and acceleration at any point in the motion, linking theoretical physics closely with calculus.
 We begin our exploration of the derivative for the sine function by using the limit definition to estimate its derivative.
 For a function [image: f(x),] the derivative [image: f^{\prime}(x)] is defined as:
 [image: f^{\prime}(x)=\underset{h\to 0}{\lim}\dfrac{f(x+h)-f(x)}{h}]
 This allows us to approximate [image: f^{\prime}(x)] for small values of [image: h] as:
 [image: f^{\prime}(x)\approx \frac{f(x+h)-f(x)}{h}].
 Using [image: h=0.01], we estimate the derivative of the sine function as follows: 
 [image: \frac{d}{dx}(\sin x)\approx \dfrac{\sin(x+0.01)-\sin x}{0.01}]
 By defining [image: D(x)=\frac{\sin(x+0.01)-\sin x}{0.01}] and plotting this using a graphing tool, we observe an approximation to the derivative of [image: \sin x]. 
 [image: The function D(x) = (sin(x + 0.01) − sin x)/0.01 is graphed. It looks a lot like a cosine curve.]Figure 1. The resulting graph of [image: D(x)] closely resembles the cosine curve, which supports the derivative relationship. Upon examination, [image: D(x)] appears to be a close match to the graph of the cosine function. This graphical analysis provides a practical demonstration of the derivative, confirming that the derivative of [image: \sin x] is indeed [image: \cos x].
 If we were to follow the same steps to approximate the derivative of the cosine function, we would find that
 [image: \frac{d}{dx}(\cos x)=−\sin x]
 derivatives of [image: \sin x] and [image: \cos x]
 The derivative of the sine function [image: \sin x] is the cosine function [image: \cos x].
 [image: \frac{d}{dx}(\sin x)= \cos x]The derivative of the cosine function [image: \cos x] is the negative sine function [image: −\sin x].[image: \frac{d}{dx}(\cos x)=−\sin x]
 Proof
 
 Because the proofs for [image: \frac{d}{dx}(\sin x)= \cos x] and [image: \frac{d}{dx}(\cos x)=−\sin x] use similar techniques, we provide only the proof for [image: \frac{d}{dx}(\sin x)= \cos x].
 Before beginning, it is important to recall two important trigonometric limits:
 [image: \underset{h\to 0}{\lim}\frac{\sin h}{h}=1]  and  [image: \underset{h\to 0}{\lim}\frac{\cos h-1}{h}=0]
 The graphs of [image: y=\frac{(\sin h)}{h}] and [image: y=\frac{(\cos h-1)}{h}] are shown in Figure 2.
 [image: The function y = (sin h)/h and y = (cos h – 1)/h are graphed. They both have discontinuities on the y-axis.]Figure 2. These graphs show two important limits needed to establish the derivative formulas for the sine and cosine functions. We also recall the following trigonometric identity for the sine of the sum of two angles:
 [image: \sin(x+h)= \sin x \cos h+ \cos x \sin h]
 Now that we have gathered all the necessary equations and identities, we proceed with the proof.
 [image: \begin{array}{lllll}\frac{d}{dx} \sin x & =\underset{h\to 0}{\lim}\frac{\sin(x+h)-\sin x}{h} & & & \text{Apply the definition of the derivative.} \\ & =\underset{h\to 0}{\lim}\frac{\sin x \cos h+ \cos x \sin h- \sin x}{h} & & & \text{Use trig identity for the sine of the sum of two angles.} \\ & =\underset{h\to 0}{\lim}\left(\frac{\sin x \cos h-\sin x}{h}+\frac{\cos x \sin h}{h}\right) & & & \text{Regroup.} \\ & =\underset{h\to 0}{\lim}\left(\sin x\left(\frac{\cos h-1}{h}\right)+ \cos x\left(\frac{\sin h}{h}\right)\right) & & & \text{Factor out} \, \sin x \, \text{and} \, \cos x. \\ & = \sin x\cdot{0}+ \cos x\cdot{1} & & & \text{Apply trig limit formulas.} \\ & = \cos x & & & \text{Simplify.} \end{array}]
 [image: _\blacksquare]
 
 The figure below shows the relationship between the graph of [image: f(x)= \sin x] and its derivative [image: f^{\prime}(x)= \cos x]. Notice that at the points where [image: f(x)= \sin x] has a horizontal tangent, its derivative [image: f^{\prime}(x)= \cos x] takes on the value zero. We also see that where [image: f(x)= \sin x] is increasing, [image: f^{\prime}(x)= \cos x>0] and where [image: f(x)= \sin x] is decreasing, [image: f^{\prime}(x)= \cos x<0].
 [image: The functions f(x) = sin x and f’(x) = cos x are graphed. It is apparent that when f(x) has a maximum or a minimum that f’(x) = 0.]Figure 3. Where [image: f(x)] has a maximum or a minimum, [image: f^{\prime}(x)=0]. That is, [image: f^{\prime}(x)=0] where [image: f(x)] has a horizontal tangent. These points are noted with dots on the graphs. Find the derivative of [image: f(x)=5x^3 \sin x].
 Hint 
 Don’t forget to use the product rule.
  Show Solution Using the product rule, we have
 [image: \begin{array}{ll}f^{\prime}(x) & =\frac{d}{dx}(5x^3)\cdot \sin x+\frac{d}{dx}(\sin x)\cdot 5x^3 \\ & =15x^2\cdot \sin x+ \cos x\cdot 5x^3\end{array}]
 After simplifying, we obtain
 [image: f^{\prime}(x)=15x^2 \sin x+5x^3 \cos x].
   Find the derivative of [image: g(x)=\dfrac{\cos x}{4x^2}].
 Hint 
 Use the quotient rule.
  Show Solution 
 By applying the quotient rule, we have
 [image: g^{\prime}(x)=\frac{(−\sin x)4x^2-8x(\cos x)}{(4x^2)^2}].
 Simplifying, we obtain
 [image: \begin{array}{ll}g^{\prime}(x) & =\frac{-4x^2 \sin x-8x \cos x}{16x^4} \\ & =\frac{−x \sin x-2 \cos x}{4x^3} \end{array}]
   [ohm_question hide_question_numbers=1]205604[/ohm_question]
  A particle moves along a coordinate axis in such a way that its position at time [image: t] is given by [image: s(t)=2 \sin t-t] for [image: 0\le t\le 2\pi]. At what times is the particle at rest?
 Show Solution 
 To determine when the particle is at rest, set [image: s^{\prime}(t)=v(t)=0]. Begin by finding [image: s^{\prime}(t)]. We obtain
 [image: s^{\prime}(t)=2 \cos t-1],
 so we must solve
 [image: 2 \cos t-1=0] for [image: 0\le t\le 2\pi].
 The solutions to this equation are [image: t=\frac{\pi}{3}] and [image: t=\frac{5\pi}{3}]. 
 Thus the particle is at rest at times [image: t=\frac{\pi}{3}] and [image: t=\frac{5\pi}{3}].
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				Derivatives of Other Trigonometric Functions
 To further explore the derivatives of trigonometric functions, we use the quotient rule and other calculus techniques since the remaining trigonometric functions are expressed as quotients involving sine and cosine.
 Find the derivative of [image: f(x)= \tan x].
 Show Solution 
 Start by expressing [image: \tan x] as the quotient of [image: \sin x] and [image: \cos x]:
 [image: f(x)= \tan x=\dfrac{\sin x}{\cos x}]
 Now apply the quotient rule to obtain
 [image: f^{\prime}(x)=\dfrac{\cos x \cos x-(−\sin x)\sin x}{(\cos x)^2}]
 Simplifying, we obtain
 [image: f^{\prime}(x)=\dfrac{\cos^2 x+\sin^2 x}{\cos^2 x}]
 Recognizing that [image: \cos^2 x+\sin^2 x=1], by the Pythagorean Identity, we now have
 [image: f^{\prime}(x)=\dfrac{1}{\cos^2 x}]
 Finally, use the identity [image: \sec x=\dfrac{1}{\cos x}] to obtain
 [image: f^{\prime}(x)=\sec^2 x]
   Find the derivative of [image: f(x)= \cot x].
 Hint 
 Rewrite [image: \cot x] as [image: \frac{\cos x}{\sin x}] and use the quotient rule.
  Show Solution 
 [image: f^{\prime}(x)=−\csc^2 x]
   The derivatives of the remaining trigonometric functions may be obtained by using similar techniques. 
 derivatives of  [image: \tan x, \, \cot x, \, \sec x], and [image: \csc x]
 	Derivative of Tangent: [image: \frac{d}{dx}(\tan x)=\sec^2 x]
 
 	Derivative of Cotangent: [image: \frac{d}{dx}(\cot x)=−\csc^2 x]
 
 	Derivative of Secant: [image: \frac{d}{dx}(\sec x)= \sec x \tan x]
 
 	Derivative of Cosecant: [image: \frac{d}{dx}(\csc x)=−\csc x \cot x]
 
 
  As you navigate problems involving derivatives of trigonometric functions, don’t forget our handy table of trigonometric function values of common angles:
 	Angle 	[image: 0]  	[image: \frac{\pi }{6},\text{ or }{30}^{\circ}]  	[image: \frac{\pi }{4},\text{ or } {45}^{\circ }]  	[image: \frac{\pi }{3},\text{ or }{60}^{\circ }]  	[image: \frac{\pi }{2},\text{ or }{90}^{\circ }]  
 	Cosine 	[image: 1] 	[image: \frac{\sqrt{3}}{2}] 	[image: \frac{\sqrt{2}}{2}] 	[image: \frac{1}{2}] 	[image: 0] 
 	Sine 	[image: 0] 	[image: \frac{1}{2}] 	[image: \frac{\sqrt{2}}{2}] 	[image: \frac{\sqrt{3}}{2}] 	[image: 1] 
 	Tangent 	[image: 0] 	[image: \frac{\sqrt{3}}{3}] 	[image: 1] 	[image: \sqrt{3}] 	Undefined 
 	Secant 	[image: 1] 	[image: \frac{2\sqrt{3}}{3}] 	[image: \sqrt{2}] 	[image: 2] 	Undefined 
 	Cosecant 	Undefined 	[image: 2] 	[image: \sqrt{2}] 	[image: \frac{2\sqrt{3}}{3}] 	[image: 1] 
 	Cotangent 	Undefined 	[image: \sqrt{3}] 	[image: 1] 	[image: \frac{\sqrt{3}}{3}] 	[image: 0] 
  
  Find the equation of a line tangent to the graph of [image: f(x)= \cot x] at [image: x=\dfrac{\pi}{4}].
 Show Solution 
 To find the equation of the tangent line, we need a point and a slope at that point. To find the point, compute
 [image: f\left(\frac{\pi}{4}\right)= \cot \frac{\pi}{4}=1].
 Thus the tangent line passes through the point [image: \left(\frac{\pi}{4},1\right)]. Next, find the slope by finding the derivative of [image: f(x)= \cot x] and evaluating it at [image: \frac{\pi}{4}]:
 [image: f^{\prime}(x)=−\csc^2 x]  and  [image: f^{\prime}\left(\frac{\pi}{4}\right)=−\csc^2 \left(\frac{\pi}{4}\right)=-2].
 Using the point-slope equation of the line, we obtain
 [image: y-1=-2\left(x-\frac{\pi}{4}\right)]
 or equivalently,
 [image: y=-2x+1+\frac{\pi}{2}].
   Find the derivative of [image: f(x)= \csc x+x \tan x.]
 Show Solution 
 To find this derivative, we must use both the sum rule and the product rule. Using the sum rule, we find
 [image: f^{\prime}(x)=\frac{d}{dx}(\csc x)+\frac{d}{dx}(x \tan x)].
  
 In the first term, [image: \frac{d}{dx}(\csc x)=−\csc x \cot x], and by applying the product rule to the second term we obtain
 [image: \frac{d}{dx}(x \tan x)=(1)(\tan x)+(\sec^2 x)(x)].
  
 Therefore, we have
 [image: f^{\prime}(x)=−\csc x \cot x+ \tan x+x \sec^2 x].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=hvsQJFir7Qw%3Fcontrols%3D0%26start%3D1247%26end%3D1311%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.5 Derivatives of Trigonometric Functions (edited)” here (opens in new window).
   [ohm_question hide_question_numbers=1]33737[/ohm_question]
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				Higher-Order Derivatives of Trig Functions
 The higher-order derivatives of [image: \sin x] and [image: \cos x] exhibit a cyclical pattern, making it possible to predict any higher-order derivative of these functions. By understanding this repeating sequence, you can easily compute derivatives beyond the first order.
 To illustrate, let’s calculate the first four derivatives of [image: y= \sin x].
 [image: \begin{array}{ll}<br> \text{Start with the function itself:} & y = \sin x \\<br> \text{The first derivative of } \sin x \text{ is:} & \dfrac{dy}{dx} = \cos x \\<br> \text{The second derivative becomes:} & \dfrac{d^2y}{dx^2} = -\sin x \\<br> \text{Continuing, the third derivative is:} & \dfrac{d^3y}{dx^3} = -\cos x \\<br> \text{The fourth derivative brings us back to the starting function:} & \dfrac{d^4y}{dx^4} = \sin x<br> \end{array}]
 This sequence of derivatives demonstrates a pattern that repeats every four derivatives.
 	[image: \sin x] leads to [image: \cos x] 
 	[image: \cos x] leads to [image: - \sin x]
 	[image: - \sin x] leads to [image: - \cos x]
 	[image: - \cos x] leads back to [image: \sin x]
 
 Understanding this cyclical pattern not only simplifies calculations but also equips us with a systematic approach for determining any higher-order derivative.
 How to: Use the Cyclic Pattern to Determine Higher-Order Derivatives of Sine and Cosine Functions
 	Determine the order of the derivative you need (let’s call it [image: n]).
 	Calculate the remainder when [image: n] is divided by [image: 4]. The remainder determines the position in the cycle: 	Remainder 0: The derivative returns to the original function.
 	Remainder 1: The derivative progresses to the next function in the cycle.
 	Remainder 2: The derivative is the negative of the original function.
 	Remainder 3: The derivative is the negative of the next function in the cycle.
 
 
 
  	For [image: \sin x]: 	If [image: n] is divisible by [image: 4] (remainder [image: 0]), the [image: n]-th derivative is [image: \sin x].
 	If [image: n] divided by [image: 4] gives a remainder of [image: 1], it is [image: \cos x].
 	If the remainder is [image: 2], it is [image: - \sin x].
 	If the remainder is [image: 3], it is [image: - \cos x].
 
 
 	For [image: \cos x]: 	Remainder [image: 0]: [image: \cos x]
 	Remainder [image: 1]: [image: - \sin x]
 	Remainder [image: 2]: [image: - \cos x]
 	Remainder [image: 3]: [image: \sin x]
 
 
 
  Find [image: \dfrac{d^{74}}{dx^{74}}(\sin x)].
 Show Solution 
 We can see right away that for the [image: 74]th derivative of [image: \sin x, \, 74=4(18)+2], so,
 [image: \dfrac{d^{74}}{dx^{74}}(\sin x)=\dfrac{d^{72+2}}{dx^{72+2}}(\sin x)=\dfrac{d^2}{dx^2}(\sin x)=−\sin x].
   [ohm_question hide_question_numbers=1]224399[/ohm_question]
  A particle moves along a coordinate axis in such a way that its position at time [image: t] is given by [image: s(t)=2- \sin t].
 Find [image: v\left(\dfrac{\pi}{4}\right)]  and  [image: a\left(\dfrac{\pi}{4}\right)]. Compare these values and decide whether the particle is speeding up or slowing down.
 
 Show Solution 
 First find [image: v(t)=s^{\prime}(t)]: [image: v(t)=s^{\prime}(t)=−\cos t]. Thus, [image: v\left(\dfrac{\pi}{4}\right)=-\dfrac{1}{\sqrt{2}}].
 Next, find [image: a(t)=v^{\prime}(t)].
 Thus, [image: a(t)=v^{\prime}(t)= \sin t] and we have [image: a\left(\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}].
 Since [image: v\left(\dfrac{\pi}{4}\right)=-\dfrac{1}{\sqrt{2}}<0] and [image: a\left(\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}>0], we see that velocity and acceleration are acting in opposite directions; that is, the object is being accelerated in the direction opposite to the direction in which it is traveling.
 Consequently, the particle is slowing down.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=hvsQJFir7Qw%3Fcontrols%3D0%26start%3D1492%26end%3D1573%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.5 Derivatives of Trigonometric Functions (edited)” here (opens in new window).
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				 	Calculate the derivatives of sine and cosine functions, including second derivatives and beyond
 	Determine the derivatives for basic trig functions like tangent, cotangent, secant, and cosecant
 
  Diving Board Dynamics: Unveiling the Secrets of Oscillation
 [image: Point of View of a Person on a Diving Board]
 After a swimmer jumps from a diving board, the end of the board will oscillate (bounce up and down).  This oscillation can be modeled by the trigonometric function [image: s(t)=-15\cos{t}] centimeters [image: t] seconds after the jump.
 [ohm_question hide_question_numbers=1]287934[/ohm_question]
  [ohm_question hide_question_numbers=1]287935[/ohm_question]
  [ohm_question hide_question_numbers=1]287936[/ohm_question]
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				 	Explain and use the chain rule
 	Use the chain rule along with other rules to differentiate functions involving powers, products, quotients, and trigonometry
 	Use the chain rule to find derivatives when multiple functions are nested together
 
  Deriving the Chain Rule
 The process of differentiating basic functions like [image: x^n, \, \sin x,], and [image: \cos x] as well as products and quotients, has already been established. However, these techniques alone do not address differentiating compositions of functions, such as [image: h(x)= \sin (x^3)] or [image: k(x)=\sqrt{3x^2+1}]. To derive these, we utilize the chain rule.
 The chain rule simplifies the process of differentiating composite functions by breaking down a function into simpler parts. Rather than differentiating the entire composite directly, the chain rule allows us to differentiate each part independently. Specifically, for a composite function [image: h(x)=f(g(x))], the derivative is given by the derivative of the outer function [image: f] evaluated at the inner function [image: g(x)], multiplied by the derivative of the inner function:
 [image: h^{\prime} (x)=f^{\prime} (g(x)) \cdot g^{\prime} (x)]
 To contextualize this, consider [image: h(x)= \sin (x^3)].
 First, identify the inner function [image: g(x)=x^3] and the outer function[image: f(u)= \sin u], where [image: u=g(x)]. Applying the chain rule, which states the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function, we proceed as follows:
 	Differentiate the inner function [image: g(x)]:[image: g^{\prime} (x) = 3x^2]
 	Differentiate the outer function [image: f(u)] with respect to [image: u]:[image: f^{\prime}(u) = \cos u]
 	Since [image: u=g(x)=x^3], substituting that back in, we get:[image: f^{\prime} (u) = \cos{(x^3)}]
 	Apply the chain rule:[image: h^{\prime} (x)=f^{\prime} (g(x)) \cdot g^{\prime} (x)= \cos{(x^3)} \cdot 3x^2]
 
 Therefore, the derivative of [image: h(x)= \sin (x^3)] is:[image: h^{\prime} (x)= 3x^2\cos{(x^3)}]
 Now that we’ve illustrated how to apply the chain rule with a specific example, let’s explore the general formula of the chain rule and see how it applies to various types of composite functions. An informal proof of this concept will follow at the end of this section.
 the chain rule
 Let [image: f] and [image: g] be functions. For all [image: x] in the domain of [image: g] for which [image: g] is differentiable at [image: x] and [image: f] is differentiable at [image: g(x)], the derivative of the composite function [image: h(x)=(f\circ g)(x)=f(g(x))] is given by:
 [image: h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)]
  
 Alternatively, if [image: y] is a function of [image: u], and [image: u] is a function of [image: x], then
 [image: \frac{dy}{dx}=\frac{dy}{du} \cdot \frac{du}{dx}]
  [ohm_question hide_question_numbers=1]288385[/ohm_question]
  For more information, check out this interactive on The Intuitive Notion of the Chain Rule.
  How to: Apply the Chain Rule
 	Identify the Functions: Begin by identifying the inner function [image: g(x)] and the outer function [image: f(u)], where [image: u=g(x)].
 	Derivative of the Outer Function: Compute the derivative of the outer function, [image: f^{\prime}(u)], and evaluate it at [image: g(x)] to obtain [image: f^{\prime}(g(x))].
 	Derivative of the Inner Function: Calculate the derivative of the inner function [image: g^{\prime}(x)].
 	Apply the Chain Rule: Combine these results to find [image: h^{\prime}(x)] as follows: [image: h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)]
 
  When applying the chain rule to compositions involving multiple functions, remember that each function contributes to the derivative. Start from the innermost function and work outward, applying the chain rule iteratively. The derivative of a composite involving three functions, for example, involves taking derivatives step by step, moving from the innermost to the outermost function. Importantly, derivatives are not evaluated at derivatives; they are evaluated at functions.
  [ohm_question hide_question_numbers=1]206069[/ohm_question]
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				Combining the Chain Rule With Other Rules
 The Chain and Power Rules Combined
 We can now apply the chain rule to composite functions, but note that we often need to use it with other rules. For example, to find derivatives of functions of the form [image: h(x)=(g(x))^n], we need to use the chain rule combined with the power rule. To do so, we can think of [image: h(x)=(g(x))^n] as [image: f(g(x))] where [image: f(x)=x^n]. Then [image: f^{\prime}(x)=nx^{n-1}]. Thus, [image: f^{\prime}(g(x))=n(g(x))^{n-1}]. This leads us to the derivative of a power function using the chain rule,
 [image: h^{\prime}(x)=n(g(x))^{n-1}g^{\prime}(x)]
 power rule for composition of functions
 For all values of [image: x] for which the derivative is defined, if
 [image: h(x)=(g(x))^n]
  
 Then
 [image: h^{\prime}(x)=n(g(x))^{n-1}g^{\prime}(x)]
  Find the derivative of [image: h(x)=\dfrac{1}{(3x^2+1)^2}]
 Show Solution 
 First, rewrite [image: h(x)=\frac{1}{(3x^2+1)^2}=(3x^2+1)^{-2}].
 Applying the power rule with [image: g(x)=3x^2+1], we have
 [image: h^{\prime}(x)=-2(3x^2+1)^{-3}(6x)].
 Rewriting back to the original form gives us
 [image: h^{\prime}(x)=\frac{-12x}{(3x^2+1)^3}].
   Find the derivative of [image: h(x)=\sin^3 x]
 Show Solution 
 First recall that [image: \sin^3 x=(\sin x)^3], so we can rewrite [image: h(x)= \sin^3 x] as [image: h(x)=(\sin x)^3].
 Applying the power rule with [image: g(x)= \sin x], we obtain
 [image: h^{\prime}(x)=3(\sin x)^2 \cos x=3 \sin^2 x \cos x].
   Find the equation of a line tangent to the graph of [image: h(x)=\dfrac{1}{(3x-5)^2}] at [image: x=2].
 Show Solution 
 Because we are finding an equation of a line, we need a point. The [image: x]-coordinate of the point is 2. To find the [image: y]-coordinate, substitute 2 into [image: h(x)]. Since [image: h(2)=\frac{1}{(3(2)-5)^2}=1], the point is [image: (2,1)].
 For the slope, we need [image: h^{\prime}(2)]. To find [image: h^{\prime}(x)], first we rewrite [image: h(x)=(3x-5)^{-2}] and apply the power rule to obtain
 [image: h^{\prime}(x)=-2(3x-5)^{-3}(3)=-6(3x-5)^{-3}].
 By substituting, we have [image: h^{\prime}(2)=-6(3(2)-5)^{-3}=-6]. Therefore, the line has equation [image: y-1=-6(x-2)]. Rewriting, the equation of the line is [image: y=-6x+13].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=CE8oqftYNvQ%3Fcontrols%3D0%26start%3D239%26end%3D341%26autoplay%3D0
 Closed Captioning and Transcript Information for Video 
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.6 The Chain Rule” here (opens in new window).
   [ohm_question hide_question_numbers=1]205911[/ohm_question]
  The Chain and Trigonometric Functions Combined
 Now that we can combine the chain rule and the power rule, we examine how to combine the chain rule with the other rules we have learned. In particular, we can use it with the formulas for the derivatives of trigonometric functions or with the product rule.
 Find the derivative of [image: h(x)= \cos (g(x))].
 Show Solution Think of [image: h(x)= \cos (g(x))] as [image: f(g(x))] where [image: f(x)= \cos x]. Since [image: f^{\prime}(x)=−\sin x] we have [image: f^{\prime}(g(x))=−\sin (g(x))]. Then we do the following calculation.
 [image: \begin{array}{lllll}h^{\prime}(x) & =f^{\prime}(g(x))g^{\prime}(x) & & & \text{Apply the chain rule.} \\ & =−\sin (g(x))g^{\prime}(x) & & & \text{Substitute} \, f^{\prime}(g(x))=−\sin (g(x)) \end{array}]
 Thus, the derivative of [image: h(x)= \cos (g(x))] is given by [image: h^{\prime}(x)=−\sin (g(x))g^{\prime}(x)].
   In the following example we apply the rule that we have just derived.
 Find the derivative of [image: h(x)= \cos (5x^2)].
 Show Solution Let [image: g(x)=5x^2]. Then [image: g^{\prime}(x)=10x]. Using the result from the previous example,
 [image: \begin{array}{ll}h^{\prime}(x) & =-\sin (5x^2) \cdot 10x \\ & =-10x \sin (5x^2) \end{array}]
   Find the derivative of [image: h(x)= \sec (4x^5+2x)].
 Show Solution 
 Apply the chain rule to [image: h(x)= \sec (g(x))] to obtain:
 [image: h^{\prime}(x)= \sec (g(x)) \tan (g(x))g^{\prime}(x)].
 In this problem, [image: g(x)=4x^5+2x], so we have [image: g^{\prime}(x)=20x^4+2]. Therefore, we obtain,
 [image: \begin{array}{ll}h^{\prime}(x) & = \sec (4x^5+2x) \tan (4x^5+2x)(20x^4+2) \\ & =(20x^4+2) \sec (4x^5+2x) \tan (4x^5+2x) \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=CE8oqftYNvQ%3Fcontrols%3D0%26start%3D411%26end%3D455%26autoplay%3D0
 ]For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.6 The Chain Rule” here (opens in new window).
   At this stage, we present a collection of derivative formulas derived by applying the chain rule along with the standard derivatives of trigonometric functions. The derivation methods for these formulas are analogous to those demonstrated in the previous examples.
 For ease of learning and recall, we have included these formulas in Leibniz’s notation, which some students may find more intuitive. Later in this section, we explore the application of the chain rule in Leibniz’s notation in greater detail.
 It is important to note that memorizing these formulas as distinct entities is not essential; they are all manifestations of the chain rule applied to well-established derivative formulas.
  using the chain rule with trigonometric functions
 For all values of [image: x] for which the derivative is defined,
 [image: \begin{array}{llll}\frac{d}{dx}(\sin (g(x)))= \cos (g(x))g^{\prime}(x) & & & \frac{d}{dx} \sin u= \cos u\frac{du}{dx} \\ \frac{d}{dx}(\cos (g(x)))=−\sin (g(x))g^{\prime}(x) & & & \frac{d}{dx} \cos u=−\sin u\frac{du}{dx} \\ \frac{d}{dx}(\tan (g(x)))= \sec^2 (g(x))g^{\prime}(x) & & & \frac{d}{dx} \tan u=\sec^2 u\frac{du}{dx} \\ \frac{d}{dx}(\cot (g(x)))=−\csc^2 (g(x))g^{\prime}(x) & & & \frac{d}{dx} \cot u=−\csc^2 u\frac{du}{dx} \\ \frac{d}{dx}(\sec (g(x)))= \sec (g(x)) \tan (g(x))g^{\prime}(x) & & & \frac{d}{dx} \sec u= \sec u \tan u\frac{du}{dx} \\ \frac{d}{dx}(\csc (g(x)))=−\csc (g(x)) \cot (g(x))g^{\prime}(x) & & & \frac{d}{dx} \csc u=−\csc u \cot u\frac{du}{dx} \end{array}]
  The Chain and Product Rules Combined
 When tackling calculus problems involving products of composite functions, combining the chain and product rules proves indispensable. This approach allows for the systematic differentiation of functions where both rules are necessary to compute the derivative accurately.
 Find the derivative of [image: h(x)=(2x+1)^5(3x-2)^7]
 Show Solution 
 First apply the product rule, then apply the chain rule to each term of the product.
 [image: \begin{array}{lllll}h^{\prime}(x) & =\frac{d}{dx}((2x+1)^5) \cdot (3x-2)^7+\frac{d}{dx}((3x-2)^7) \cdot (2x+1)^5 & & & \text{Apply the product rule.} \\ & =5(2x+1)^4 \cdot 2 \cdot (3x-2)^7+7(3x-2)^6 \cdot 3 \cdot (2x+1)^5 & & & \text{Apply the chain rule.} \\ & =10(2x+1)^4(3x-2)^7+21(3x-2)^6(2x+1)^5 & & & \text{Simplify.} \\ & =(2x+1)^4(3x-2)^6(10(3x-2)+21(2x+1)) & & & \text{Factor out} \, (2x+1)^4(3x-2)^6. \\ & =(2x+1)^4(3x-2)^6(72x+1) & & & \text{Simplify.} \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=CE8oqftYNvQ%3Fcontrols%3D0%26start%3D457%26end%3D630%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.6 The Chain Rule” here (opens in new window).
   [ohm_question hide_question_numbers=1]206007[/ohm_question]
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				Applying the Chain Rule Multiple Times
 We can integrate the chain rule with other differentiation rules to handle functions composed of multiple functions. When differentiating compositions that involve three or more functions, it’s often necessary to apply the chain rule multiple times. This allows us to systematically derive the derivative without memorizing complex formulas, as the application of the chain rule can be repeated as needed.
 In a general case, consider a function [image: k(x)=h(f(g(x)))].
 First, apply the chain rule to find:
 [image: k^{\prime}(x)=\frac{d}{dx}(h(f(g(x))))=h^{\prime}(f(g(x))) \cdot \frac{d}{dx}(f(g(x)))]
 Applying the chain rule once again gives us:
 [image: k^{\prime}(x)=h^{\prime}(f(g(x)))f^{\prime}(g(x))g^{\prime}(x)]
 chain tule for a composition of three functions
 For all values of [image: x] for which the function is differentiable, if
 [image: k(x)=h(f(g(x)))],
 then
 [image: k^{\prime}(x)=h^{\prime}(f(g(x)))f^{\prime}(g(x))g^{\prime}(x)]
 In other words, we are applying the chain rule twice.
  Notice that the derivative of the composition of three functions has three parts. (Similarly, the derivative of the composition of four functions has four parts, and so on.) Also, remember, we always work from the outside in, taking one derivative at a time.
  Find the derivative of [image: k(x)=\cos^4 (7x^2+1)]
 Show Solution 
 First, rewrite [image: k(x)] as
 [image: k(x)=(\cos(7x^2+1))^4]
 Then apply the chain rule several times.
 [image: \begin{array}{lllll}k^{\prime}(x) & =4(\cos(7x^2+1))^3(\frac{d}{dx}\cos(7x^2+1)) & & & \text{Apply the chain rule.} \\ & =4(\cos(7x^2+1))^3(−\sin(7x^2+1))(\frac{d}{dx}(7x^2+1)) & & & \text{Apply the chain rule.} \\ & =4(\cos(7x^2+1))^3(−\sin(7x^2+1))(14x) & & & \text{Apply the chain rule.} \\ & =-56x \sin(7x^2+1) \cos^3 (7x^2+1) & & & \text{Simplify.} \end{array}]
   Don’t forget that [image: {\cos }^{n}(t)] is a commonly used shorthand notation for [image: {\left(\cos \left(t\right)\right)}^{n}]. When we write it without the shorthand notation, we can clearly see why the chain rule is necessary in these situations.
  [ohm_question hide_question_numbers=1]206008[/ohm_question]
  A particle moves along a coordinate axis. Its position at time [image: t] is given by [image: s(t)= \sin (2t)+ \cos (3t)]. What is the velocity of the particle at time [image: t=\frac{\pi}{6}]?
 Show Solution 
 To find [image: v(t)], the velocity of the particle at time [image: t], we must differentiate [image: s(t)]. Thus,
 [image: v(t)=s^{\prime}(t)=2 \cos(2t)-3 \sin(3t)].
  
 Substituting [image: t=\frac{\pi}{6}] into [image: v(t)], we obtain [image: v(\frac{\pi}{6})=-2].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=CE8oqftYNvQ%3Fcontrols%3D0%26start%3D725%26end%3D835%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.6 The Chain Rule” here (opens in new window).
   At this point, we present a very informal proof of the chain rule.
 Proof
 
 For simplicity’s sake we ignore certain issues: For example, we assume that [image: g(x)\ne g(a)] for [image: x\ne a] in some open interval containing [image: a]. We begin by applying the limit definition of the derivative to the function [image: h(x)] to obtain [image: h^{\prime}(a)]:
 [image: h^{\prime}(a)=\underset{x\to a}{\lim}\dfrac{f(g(x))-f(g(a))}{x-a}]
  
 Rewriting, we obtain
 [image: h^{\prime}(a)=\underset{x\to a}{\lim}\dfrac{f(g(x))-f(g(a))}{g(x)-g(a)} \cdot \dfrac{g(x)-g(a)}{x-a}]
 Although it is clear that
 [image: \underset{x\to a}{\lim}\dfrac{g(x)-g(a)}{x-a}=g^{\prime}(a)],
 it is not obvious that
 [image: \underset{x\to a}{\lim}\dfrac{f(g(x))-f(g(a))}{g(x)-g(a)}=f^{\prime}(g(a))]
 To see that this is true, first recall that since [image: g] is differentiable at [image: a, \, g] is also continuous at [image: a]. Thus,
 [image: \underset{x\to a}{\lim}g(x)=g(a)].
 Next, make the substitution [image: y=g(x)] and [image: b=g(a)] and use change of variables in the limit to obtain
 [image: \underset{x\to a}{\lim}\dfrac{f(g(x))-f(g(a))}{g(x)-g(a)}=\underset{y\to b}{\lim}\dfrac{f(y)-f(b)}{y-b}=f^{\prime}(b)=f^{\prime}(g(a))].
 Finally,
 [image: h^{\prime}(a)=\underset{x\to a}{\lim}\dfrac{f(g(x))-f(g(a))}{g(x)-g(a)} \cdot \dfrac{g(x)-g(a)}{x-a}=f^{\prime}(g(a))g^{\prime}(a)]
 [image: _\blacksquare]
 
 Let [image: h(x)=f(g(x))]. If [image: g(1)=4, \, g^{\prime}(1)=3], and [image: f^{\prime}(4)=7], find [image: h^{\prime}(1)].
 Show Solution 
 Use the chain rule, then substitute.
 [image: \begin{array}{lllll}h^{\prime}(1) & =f^{\prime}(g(1))g^{\prime}(1) & & & \text{Apply the chain rule.} \\ & =f^{\prime}(4) \cdot 3 & & & \text{Substitute} \, g(1)=4 \, \text{and} \, g^{\prime}(1)=3. \\ & =7 \cdot 3 & & & \text{Substitute} \, f^{\prime}(4)=7. \\ & =21 & & & \text{Simplify.} \end{array}]
  
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=CE8oqftYNvQ%3Fcontrols%3D0%26start%3D842%26end%3D920%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.6 The Chain Rule” here (opens in new window).
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				The Chain Rule Using Leibniz’s Notation
 As with other derivatives that we have seen, we can express the chain rule using Leibniz’s notation. This notation for the chain rule is used heavily in physics applications.
 For [image: h(x)=f(g(x))], let [image: u=g(x)] and [image: y=h(x)=g(u)]. Thus,
 [image: h^{\prime}(x)=\frac{dy}{dx}, \, f^{\prime}(g(x))=f^{\prime}(u)=\frac{dy}{du}], and [image: g^{\prime}(x)=\frac{du}{dx}]
 Consequently,
 [image: \frac{dy}{dx}=h^{\prime}(x)=f^{\prime}(g(x))g^{\prime}(x)=\frac{dy}{du} \cdot \frac{du}{dx}]
 chain rule using Leibniz’s notation
 If [image: y] is a function of [image: u], and [image: u] is a function of [image: x], then
 [image: \dfrac{dy}{dx}=\dfrac{dy}{du} \cdot \dfrac{du}{dx}]
  Find the derivative of [image: y=\left(\dfrac{x}{3x+2}\right)^5]
 Show Solution 
 First, let [image: u=\frac{x}{3x+2}]. Thus, [image: y=u^5]. Next, find [image: \frac{du}{dx}] and [image: \frac{dy}{du}].
 Using the quotient rule,
 [image: \frac{du}{dx}=\frac{2}{(3x+2)^2}]
 and
 [image: \frac{dy}{du}=5u^4]
 Finally, we put it all together.
 [image: \begin{array}{lllll}\frac{dy}{dx} & =\frac{dy}{du} \cdot \frac{du}{dx} & & & \text{Apply the chain rule.} \\ & =5u^4 \cdot \frac{2}{(3x+2)^2} & & & \text{Substitute} \, \frac{dy}{du}=5u^4 \, \text{and} \, \frac{du}{dx}=\frac{2}{(3x+2)^2}. \\ & =5(\frac{x}{3x+2})^4 \cdot \frac{2}{(3x+2)^2} & & & \text{Substitute} \, u=\frac{x}{3x+2}. \\ & =\frac{10x^4}{(3x+2)^6} & & & \text{Simplify.} \end{array}]
 It is important to remember that, when using the Leibniz form of the chain rule, the final answer must be expressed entirely in terms of the original variable given in the problem.
   Find the derivative of [image: y= \tan (4x^2-3x+1)]
 Show Solution 
 First, let [image: u=4x^2-3x+1]. Then [image: y= \tan u]. Next, find [image: \frac{du}{dx}] and [image: \frac{dy}{du}]:
 [image: \frac{du}{dx}=8x-3] and [image: \frac{dy}{du}=\sec^2 u].
 Finally, we put it all together.
 [image: \begin{array}{lllll}\frac{dy}{dx} & =\frac{dy}{du} \cdot \frac{du}{dx} & & & \text{Apply the chain rule.} \\ & = \sec^2 u \cdot (8x-3) & & & \text{Use} \, \frac{du}{dx}=8x-3 \, \text{and} \, \frac{dy}{du}= \sec^2 u. \\ & = \sec^2 (4x^2-3x+1) \cdot (8x-3) & & & \text{Substitute} \, u=4x^2-3x+1. \end{array}]
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				 	Explain and use the chain rule
 	Use the chain rule along with other rules to differentiate functions involving powers, products, quotients, and trigonometry
 	Use the chain rule to find derivatives when multiple functions are nested together
 
  Navigating the Chain Rule: Identifying and Applying Composite Function Derivatives
 The chain rule is a fundamental concept in calculus that allows us to differentiate composite functions. In real-world applications, many complex functions are composed of simpler functions, making the chain rule an essential tool for solving a wide range of problems in physics, engineering, and economics. However, recognizing when to apply the chain rule and how to break down composite functions can be challenging. This apply-it task will help you develop your skills in identifying situations where the chain rule is necessary and guide you through the process of applying it to increasingly complex functions
 [ohm_question hide_question_numbers=1]287927[/ohm_question]
  [ohm_question hide_question_numbers=1]287928[/ohm_question]
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				 	Find the derivative of an inverse function
 	Identify the derivatives for inverse trig functions like arcsine, arccosine, and arctangent
 
  Derivatives of Various Inverse Functions
 Understanding the relationship between the derivatives of a function and its inverse is crucial when extending the application of derivatives to inverse functions without needing the limit definition every time. We start by exploring how the derivative of a function and its inverse are interlinked.
 If a function [image: f(x)] is both invertible and differentiable, it logically follows that its inverse [image: f^{−1}(x)] should also be differentiable.
 Consider the function [image: f(x)] and its inverse [image: f^{−1}(x)]  as depicted in Figure 1, where the point on the graph of [image: (a,f ^{−}1 (a))] on the graph of [image: f^{−1}(x)] and the point [image: (f^{−1}(a), a)] on the graph of [image: f(x)] demonstrate this relationship.
 [image: This graph shows a function f(x) and its inverse f−1(x). These functions are symmetric about the line y = x. The tangent line of the function f(x) at the point (f−1(a), a) and the tangent line of the function f−1(x) at (a, f−1(a)) are also symmetric about the line y = x. Specifically, if the slope of one were p/q, then the slope of the other would be q/p. Lastly, their derivatives are also symmetric about the line y = x.]Figure 1. The tangent lines of a function and its inverse are related; so, too, are the derivatives of these functions. At these points, the tangent lines of the function and its inverse have reciprocal slopes due to their symmetrical relationship about the line [image: y=x]. Specifically, if the slope of the tangent at [image: a] on [image: f(x)]  is [image: f ^{\prime} (f^{ −1} (a))= \frac{q}{p} ​], then the slope at [image: f^{−1}(a)] on [image: f^{−1}(x)] must be [image: \frac{q}{p}]. This is illustrated in the reciprocal nature of their slopes, confirming that:
 [image: (f^{-1})^{\prime}(a)=\dfrac{1}{f^{\prime}(f^{-1}(a))}]
 We summarize this result in the following theorem.
 inverse function theorem
 Let [image: f(x)] be a function that is both invertible and differentiable. Let [image: y=f^{-1}(x)] be the inverse of [image: f(x)]. For all [image: x] satisfying [image: f^{\prime}(f^{-1}(x))\ne 0],
 [image: \frac{dy}{dx}=\frac{d}{dx}(f^{-1}(x))=(f^{-1})^{\prime}(x)=\dfrac{1}{f^{\prime}(f^{-1}(x))}]
  
 Alternatively, if [image: y=g(x)] is the inverse of [image: f(x)], then
 [image: g^{\prime}(x)=\dfrac{1}{f^{\prime}(g(x))}]
  Use the inverse function theorem to find the derivative of [image: g(x)=\dfrac{x+2}{x}]. Compare the resulting derivative to that obtained by differentiating the function directly.
 Show Solution 
 The inverse of [image: g(x)=\frac{x+2}{x}] is [image: f(x)=\frac{2}{x-1}]. Since [image: g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}], begin by finding [image: f^{\prime}(x)].
 Thus,
 [image: f^{\prime}(x)=\frac{-2}{(x-1)^2}] and [image: f^{\prime}(g(x))=\frac{-2}{(g(x)-1)^2}=\frac{-2}{(\frac{x+2}{x}-1)^2}=-\frac{x^2}{2}]
 Finally,
 [image: g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}=-\frac{2}{x^2}]
 We can verify that this is the correct derivative by applying the quotient rule to [image: g(x)] to obtain
 [image: g^{\prime}(x)=-\frac{2}{x^2}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=0dlA5QJZYsw%3Fcontrols%3D0%26start%3D40%26end%3D210%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.7 Derivatives of Inverse Functions (edited)” here (opens in new window).
   Find the derivative of [image: g(x)=\sqrt[5]{x}] by applying the inverse function theorem. Hint 
 Use the fact that [image: g(x)] is the inverse of [image: f(x)=x^5].
  Show Solution 
 [image: g(x)=\frac{1}{5}x^{−4/5}]
   From the previous example, we see that we can use the inverse function theorem to extend the power rule to exponents of the form [image: \frac{1}{n}], where [image: n] is a positive integer. This extension will ultimately allow us to differentiate [image: x^q], where [image: q] is any rational number.
 extending the power rule to rational exponents
 The power rule may be extended to rational exponents. That is, if [image: n] is a positive integer, then
 [image: \frac{d}{dx}(x^{1/n})=\frac{1}{n}x^{(1/n)-1}]
  
 Also, if [image: n] is a positive integer and [image: m] is an arbitrary integer, then
 [image: \frac{d}{dx}(x^{m/n})=\frac{m}{n}x^{(m/n)-1}]
  Proof
 
 The function [image: g(x)=x^{1/n}] is the inverse of the function [image: f(x)=x^n]. Since [image: g^{\prime}(x)=\dfrac{1}{f^{\prime}(g(x))}], begin by finding [image: f^{\prime}(x)]. Thus,
 [image: f^{\prime}(x)=nx^{n-1}] and [image: f^{\prime}(g(x))=n(x^{1/n})^{n-1}=nx^{(n-1)/n}].
  
 Finally,
 [image: g^{\prime}(x)=\dfrac{1}{nx^{(n-1)/n}}=\frac{1}{n}x^{(1-n)/n}=\frac{1}{n}x^{(1/n)-1}].
  
 To differentiate [image: x^{m/n}] we must rewrite it as [image: (x^{1/n})^m] and apply the chain rule. Thus,
 [image: \frac{d}{dx}(x^{m/n})=\frac{d}{dx}((x^{1/n})^m)=m(x^{1/n})^{m-1} \cdot \frac{1}{n}x^{(1/n)-1}=\frac{m}{n}x^{(m/n)-1}].
 [image: _\blacksquare]
 Find the equation of the line tangent to the graph of [image: y=x^{\frac{2}{3}}] at [image: x=8].
 Show Solution 
 First find [image: \frac{dy}{dx}] and evaluate it at [image: x=8]. Since
 [image: \frac{dy}{dx}=\frac{2}{3}x^{-1/3}] and [image: \frac{dy}{dx}|_{x=8}=\frac{1}{3}]
 the slope of the tangent line to the graph at [image: x=8] is [image: \frac{1}{3}].
 Substituting [image: x=8] into the original function, we obtain [image: y=4]. Thus, the tangent line passes through the point [image: (8,4)]. Substituting into the point-slope formula for a line and solving for [image: y], we obtain the tangent line
 [image: y=\frac{1}{3}x+\frac{4}{3}].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=0dlA5QJZYsw%3Fcontrols%3D0%26start%3D316%26end%3D425%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.7 Derivatives of Inverse Functions (edited)” here (opens in new window).
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				Derivatives of Inverse Trigonometric Functions
 We now shift our focus to the derivatives of inverse trigonometric functions, which play a crucial role in the study of integration later in this course. Intriguingly, unlike their trigonometric counterparts, the derivatives of inverse trigonometric functions are algebraic. This is a notable deviation from previous patterns observed, where derivatives of algebraic functions typically remained algebraic, and derivatives of trigonometric functions were also trigonometric. This departure underscores an important mathematical insight: the derivative of a function does not necessarily share the same type as the original function.
 Use the inverse function theorem to find the derivative of [image: g(x)=\sin^{-1} x].
 Show Solution 
 Since for [image: x] in the interval [image: [-\frac{\pi}{2},\frac{\pi}{2}], \, f(x)= \sin x] is the inverse of [image: g(x)= \sin^{-1} x], begin by finding [image: f^{\prime}(x)].
 Since:
 [image: f^{\prime}(x)= \cos x] and [image: f^{\prime}(g(x))= \cos (\sin^{-1} x)=\sqrt{1-x^2}],
 we see that:
 [image: g^{\prime}(x)=\frac{d}{dx}(\sin^{-1} x)=\frac{1}{f^{\prime}(g(x))}=\frac{1}{\sqrt{1-x^2}}]
 Analysis
 To see that [image: \cos (\sin^{-1} x)=\sqrt{1-x^2}], consider the following argument. Set [image: \sin^{-1} x=\theta]. In this case, [image: \sin \theta =x] where [image: -\frac{\pi}{2}\le \theta \le \frac{\pi}{2}]. We begin by considering the case where [image: 0<\theta <\frac{\pi}{2}]. Since [image: \theta] is an acute angle, we may construct a right triangle having acute angle [image: \theta], a hypotenuse of length 1, and the side opposite angle [image: \theta] having length [image: x]. From the Pythagorean theorem, the side adjacent to angle [image: \theta] has length [image: \sqrt{1-x^2}]. This triangle is shown in Figure 2. Using the triangle, we see that [image: \cos (\sin^{-1} x)= \cos \theta =\sqrt{1-x^2}].
 [image: A right triangle with angle θ, opposite side x, hypotenuse 1, and adjacent side equal to the square root of the quantity (1 – x2).]Figure 2. Using a right triangle having acute angle [image: \theta], a hypotenuse of length 1, and the side opposite angle [image: \theta] having length [image: x], we can see that [image: \cos (\sin^{-1} x)= \cos \theta =\sqrt{1-x^2}]. In the case where [image: -\frac{\pi}{2}<\theta <0], we make the observation that [image: 0<-\theta<\frac{\pi}{2}] and hence [image: \cos (\sin^{-1} x)= \cos \theta = \cos (−\theta )=\sqrt{1-x^2}].
 Now if [image: \theta =\frac{\pi}{2}] or [image: \theta =-\frac{\pi}{2}, \, x=1] or [image: x=-1], and since in either case [image: \cos \theta =0] and [image: \sqrt{1-x^2}=0], we have
 [image: \cos (\sin^{-1} x)= \cos \theta =\sqrt{1-x^2}]
 Consequently, in all cases, [image: \cos (\sin^{-1} x)=\sqrt{1-x^2}].
   Apply the chain rule to find the derivative of [image: h(x)=\sin^{-1} (g(x))] and use this result to find the derivative of [image: h(x)=\sin^{-1}(2x^3)].
 Show Solution 
 Applying the chain rule to [image: h(x)=\sin^{-1} (g(x))], we have
 [image: h^{\prime}(x)=\dfrac{1}{\sqrt{1-(g(x))^2}}g^{\prime}(x)].
  
 Now let [image: g(x)=2x^3], so [image: g^{\prime}(x)=6x^{2}]. Substituting into the previous result, we obtain
 [image: \begin{array}{ll} h^{\prime}(x) & =\dfrac{1}{\sqrt{1-4x^6}} \cdot 6x^{2} \\ & =\dfrac{6x^{2}}{\sqrt{1-4x^6}} \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=0dlA5QJZYsw%3Fcontrols%3D0%26start%3D628%26end%3D723%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.7 Derivatives of Inverse Functions (edited)” here (opens in new window).
   The derivatives of the remaining inverse trigonometric functions may also be found by using the inverse function theorem. These formulas are provided in the following theorem.
 derivatives of inverse trigonometric functions
 [image: \begin{array}{lllll}\frac{d}{dx}(\sin^{-1} x)=\large \frac{1}{\sqrt{1-x^2}} & & & & \frac{d}{dx}(\cos^{-1} x)=\large \frac{-1}{\sqrt{1-x^2}} \\ \frac{d}{dx}(\tan^{-1} x)=\large \frac{1}{1+x^2} & & & & \frac{d}{dx}(\cot^{-1} x)=\large \frac{-1}{1+x^2} \\ \frac{d}{dx}(\sec^{-1} x)=\large \frac{1}{|x|\sqrt{x^2-1}} & & & & \frac{d}{dx}(\csc^{-1} x)=\large \frac{-1}{|x|\sqrt{x^2-1}} \end{array}]
  Find the derivative of [image: f(x)=\tan^{-1} (x^2)]
 Show Solution 
 Let [image: g(x)=x^2], so [image: g^{\prime}(x)=2x]. Substituting into [image: \frac{d}{dx}(\tan^{-1} x)=\large \frac{1}{1+x^2}], we obtain
 [image: f^{\prime}(x)=\frac{1}{1+(x^2)^2} \cdot (2x)]
 Simplifying, we have
 [image: f^{\prime}(x)=\frac{2x}{1+x^4}]
   The position of a particle at time [image: t] is given by [image: s(t)= \tan^{-1}\left(\dfrac{1}{t}\right)] for [image: t\ge \frac{1}{2}]. Find the velocity of the particle at time [image: t=1].
 Show Solution 
 Begin by differentiating [image: s(t)] in order to find [image: v(t)]. Thus,
 [image: v(t)=s^{\prime}(t)=\dfrac{1}{1+(\frac{1}{t})^2} \cdot \dfrac{-1}{t^2}]
 Simplifying, we have
 [image: v(t)=-\dfrac{1}{t^2+1}]
 Thus, [image: v(1)=-\dfrac{1}{2}]
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				 	Find the derivative of an inverse function
 	Identify the derivatives for inverse trig functions like arcsine, arccosine, and arctangent
 
  Exploring Inverse Functions: From Theory to Real-World Applications
 A function is often thought of as a process.  One natural question that arises is, can the process be reversed? If this reversal is possible, we call it the inverse function. Along that same line, when we use the derivative to determine how fast the process is occurring at a particular point, it  raises a very similar question: can we determine how fast the inverse is changing at that same point? 
 The Inverse Function Theorem tells us that for an invertible and differentiable function [image: f(x)], with [image: f’(f^{-1}(x)t)(x) \neq 0], 
 [image: \left(f^{-1}\right)’(x)=\frac{1}{f’\left(f^{-1}(x)\right)}]
 One way to emphasize this reciprocal relationship between the derivative of a function and the derivative of the inverse function is to use something linear. 
 [ohm_question hide_question_numbers=1]287947[/ohm_question]
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				 	Use implicit differentiation to find derivatives and the equations for tangent lines
 
  What is Implicit Differentiation?
 We have previously explored how to find tangent lines to functions and determine the rate of change of a function at a specific point by explicitly defining the function and its derivatives. However, not all functions can be expressed directly in terms of one variable. Implicit differentiation comes into play when we need to derive functions that are defined implicitly rather than explicitly. 
 A function is typically described as explicit when the dependent variable [image: y] is expressed solely in terms of the independent variable [image: x]. For example, [image: y=x^2+1] is an explicit function because [image: y] is given directly in terms of [image: x].
 Conversely, if [image: y] and [image: x] are interrelated through an equation without a straightforward expression of [image: y] in terms of [image: x], the function is considered an implicit function. An example is the circle equation [image: x^2 +y^2 =25], which doesn’t solve for [image: y] explicitly in terms of [image: x].
  Implicit differentiation is essential for finding the slopes of tangent lines to curves that are not explicit functions. For example, the equation [image: y-x^2=1] implicitly defines [image: y] because it does not isolate [image: y] on one side of the equation. This method allows us to derive relations where [image: y] is defined implicitly by differentiating both sides of the equation with respect to [image: x], treating [image: y] as a function of [image: x] where necessary.
 An equation defines a function implicitly if it holds for [image: y] and [image: x] without isolating one variable on one side. For instance, the equations:
 [image: y=\sqrt{25-x^2}],  [image: y = -\sqrt{25-x^2}], and [image: y=\begin{cases} \sqrt{25-x^2} & \text{ if } \, -5 \le x < 0 \\ -\sqrt{25-x^2} & \text{ if } \, 0 \le x \le 5 \end{cases}],
 are all examples of functions defined implicitly by the circle equation [image: x^2+y^2=25].
 Figure 1 illustrates how the equation [image: x^2+y^2=25] defines multiple functions implicitly, showcasing different ways [image: y] can be expressed in relation to [image: x]. These representations include the full circle and its segments, dependent on [image: x] values, demonstrating the versatility of implicit functions.
 [image: The circle with radius 5 and center at the origin is graphed fully in one picture. Then, only its segments in quadrants I and II are graphed. Then, only its segments in quadrants III and IV are graphed. Lastly, only its segments in quadrants II and IV are graphed.]Figure 1. The equation [image: {x}^{2}+{y}^{2}=25] defines many functions implicitly. To apply implicit differentiation practically, consider finding the slope of the tangent line to the circle at a specific point.
 For example, to determine the slope at point [image: (3,4)], one might initially think to differentiate [image: y=\sqrt{25-x^2}] directly at [image: x=3]. Similarly, to find the slope at [image: (3,-4)], we could use the derivative of [image: y=−\sqrt{25-x^2}]. However, these expressions don’t always provide the clearest path for differentiation, especially over different ranges of [image: x].
 Implicit differentiation streamlines this process by differentiating the entire equation directly: 
 [image: 2x+2y \frac{dy}{dx}=0]
 This leads to:
 [image: \frac{dy}{dx}=\frac{-x}{y}]
 which can then be evaluated at any point on the curve without having to solve explicitly for [image: y] first. This method confirms the flexibility and power of implicit differentiation in handling equations where [image: y] is not isolated.
 The process of finding [image: \frac{dy}{dx}] using implicit differentiation is described in the following problem-solving strategy.
 Problem-Solving Strategy: Implicit Differentiation
 To perform implicit differentiation on an equation that defines a function [image: y] implicitly in terms of a variable [image: x], use the following steps:
 	Take the derivative of both sides of the equation. Keep in mind that [image: y] is a function of [image: x]. Consequently, whereas [image: \frac{d}{dx}(\sin x)= \cos x, \, \frac{d}{dx}(\sin y)= \cos y\frac{dy}{dx}] because we must use the Chain Rule to differentiate [image: \sin y] with respect to [image: x].
 	Rewrite the equation so that all terms containing [image: \frac{dy}{dx}] are on the left and all terms that do not contain [image: \frac{dy}{dx}] are on the right.
 	Factor out [image: \frac{dy}{dx}] on the left.
 	Solve for [image: \frac{dy}{dx}] by dividing both sides of the equation by an appropriate algebraic expression.
 
  Assuming that [image: y] is defined implicitly by the equation [image: x^2+y^2=25], find [image: \frac{dy}{dx}].
 Show Solution 
 Follow the steps in the problem-solving strategy.
 [image: \begin{array}{llll} \frac{d}{dx}(x^2+y^2) = \frac{d}{dx}(25) & & & \text{Step 1. Differentiate both sides of the equation.} \\ \frac{d}{dx}(x^2)+\frac{d}{dx}(y^2) = 0 & & & \begin{array}{l}\text{Step 1.1. Use the sum rule on the left.} \\ \text{On the right,} \, \frac{d}{dx}(25)=0. \end{array} \\ 2x+2y\frac{dy}{dx} = 0 & & & \begin{array}{l}\text{Step 1.2. Take the derivatives, so} \, \frac{d}{dx}(x^2)=2x \\ \text{and} \, \frac{d}{dx}(y^2)=2y\frac{dy}{dx}. \end{array} \\ 2y\frac{dy}{dx} = -2x & & & \begin{array}{l}\text{Step 2. Keep the terms with} \, \frac{dy}{dx} \, \text{on the left.} \\ \text{Move the remaining terms to the right.} \end{array} \\ \frac{dy}{dx} = -\frac{x}{y} & & & \begin{array}{l}\text{Step 4. Divide both sides of the equation by} \\ 2y. \, \text{(Step 3 does not apply in this case.)} \end{array} \end{array}]
 Analysis
 Note that the resulting expression for [image: \frac{dy}{dx}] is in terms of both the independent variable [image: x] and the dependent variable [image: y]. Although in some cases it may be possible to express [image: \frac{dy}{dx}] in terms of [image: x] only, it is generally not possible to do so.
   Assuming that [image: y] is defined implicitly by the equation [image: x^3 \sin y+y=4x+3], find [image: \frac{dy}{dx}].
 Show Solution 
 [image: \begin{array}{llll}\frac{d}{dx}(x^3 \sin y+y) = \frac{d}{dx}(4x+3) & & & \text{Step 1: Differentiate both sides of the equation.} \\ \frac{d}{dx}(x^3 \sin y)+\frac{d}{dx}(y) = 4 & & & \begin{array}{l}\text{Step 1.1: Apply the sum rule on the left.} \\ \text{On the right,} \, \frac{d}{dx}(4x+3)=4. \end{array} \\ (\frac{d}{dx}(x^3) \cdot \sin y+\frac{d}{dx}(\sin y) \cdot x^3) + \frac{dy}{dx} = 4 & & & \begin{array}{l}\text{Step 1.2: Use the product rule to find} \\ \frac{d}{dx}(x^3 \sin y). \, \text{Observe that} \, \frac{d}{dx}(y)=\frac{dy}{dx}. \end{array} \\ 3x^2 \sin y+(\cos y\frac{dy}{dx}) \cdot x^3 + \frac{dy}{dx} = 4 & & & \begin{array}{l}\text{Step 1.3: We know} \, \frac{d}{dx}(x^3)=3x^2. \, \text{Use the} \\ \text{chain rule to obtain} \, \frac{d}{dx}(\sin y)= \cos y\frac{dy}{dx}. \end{array} \\ x^3 \cos y\frac{dy}{dx}+\frac{dy}{dx} = 4-3x^2 \sin y & & & \begin{array}{l}\text{Step 2: Keep all terms containing} \, \frac{dy}{dx} \, \text{on the} \\ \text{left. Move all other terms to the right.} \end{array} \\ \frac{dy}{dx}(x^3 \cos y+1) = 4-3x^2 \sin y & & & \text{Step 3: Factor out} \, \frac{dy}{dx} \, \text{on the left.} \\ \frac{dy}{dx} = \large \frac{4-3x^2 \sin y}{x^3 \cos y+1} & & & \begin{array}{l}\text{Step 4: Solve for} \, \frac{dy}{dx} \, \text{by dividing both sides of} \\ \text{the equation by} \, x^3 \cos y+1. \end{array} \end{array}]
  Find [image: \frac{d^2 y}{dx^2}] if [image: x^2+y^2=25].
 Show Solution 
 In the first example, we showed that [image: \frac{dy}{dx}=-\frac{x}{y}]. We can take the derivative of both sides of this equation to find [image: \frac{d^2 y}{dx^2}].
 [image: \begin{array}{lllll} \frac{d^2 y}{dx^2} & =\large \frac{d}{dx}(-\frac{x}{y}) & & & \text{Differentiate both sides of} \, \frac{dy}{dx}=-\frac{x}{y}. \\ & = \large -\frac{(1 \cdot y-x\frac{dy}{dx})}{y^2} & & & \text{Use the quotient rule to find} \, \frac{d}{dx}(-\frac{x}{y}). \\ & = \large \frac{−y+x\frac{dy}{dx}}{y^2} & & & \text{Simplify.} \\ & = \large \frac{−y+x(-\frac{x}{y})}{y^2} & & & \text{Substitute} \, \frac{dy}{dx}=-\frac{x}{y}. \\ & = \large \frac{−y^2-x^2}{y^3} & & & \text{Simplify.} \end{array}]
 At this point we have found an expression for [image: \frac{d^2 y}{dx^2}]. If we choose, we can simplify the expression further by recalling that [image: x^2+y^2=25] and making this substitution in the numerator to obtain [image: \frac{d^2 y}{dx^2}=-\frac{25}{y^3}].
 Watch the following video to see the worked solution to this example..
 https://youtube.com/watch?v=F1FFAg-XhlQ%3Fcontrols%3D0%26start%3D385%26end%3D473%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.8 Implicit Differentiation” here (opens in new window).
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				Finding Tangent Lines Implicitly
 We can now apply implicit differentiation to effectively find equations of tangent lines for curves defined by more complex equations. This method not only broadens our understanding of calculus applications but also reinforces the analytical power of implicit differentiation.
 Find the equation of the line tangent to the curve [image: x^2+y^2=25] at the point [image: (3,-4)].
 Show Solution 
 Although we could find this equation without using implicit differentiation, using that method makes it much easier. In an earlier example, we found [image: \frac{dy}{dx}=-\frac{x}{y}].
 The slope of the tangent line is found by substituting [image: (3,-4)] into this expression. Consequently, the slope of the tangent line is
 [image: \frac{dy}{dx}|_{(3,-4)} =-\frac{3}{-4}=\frac{3}{4}].
 Using the point [image: (3,-4)] and the slope [image: \frac{3}{4}] in the point-slope equation of the line, we then solve for [image: y] to obtain the equation
 [image: y=\frac{3}{4}x-\frac{25}{4}].
 [image: The circle with radius 5 and center at the origin is graphed. A tangent line is drawn through the point (3, −4).]Figure 2. The line [image: y=\frac{3}{4}x-\frac{25}{4}] is tangent to [image: x^2+y^2=25] at the point [image: (3,−4)].   Find the equation of the line tangent to the graph of [image: y^3+x^3-3xy=0] at the point [image: \left(\frac{3}{2},\frac{3}{2}\right)] (Figure 3). This curve is known as the folium (or leaf) of Descartes.
 [image: A folium is shown, which is a line that creates a loop that crosses over itself. In this graph, it crosses over itself at (0, 0). Its tangent line from (3/2, 3/2) is shown.]Figure 3. Finding the tangent line to the folium of Descartes at [image: (\frac{3}{2},\frac{3}{2})]. Show Solution 
 Begin by finding [image: \frac{dy}{dx}.]
 [image: \begin{array}{l} \frac{d}{dx}(y^3+x^3-3xy) = \frac{d}{dx}(0) \\ \\ 3y^2\frac{dy}{dx}+3x^2-(3y+3x\frac{dy}{dx}) = 0 \\ \\ \frac{dy}{dx} = \frac{3y-3x^2}{3y^2-3x}. \\ \\ \end{array}]
 Next, substitute [image: (\frac{3}{2},\frac{3}{2})] into [image: \frac{dy}{dx}=\frac{3y-3x^2}{3y^2-3x}] to find the slope of the tangent line:
 [image: \frac{dy}{dx}|_{(\frac{3}{2},\frac{3}{2})}=-1]
 Finally, substitute into the point-slope equation of the line and solve for [image: y] to obtain
 [image: y=−x+3]
   In a simple video game, a rocket travels in an elliptical orbit whose path is described by the equation [image: 4x^2+25y^2=100]. The rocket can fire missiles along lines tangent to its path. The object of the game is to destroy an incoming asteroid traveling along the positive [image: x]-axis toward [image: (0,0)]. If the rocket fires a missile when it is located at [image: \left(3,\frac{8}{5}\right)], where will it intersect the [image: x]-axis?
 Show Solution 
 To solve this problem, we must determine where the line tangent to the graph of
 [image: 4x^2+25y^2=100] at [image: (3,\frac{8}{5})] intersects the [image: x]-axis. Begin by finding [image: \frac{dy}{dx}] implicitly.
 Differentiating, we have
 [image: 8x+50y\frac{dy}{dx}=0]
 Solving for [image: \frac{dy}{dx}], we have
 [image: \dfrac{dy}{dx}=-\dfrac{4x}{25y}]
 The slope of the tangent line is [image: \frac{dy}{dx}|_{(3,\frac{8}{5})}=-\frac{3}{10}]. The equation of the tangent line is [image: y=-\frac{3}{10}x+\frac{5}{2}]. To determine where the line intersects the [image: x]-axis, solve [image: 0=-\frac{3}{10}x+\frac{5}{2}]. The solution is [image: x=\frac{25}{3}]. The missile intersects the [image: x]-axis at the point [image: (\frac{25}{3},0)].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=F1FFAg-XhlQ%3Fcontrols%3D0%26start%3D553%26end%3D718%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.8 Implicit Differentiation” here (opens in new window).
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				 	Use implicit differentiation to find derivatives and the equations for tangent lines
 
  Elliptic Curve Cryptography: Exploring the Mathematics Behind Secure Communication
 Elliptic Curve Cryptography (ECC) has emerged as a powerful tool in the realm of secure communication, offering advantages in efficiency and security over traditional methods. This cryptographic approach, utilized in technologies like Bitcoin, relies on the complex mathematical properties of elliptic curves. Unlike simpler functions, elliptic curves are often more manageable when expressed implicitly rather than explicitly. This characteristic makes them particularly useful for creating secure encryption systems, as they provide robust security with relatively small key sizes.
 In this apply-it task, we’ll delve into the mathematical foundations of ECC by examining a specific elliptic curve. We’ll explore how to find derivatives using implicit differentiation, calculate slopes of tangent lines at given points, and determine equations of these tangent lines.
 [image: A graph of the elliptic curve 𝑦 2 = 𝑥 3 − 4 𝑥 + 9 y 2 =x 3 −4x+9 displayed on a coordinate plane. The curve shows a smooth, symmetric path with multiple loops and bends, crossing the x-axis at two points and extending to positive and negative infinity on the y-axis.]
 [ohm_question hide_question_numbers=1]287938[/ohm_question]
  [ohm_question hide_question_numbers=1]287939[/ohm_question]
  [ohm_question hide_question_numbers=1]287941[/ohm_question]
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				 	Determine the derivatives of exponential and logarithmic functions
 	Apply logarithmic differentiation to find derivatives
 
  Exponential and logarithmic functions are crucial in modeling growth processes, such as population dynamics and radioactive decay. These functions also simplify complex mathematical expressions. In this section, we delve deeper into their derivatives, highlighting the uniqueness of these functions, particularly through the properties of the natural exponential function, [image: e^x].
 Derivative of the Exponential Function
 The differentiation of exponential functions [image: B(x)=b^x] where [image: b>0], begins with recognizing that these functions are defined for all real numbers and are continuous. This universality stems from the properties defined for exponentiation over rational and irrational numbers alike.
 Historically, exponentiation for integers was defined straightforwardly—for example, [image: b^n] where [image: n] is an integer. For non-integer exponents, [image: b^r] (where [image: r] is any real number), we interpret this through a limiting process. Specifically, [image: b^r] is understood as the limit of [image: b^x] as [image: x] approaches [image: r] from rational values, ensuring the function’s continuity across all real numbers.
 To illustrate, consider the function [image: {4}^{x}] evaluated at values close to [image: \pi]. We may view [image: {4}^{\pi}] as the number satisfying:
 [image: \begin{array}{l}4^3<4^{\pi}<4^4, \\ 4^{3.1}<4^{\pi}<4^{3.2}, \\ 4^{3.14}<4^{\pi}<4^{3.15},\\ 4^{3.141}<4^{\pi}<4^{3.142}, \\ 4^{3.1415}<4^{\pi}<4^{3.1416}, \\ \cdots \end{array}]
 As we see in the following table, [image: 4^{\pi}\approx 77.88].
 Approximating a Value of [image: 4^{\pi}] 	[image: x] 	[image: 4^x] 	[image: x] 	[image: 4^x] 
  	[image: 4^3] 	[image: 64] 	[image: 4^{3.141593}] 	[image: 77.8802710486] 
 	[image: 4^{3.1}] 	[image: 73.5166947198] 	[image: 4^{3.1416}] 	[image: 77.8810268071] 
 	[image: 4^{3.14}] 	[image: 77.7084726013] 	[image: 4^{3.142}] 	[image: 77.9242251944] 
 	[image: 4^{3.141}] 	[image: 77.8162741237] 	[image: 4^{3.15}] 	[image: 78.7932424541] 
 	[image: 4^{3.1415}] 	[image: 77.8702309526] 	[image: 4^{3.2}] 	[image: 84.4485062895] 
 	[image: 4^{3.14159}] 	[image: 77.8799471543] 	[image: 4^4] 	[image: 256] 
  
 The differentiation of exponential functions [image: B(x)=b^x,] begins by confirming that [image: b^x] is defined for all real numbers and is inherently continuous. We assume [image: B^{\prime}(0)] exists and is positive. In this context, we delve deeper into proving that [image: B(x)] is differentiable across its entire domain by making one key assumption: there exists a unique value [image: b > 0] for which [image: B^{\prime}(0)=1]. This value, defined as [image: e], demonstrates unique properties, marking it as the base of natural logarithms.
 Figure 1 provides graphs of the functions [image: y=2^x, \, y=3^x, \, y=2.7^x], and [image: y=2.8^x]. Observing the slopes of tangent lines at [image: x=0] for these functions provides empirical evidence suggesting that [image: e] is approximately between [image: 2.7] and [image: 2.8]. This observation is supported by the graph where the tangent line at [image: x=0] for [image: y=e^x] has a slope of [image: 1], uniquely defining [image: e] as approximately [image: 2.718].
 [image: The graphs of 3x, 2.8x, 2.7x, and 2x are shown. In quadrant I, their order from least to greatest is 2x, 2.7x, 2.8x, and 3x. In quadrant II, this order is reversed. All cross the y-axis at (0, 1).]Figure 1. The graph of [image: E(x)=e^x] is between [image: y=2^x] and [image: y=3^x]. The natural exponential function, [image: E(x)=e^x], and its inverse, the natural logarithm [image: L(x)=\log_e x=\ln x] are essential for understanding continuous growth and decay processes modeled in various scientific and financial contexts.
 To estimate the value of [image: e], we consider the derivative of exponential functions of the form [image: B(x)=b^x] at [image: x=0], denoted as [image: B^{\prime}(0)].
 To accurately determine [image: B^{\prime}(0)], we select values of x very close to zero, such as [image: x=0.00001] and [image: x=-0.00001]. This method allows us to find [image: B^{\prime}(0)] and compare it against our hypothesized value of [image: b] that satisfies [image: B^{\prime}(0)=1], indicating [image: b=e].
 The table below illustrates how varying [image: b] around the theoretical value of [image: e] allows us to pinpoint the exact value where [image: B^{\prime}(0) \approx 1] , suggesting [image: e \approx 2.718].
 <table id="fs-id1169738019199" summary="This table has six rows and four columns. The first row is a header row and it labels each column. The first column header is b, the second column header is (b−0.00001 − 1)/−0.00001 < B’(0) < (b0.00001 − 1)/0.00001, the third column header is b, and the fourth column header is (b−0.00001 − 1)/−0.00001 < B’(0) < (b0.00001 − 1)/0.00001. Under the first column are the values 2, 2.7, 2.71, 2.718, and 2.7182. Under the second column are the values 0.693145<B’(0)<0.69315, 0.993247<B’(0)< 0.993257, 0.996944<B’(0)<0.996954, 0.999891<B’(0)< 0.999901, and 0.999965<B’(0)<0.999975. Under the third column are the values 2.7183, 2.719, 2.72, 2.8, and 3. Under the fourth column are the values 1.000002<B’(0)< 1.000012, 1.000259<B’(0)< 1.000269, 1.000627<B’(0)<1.000637, 1.029614<B’(0)<1.029625, and 1.098606<B’(00
 Estimating a Value of [image: e] [image: b] [image: \frac{b^{-0.00001}-1}{-0.00001} < B^{\prime}(0) < \frac{b^{0.00001}-1}{0.00001}] [image: b] [image: \frac{b^{-0.00001}-1}{-0.00001} < B^{\prime}(0) < \frac{b^{0.00001}-1}{0.00001}] [image: 2] [image: 0.693145 < B^{\prime}(0) < 0.69315] [image: 2.7183] [image: 1.000002 < B^{\prime}(0) < 1.000012] [image: 2.7] [image: 0.993247 < B^{\prime}(0) < 0.993257] [image: 2.719] [image: 1.000259 < B^{\prime}(0) < 1.000269] [image: 2.71] [image: 0.996944 < B^{\prime}(0) < 0.996954] [image: 2.72] [image: 1.000627 < B^{\prime}(0) < 1.000637] [image: 2.718] [image: 0.999891 < B^{\prime}(0) < 0.999901] [image: 2.8] [image: 1.029614 < B^{\prime}(0) < 1.029625] [image: 2.7182] [image: 0.999965 < B^{\prime}(0) < 0.999975] [image: 3] [image: 1.098606 < B^{\prime}(0) < 1.098618] The graph of [image: E(x)=e^x] is shown alongside the line [image: y=x+1] in Figure 2, demonstrating that the tangent to [image: E(x)=e^x] at [image: x=0] has a slope of [image: 1]. This observation supports the hypothesis that the value of [image: e] optimizes the slope at [image: x=0] to exactly [image: 1].
 [image: Graph of the function ex along with its tangent at (0, 1), x + 1.]Figure 2. The tangent line to [image: E(x)=e^x] at [image: x=0] has slope 1. Now that we understand the underlying behavior at [image: x=0], let’s derive the general derivative formula for [image: B(x)=b^x, \, b>0]. We start by applying the limit definition of the derivative:
 [image: B^{\prime}(0)=\underset{h\to 0}{\lim}\dfrac{b^{0+h}-b^0}{h}=\underset{h\to 0}{\lim}\dfrac{b^h-1}{h}]
 Turning to [image: B^{\prime}(x)], we obtain the following.
 [image: \begin{array}{lllll} B^{\prime}(x) & =\underset{h\to 0}{\lim}\frac{b^{x+h}-b^x}{h} & & & \text{Apply the limit definition of the derivative.} \\ & =\underset{h\to 0}{\lim}\frac{b^xb^h-b^x}{h} & & & \text{Note that} \, b^{x+h}=b^x b^h. \\ & =\underset{h\to 0}{\lim}\frac{b^x(b^h-1)}{h} & & & \text{Factor out} \, b^x. \\ & =b^x\underset{h\to 0}{\lim}\frac{b^h-1}{h} & & & \text{Apply a property of limits.} \\ & =b^x B^{\prime}(0) & & & \text{Use} \, B^{\prime}(0)=\underset{h\to 0}{\lim}\frac{b^{0+h}-b^0}{h}=\underset{h\to 0}{\lim}\frac{b^h-1}{h}. \end{array}]
 We see that on the basis of the assumption that [image: B(x)=b^x] is differentiable at [image: 0, \, B(x)] is not only differentiable everywhere, but its derivative is
 [image: B^{\prime}(x)=b^x B^{\prime}(0)]
 For [image: E(x)=e^x, \, E^{\prime}(0)=1]. Thus, we have [image: E^{\prime}(x)=e^x]. (The value of [image: B^{\prime}(0)] for an arbitrary function of the form [image: B(x)=b^x, \, b>0], will be derived later.)
 derivative of the natural exponential function
 Let [image: E(x)=e^x] be the natural exponential function. Then
 [image: E^{\prime}(x)=e^x]
  
 In general,
 [image: \frac{d}{dx}(e^{g(x)})=e^{g(x)} g^{\prime}(x)]
 If it helps, think of the formula as the chain rule being applied to natural exponential functions. The derivative of [image: {e}] raised to the power of a function will simply be [image: {e}] raised to the power of the function multiplied by the derivative of that function.
 Find the derivative of [image: f(x)=e^{\tan (2x)}].
 Show Solution 
 Using the derivative formula and the chain rule,
 [image: \begin{array}{ll} f^{\prime}(x) & =e^{\tan (2x)}\frac{d}{dx}(\tan (2x)) \\ & = e^{\tan (2x)} \sec^2 (2x) \cdot 2. \end{array}]
   Find the derivative of [image: y=\dfrac{e^{x^2}}{x}].
 Show Solution 
 Use the derivative of the natural exponential function, the quotient rule, and the chain rule.
 [image: \begin{array}{lllll} y^{\prime} & =\large \frac{(e^{x^2} \cdot 2x) \cdot x - 1 \cdot e^{x^2}}{x^2} & & & \text{Apply the quotient rule.} \\ & = \large \frac{e^{x^2}(2x^2-1)}{x^2} & & & \text{Simplify.} \end{array}]
  
   [ohm_question hide_question_numbers=1]33753[/ohm_question]
  A colony of mosquitoes has an initial population of [image: 1000.] After [image: t] days, the population is given by [image: A(t)=1000e^{0.3t}]. Show that the ratio of the rate of change of the population, [image: A^{\prime}(t)], to the population size, [image: A(t)] is constant.
 Show Solution 
 First find [image: A^{\prime}(t)]. By using the chain rule, we have [image: A^{\prime}(t)=300e^{0.3t}]. Thus, the ratio of the rate of change of the population to the population size is given by
 [image: \large \frac{A^{\prime}(t)}{A(t)} \normalsize = \large \frac{300e^{0.3t}}{1000e^{0.3t}}=0.3]
 The ratio of the rate of change of the population to the population size is the constant [image: 0.3].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=_nzxTKiFPpo%3Fcontrols%3D0%26start%3D163%26end%3D240%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.9 Derivatives of Exponential and Logarithmic Functions” here (opens in new window).
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				Derivative of the Logarithmic Function
 Now that we have the derivative of the natural exponential function, we can use implicit differentiation to find the derivative of its inverse, the natural logarithmic function.
 derivative of the natural logarithmic function
 If [image: x>0] and [image: y=\ln x], then
 [image: \frac{dy}{dx}=\dfrac{1}{x}]
  
 More generally, let [image: g(x)] be a differentiable function. For all values of [image: x] for which [image: g^{\prime}(x)>0], the derivative of [image: h(x)=\ln(g(x))] is given by
 [image: h^{\prime}(x)=\dfrac{1}{g(x)} g^{\prime}(x)]
  Proof
 
 If [image: x>0] and [image: y=\ln x], then [image: e^y=x]. Differentiating both sides of this equation results in the equation
 [image: e^y\frac{dy}{dx}=1]
  
 Solving for [image: \frac{dy}{dx}] yields
 [image: \frac{dy}{dx}=\dfrac{1}{e^y}]
  
 Finally, we substitute [image: x=e^y] to obtain
 [image: \frac{dy}{dx}=\dfrac{1}{x}]
  
 We may also derive this result by applying the inverse function theorem, as follows. Since [image: y=g(x)=\ln x] is the inverse of [image: f(x)=e^x], by applying the inverse function theorem we have
 [image: \frac{dy}{dx}=\dfrac{1}{f^{\prime}(g(x))}=\dfrac{1}{e^{\ln x}}=\dfrac{1}{x}]
  
 Using this result and applying the chain rule to [image: h(x)=\ln(g(x))] yields
 [image: h^{\prime}(x)=\dfrac{1}{g(x)} g^{\prime}(x)]
 [image: _\blacksquare]
 
 The graph of [image: y=\ln x] and its derivative [image: \frac{dy}{dx}=\frac{1}{x}] are shown in Figure 3.
 [image: Graph of the function ln x along with its derivative 1/x. The function ln x is increasing on (0, + ∞). Its derivative is decreasing but greater than 0 on (0, + ∞).]Figure 3. The function [image: y=\ln x] is increasing on [image: (0,+\infty)]. Its derivative [image: y^{\prime} =\frac{1}{x}] is greater than zero on [image: (0,+\infty)]. Find the derivative of [image: f(x)=\ln(x^3+3x-4)]
 Show Solution 
 Use the derivative of a natural logarithm directly.
 [image: \begin{array}{lllll} f^{\prime}(x) & =\frac{1}{x^3+3x-4} \cdot (3x^2+3) & & & \text{Use} \, g(x)=x^3+3x-4 \, \text{in} \, h^{\prime}(x)=\frac{1}{g(x)} g^{\prime}(x). \\ & =\frac{3x^2+3}{x^3+3x-4} & & & \text{Rewrite.} \end{array}]
   Find the derivative of [image: f(x)=\ln\left(\dfrac{x^2 \sin x}{2x+1}\right)]
 Show Solution 
 At first glance, taking this derivative appears rather complicated. However, by using the properties of logarithms prior to finding the derivative, we can make the problem much simpler.
 [image: \begin{array}{lllll} f(x) & = \ln(\frac{x^2 \sin x}{2x+1})=2\ln x+\ln(\sin x)-\ln(2x+1) & & & \text{Apply properties of logarithms.} \\ f^{\prime}(x) & = \frac{2}{x} + \frac{\cos x}{\sin x} -\frac{2}{2x+1} & & & \text{Apply sum rule and} \, h^{\prime}(x)=\frac{1}{g(x)} g^{\prime}(x). \\ & = \frac{2}{x} + \cot x - \frac{2}{2x+1} & & & \text{Simplify using the quotient identity for cotangent.} \end{array}]
   Now that we can differentiate the natural logarithmic function, we can use this result to find the derivatives of [image: y=\log_b x] and [image: y=b^x] for [image: b>0, \, b\ne 1].
 derivatives of general exponential and logarithmic functions
 Let [image: b>0, \, b\ne 1], and let [image: g(x)] be a differentiable function.
 	If [image: y=\log_b x], then [image: \frac{dy}{dx}=\dfrac{1}{x \ln b}]
 More generally, if [image: h(x)=\log_b (g(x))], then for all values of [image: x] for which [image: g(x)>0],
 [image: h^{\prime}(x)=\dfrac{g^{\prime}(x)}{g(x) \ln b}]
 
 
 	If [image: y=b^x], then [image: \frac{dy}{dx}=b^x \ln b]
 More generally, if [image: h(x)=b^{g(x)}], then
 [image: h^{\prime}(x)=b^{g(x)} g^{\prime}(x) \ln b]
 
 
  Proof
 
 If [image: y=\log_b x], then [image: b^y=x]. It follows that [image: \ln(b^y)=\ln x]. Thus [image: y \ln b = \ln x]. Solving for [image: y], we have [image: y=\frac{\ln x}{\ln b}]. Differentiating and keeping in mind that [image: \ln b] is a constant, we see that
 [image: \frac{dy}{dx}=\dfrac{1}{x \ln b}]
  
 The derivative from above now follows from the chain rule.
 If [image: y=b^x], then [image: \ln y=x \ln b]. Using implicit differentiation, again keeping in mind that [image: \ln b] is constant, it follows that [image: \frac{1}{y}\frac{dy}{dx}=\text{ln}b.] Solving for [image: \frac{dy}{dx}] and substituting [image: y=b^x], we see that
 [image: \frac{dy}{dx}=y \ln b=b^x \ln b]
  
 The more general derivative follows from the chain rule.
 [image: _\blacksquare]
 
 Find the derivative of [image: h(x)= \dfrac{3^x}{3^x+2}]
 Show Solution 
 Use the quotient rule and the derivative from above.
 [image: \begin{array}{lllll} h^{\prime}(x) & = \large \frac{3^x \ln 3(3^x+2)-3^x \ln 3(3^x)}{(3^x+2)^2} & & & \text{Apply the quotient rule.} \\ & = \large \frac{2 \cdot 3^x \ln 3}{(3^x+2)^2} & & & \text{Simplify.} \end{array}]
   Find the slope of the line tangent to the graph of [image: y=\log_2 (3x+1)] at [image: x=1].
 Show Solution 
 To find the slope, we must evaluate [image: \dfrac{dy}{dx}] at [image: x=1]. Using the derivative above, we see that
 [image: \dfrac{dy}{dx}=\dfrac{3}{\ln 2(3x+1)}]
 By evaluating the derivative at [image: x=1], we see that the tangent line has slope
 [image: \frac{dy}{dx}|_{x=1} =\frac{3}{4 \ln 2}=\frac{3}{\ln 16}]
   [ohm_question hide_question_numbers=1]288388[/ohm_question]
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				Logarithmic Differentiation
 We now explore derivatives of functions like [image: y=(g(x))^n] for certain values of [image: n], and those involving forms like [image: y=b^{g(x)}], where [image: b>0] and [image: b\ne 1]. These functions present a challenge when trying to find derivatives directly. To address this, we employ logarithmic differentiation. This technique is particularly useful for differentiating functions of the form [image: y=x^x] or [image: y=x^{\pi}].
 Logarithmic differentiation simplifies the process by taking the natural logarithm of both sides, which transforms multiplicative relationships into additive ones, making the derivative more straightforward to compute. We will apply this technique to solve problems such as finding the derivate of [image: y=\frac{x\sqrt{2x+1}}{e^x \sin^3 x}].
 We outline this technique in the following problem-solving strategy.
 How To: Use Logarithmic Differentiation
 	Begin by Logarithmizing: To apply logarithmic differentiation to the function [image: y=h(x)], start by taking the natural logarithm of both sides of the equation, giving [image: \ln y=\ln (h(x))].
 	Expand Using Logarithm Properties: Utilize the properties of logarithms to simplify [image: \ln (h(x))] as much as possible. This may involve using the logarithm rules for multiplication, division, and powers.
 	Differentiate Both Sides: With [image: y] implicitly defined by the equation [image: \ln y=\ln h(x)], differentiate both sides with respect to [image: x]. On the left, apply the chain rule to obtain [image: \frac{1}{y}\frac{dy}{dx}], and on the right, use the derivative of [image: \ln h(x)].
 	Isolate [image: \frac{dy}{dx}]:  Multiply through by [image: y] to solve for [image: \frac{dy}{dx}]. 
 	Simplify the Derivative: Simplify the expression for [image: \frac{dy}{dx}] to obtain the final derivative in terms of [image: x].
 
  It may be useful to review your properties of logarithms. These will help us in step 2 to expand our logarithmic function.
 	The Product Rule for Logarithms 	[image: {\mathrm{log}}_{b}\left(MN\right)={\mathrm{log}}_{b}\left(M\right)+{\mathrm{log}}_{b}\left(N\right)] 
 	The Quotient Rule for Logarithms 	[image: {\mathrm{log}}_{b}\left(\frac{M}{N}\right)={\mathrm{log}}_{b}M-{\mathrm{log}}_{b}N] 
 	The Power Rule for Logarithms 	[image: {\mathrm{log}}_{b}\left({M}^{n}\right)=n{\mathrm{log}}_{b}M] 
 	The Change-of-Base Formula 	[image: {\mathrm{log}}_{b}M\text{=}\frac{{\mathrm{log}}_{n}M}{{\mathrm{log}}_{n}b}\text{ }n>0,n\ne 1,b\ne 1] 
  
  Find the derivative of [image: y=(2x^4+1)^{\tan x}]
 Show Solution 
 Use logarithmic differentiation to find this derivative.
 [image: \begin{array}{lllll} \ln y & = \ln (2x^4+1)^{\tan x} & & & \text{Step 1. Take the natural logarithm of both sides.} \\ \ln y & = \tan x \ln (2x^4+1) & & & \text{Step 2. Expand using properties of logarithms.} \\ \frac{1}{y}\frac{dy}{dx} & = \sec^2 x \ln (2x^4+1)+\frac{8x^3}{2x^4+1} \cdot \tan x & & & \begin{array}{l}\text{Step 3. Differentiate both sides. Use the} \\ \text{product rule on the right.} \end{array} \\ \frac{dy}{dx} & =y \cdot (\sec^2 x \ln (2x^4+1)+\frac{8x^3}{2x^4+1} \cdot \tan x) & & & \text{Step 4. Multiply by} \, y \, \text{on both sides.} \\ \frac{dy}{dx} & = (2x^4+1)^{\tan x}(\sec^2 x \ln (2x^4+1)+\frac{8x^3}{2x^4+1} \cdot \tan x) & & & \text{Step 5. Substitute} \, y=(2x^4+1)^{\tan x}.\end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=_nzxTKiFPpo%3Fcontrols%3D0%26start%3D816%26end%3D982%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “3.9 Derivatives of Exponential and Logarithmic Functions” here (opens in new window).
   Find the derivative of [image: y=x^r] where [image: r] is an arbitrary real number.
 Show Solution 
 The process is the same as in the last example, though with fewer complications.
 [image: \begin{array}{lllll} \ln y & = \ln x^r & & & \text{Step 1. Take the natural logarithm of both sides.} \\ \ln y & = r \ln x & & & \text{Step 2. Expand using properties of logarithms.} \\ \frac{1}{y}\frac{dy}{dx} & = r \frac{1}{x} & & & \text{Step 3. Differentiate both sides.} \\ \frac{dy}{dx} & = y \frac{r}{x} & & & \text{Step 4. Multiply by} \, y \, \text{on both sides.} \\ \frac{dy}{dx} & = x^r \frac{r}{x} & & & \text{Step 5. Substitute} \, y=x^r. \\ \frac{dy}{dx} & = rx^{r-1} & & & \text{Simplify.} \end{array}]
   [ohm_question hide_question_numbers=1]206261[/ohm_question]
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				 	Determine the derivatives of exponential and logarithmic functions
 	Apply logarithmic differentiation to find derivatives
 
  One of the most commonly described phenomena using exponential and logarithmic functions is growth.  Both exponential and logarithmic functions increase without bound, but the rate at which that happens for each function is different.
 [image: Two graphs displayed side by side. The left graph shows "Logarithmic Growth," characterized by a curve that rises quickly initially and then gradually levels off. The right graph shows "Exponential Growth," with a curve that starts slowly and then rises rapidly, becoming steeper over time.]
 Exponential growth starts off slow and gets faster and faster.  For instance, the amount of traffic a website gets is slow at first, but as more people visit, word spreads and search engines start recommending the site, the number of visits become greater and greater. 
 ​​On the other hand, logarithmic growth increases very quickly at the beginning but slows down as time goes on. For instance, when you begin a strength training journey you often see large gains right away, but as the journey goes on the gains become smaller or farther apart, so the rate slows down. 
 [ohm_question hide_question_numbers=1]287942[/ohm_question]
  [ohm_question hide_question_numbers=1]287943[/ohm_question]
  [ohm_question hide_question_numbers=1]287946[/ohm_question]
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		Analytical Applications of Derivatives: Background You'll Need 1

								

	
				 	Recognize key features of a parabola’s graph: vertex, axis of symmetry, y-intercept, and minimum or maximum value
 
  Key Features of a Parabola’s Graph
 The graph of a quadratic function is a U-shaped curve called a parabola. Some key features of a parabola are:
 	Vertex: The extreme point of the parabola. 	Minimum Value: Vertex is the lowest point (parabola opens upwards).
 	Maximum Value: Vertex is the highest point (parabola opens downwards).
 
 
 	Axis of Symmetry: A vertical line through the vertex dividing the parabola into two mirror images.
 	Intercepts: 	Y-intercept: Point where the graph crosses the [image: y]-axis. 
 	X-intercepts: Points where the graph crosses the [image: x]-axis (zeros or roots of the quadratic function). 
 
 
 
 [image: Graph of a parabola showing where the x and y intercepts, vertex, and axis of symmetry are.]
 key features of a parabola
 	Vertex: The highest or lowest point, indicating a maximum or minimum value.
 	Axis of Symmetry: A vertical line that divides the parabola into two symmetric parts.
 	Intercepts: 	Y-intercept: The point where the parabola crosses the [image: y]-axis.
 	X-intercepts: The points where the parabola crosses the [image: x]-axis, representing the roots of the quadratic equation.
 
 
 
 
  The places where a function’s graph crosses the horizontal axis are the places where the function value equals zero. These values are called meaning names such as horizontal intercepts, [image: x]-intercepts, or the zeros of the graph. They can also be referred to as the roots of a function.
  Determine the vertex, axis of symmetry, zeros, and [image: y]-intercept of the parabola shown below.
 [image: Graph of a parabola with a vertex at (3, 1) and a y-intercept at (0, 7).]
 Show Solution The vertex is the turning point of the graph. We can see that the vertex is at [image: (3,1)]. The axis of symmetry is the vertical line that intersects the parabola at the vertex. So the axis of symmetry is [image: x=3]. This parabola does not cross the [image: x]-axis, so it has no zeros. It crosses the [image: y]-axis at [image: (0, 7)] so this is the [image: y]-intercept.
   [ohm_question hide_question_numbers=1]287786[/ohm_question] 
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				 	Find the area of different shapes 
 
  Find the Area of a Rectangle
 A rectangle has four sides and four right angles. The opposite sides of a rectangle are the same length. We refer to one side of the rectangle as the length, [image: L], and the adjacent side as the width, [image: W].
 [image: A rectangle is shown. Each angle is marked with a square. The top and bottom are labeled L, the sides are labeled W.]
  
 The area of a rectangle is calculated as the product of its length and width. This relationship can be expressed through the formula:
 [image: A=L \times W]
 Consider a rectangular rug that is [image: 2] feet long by [image: 3] feet wide.
 [image: A rectangle made up of 6 squares. The bottom is 2 squares across and marked as 2, the side is 3 squares long and marked as 3.]
 The area of this rug would be:
 [image: A = 2 \text{ ft } \times 3 \text{ ft } = 6 \text{ square feet}]
  area of rectangles
 	Rectangles have four sides and four right [image: \left(\text{90}^ \circ\right)] angles.
 	The lengths of opposite sides are equal.
 	The area, [image: A], of a rectangle is the length times the width. The area will be expressed in square units.
 
 [image: A=L\cdot W]

  The length of a rectangle is [image: 32] meters and the width is [image: 20] meters. Find the area or the rectangle. Show Solution 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A rectangle with the top and bottom labeled 32 m and the sides labeled 20 m] 
 	Step 2. Identify what you are looking for. 	the area of a rectangle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = the area 
 	Step 4. Translate. Write the appropriate formula. Substitute. 	[image: The formula A = L times W. The formula is then written again with 32 substituted in for L and 20 substituted in for W] 
 	Step 5. Solve the equation. 	[image: A=640] 
 	Step 6. Check. 	[image: A\stackrel{?}{=}640]
 [image: 32\cdot 20\stackrel{?}{=}640]
 [image: 640=640\checkmark]  
 	Step 7. Answer the question. 	The area of the rectangle is [image: 640] square meters. 
  
   [ohm_question hide_question_numbers=1]288389[/ohm_question] Find the Area of a Triangle
 We now know how to find the area of a rectangle. We can use this fact to help us visualize the formula for the area of a triangle. In the rectangle below, we’ve labeled the length [image: b] and the width [image: h], so its area is [image: bh].
 [image: A rectangle with the side labeled h and the bottom labeled b. The center says A equals bh.]
  
 We can divide this rectangle into two congruent triangles (see the image below). Triangles that are congruent have identical side lengths and angles, and so their areas are equal. The area of each triangle is one-half the area of the rectangle, or [image: \Large\frac{1}{2}\normalsize bh]. This example helps us see why the formula for the area of a triangle is [image: A=\Large\frac{1}{2}\normalsize bh].
 [image: A rectangle with a diagonal line drawn from the upper left corner to the bottom right corner. The side of the rectangle is labeled h and the bottom is labeled b. Each triangle says one-half bh. To the right of the rectangle, it says "Area of each triangle A = one-half bh".]
  
 To find the area of the triangle, you need to know its base and height. The base is the length of one side of the triangle, usually the side at the bottom. The height is the length of the line that connects the base to the opposite vertex, and makes a [image: \text{90}^ \circ] angle with the base. The image below shows three triangles with the base and height of each marked.
 [image: Three triangles. The triangle on the left is a right triangle. The bottom is labeled b and the side is labeled h. The middle triangle is an acute triangle. The bottom is labeled b. There is a dotted line from the top vertex to the base of the triangle, forming a right angle with the base. That line is labeled h. The triangle on the right is an obtuse triangle. The bottom of the triangle is labeled b. The base has a dotted line extended out and forms a right angle with a dotted line to the top of the triangle. The vertical line is labeled h.]
 area of a triangle
 The area of a triangle is one-half the base, [image: b], times the height, [image: h].
  
 [image: A={\Large\frac{1}{2}}bh]
  
 [image: A triangle, with vertices labeled A, B, and C. The sides are labeled a, b, and c. There is a vertical dotted line from vertex B at the top of the triangle to the base of the triangle, meeting the base at a right angle. The dotted line is labeled h.]
  
  Find the area of a triangle whose base is [image: 11] inches and whose height is [image: 8] inches. Show Solution <tr”>Step 1. Read the problem. Draw the figure and label it with the given information.[image: A triangle with the base labeled 11 in and a dotted vertical line from the top vertex to the base to form a right angle. This dotted line is labeled 8 in.]Step 7. Answer the question.The area is [image: 44] square inches.
 	Step 2. Identify what you are looking for. 	the area of the triangle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = area of the triangle 
 	Step 4.Translate.
 Write the appropriate formula.
 Substitute.
  	[image: The equation A = one half times b times h. The equation is written again with 11 substituted for b and 8 substituted for h.] 
 	Step 5. Solve the equation. 	[image: A=44] square inches. 
 	Step 6. Check.
  	[image: A=\frac{1}{2}bh]
 [image: 44\stackrel{?}{=}\frac{1}{2}(11)8]
 [image: 44=44\quad\checkmark]  
  
   [ohm_question hide_question_numbers=1]288390[/ohm_question]
  Find the Area of a Trapezoid
 A trapezoid is four-sided figure, a quadrilateral, with two sides that are parallel and two sides that are not. The parallel sides are called the bases. We call the length of the smaller base [image: b], and the length of the bigger base [image: B]. The height, [image: h], of a trapezoid is the distance between the two bases as shown in the image below.
 [image: A trapezoid, with the top is labeled b and marked as the smaller base. The bottom is labeled B and marked as the larger base. A vertical line forms a right angle with both bases and is marked as h.]
  
 The formula for the area of a trapezoid is: [image: {\text{Area}}_{\text{trapezoid}}=\Large\frac{1}{2}\normalsize h\left(b+B\right)]. Splitting the trapezoid into two triangles may help us understand the formula. The area of the trapezoid is the sum of the areas of the two triangles.
 [image: A trapezoid, with the top labeled with a small b and the bottom with a big B. A diagonal is drawn in from the upper left corner to the bottom right corner.]
  
 The height of the trapezoid is also the height of each of the two triangles.
 [image: A trapezoid, with the top labeled with a small b and the bottom with a big B. A diagonal is drawn in from the upper left corner to the bottom right corner. The upper right-hand side of the trapezoid forms a blue triangle, with the height of the trapezoid drawn in as a dotted line. The lower left-hand side of the trapezoid forms a red triangle, with the height of the trapezoid drawn in as a dotted line.]
  
 The formula for the area of a trapezoid is
 [image: The formula for the area of a trapezoid, which is one half h times the quantity of lowercase b plus capital B]
  
 If we distribute, we get,
 [image: The top line says area of trapezoid equals one-half times blue little b times h plus one-half times red big B times h. Below this is area of trapezoid equals A sub blue triangle plus A sub red triangle.]
  
 properties of trapezoids
 	A trapezoid has four sides.
 	Two of its sides are parallel and two sides are not.
 	The area, [image: A], of a trapezoid is [image: \text{A}=\Large\frac{1}{2}\normalsize h\left(b+B\right)] .
 
 
  Find the area of a trapezoid whose height is [image: 6] inches and whose bases are [image: 14] and [image: 11] inches. Show Solution 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A trapezoid with one parallel side labeled 11 in and the other labeled 14 in. There is a dotted line between the two parallel sides forming right angles with each of them. It is labeled 6 in.] 
 	Step 2. Identify what you are looking for. 	the area of the trapezoid 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A=\text{the area}] 
 	Step 4.Translate. Write the appropriate formula. Substitute. 	[image: The equation A = one half times h times the quantity of little b plus big b. This formula is written again with 6 substituted in for h, 11 substituted in for little b and 14 substituted in for big b.] 
 	Step 5. Solve the equation. 	[image: A={\Large\frac{1}{2}}\normalsize\cdot 6(25)] [image: A=3(25)] [image: A=75] square inches 
 	Step 6. Check: Is this answer reasonable? 	 [image: \checkmark]  see reasoning below 
  
 If we draw a rectangle around the trapezoid that has the same big base [image: B] and a height [image: h], its area should be greater than that of the trapezoid. If we draw a rectangle inside the trapezoid that has the same little base [image: b] and a height [image: h], its area should be smaller than that of the trapezoid.[image: A table is shown with 3 columns and 4 rows. The first column has an image of a trapezoid with a rectangle drawn around it in red. The larger base of the trapezoid is labeled 14 and is the same as the base of the rectangle. The height of the trapezoid is labeled 6 and is the same as the height of the rectangle. The smaller base of the trapezoid is labeled 11. Below this is A sub rectangle equals b times h. Below is A sub rectangle equals 14 times 6. Below is A sub rectangle equals 84 square inches. The second column has an image of a trapezoid. The larger base is labeled 14, the smaller base is labeled 11, and the height is labeled 6. Below this is A sub trapezoid equals one-half times h times parentheses little b plus big B. Below this is A sub trapezoid equals one-half times 6 times parentheses 11 plus 14. Below this is A sub trapezoid equals 75 square inches. The third column has an image of a trapezoid with a red rectangle drawn inside of it. The height is labeled 6. Below this is A sub rectangle equals b times h. Below is A sub rectangle equals 11 times 6. Below is A sub rectangle equals 66 square inches.]
  
 The area of the larger rectangle is [image: 84] square inches and the area of the smaller rectangle is [image: 66] square inches. So it makes sense that the area of the trapezoid is between [image: 84] and [image: 66] square inches Step 7. Answer the question. The area of the trapezoid is [image: 75] square inches. 
   Vinny has a garden that is shaped like a trapezoid. The trapezoid has a height of [image: 3.4] yards and the bases are [image: 8.2] and [image: 5.6] yards. How many square yards will be available to plant? 
 Show Solution Solution
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A trapezoid with shorter base 5.6 yards and longer base 82 yards and a height of 3.4 yards.] 
 	Step 2. Identify what you are looking for. 	the area of a trapezoid 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = the area 
 	Step 4.Translate. Write the appropriate formula. Substitute. 	[image: The equation A = one half times h times the quantity of little b plus big b. The equation is rewritten with 3.4 substituted in for h, 5.6 substituted in for little b and 8.2 substituted in for big b.] 
 	Step 5. Solve the equation. 	[image: A={\Large\frac{1}{2}}\normalsize(3.4)(13.8)] [image: A=23.46] square yards. 
 	Step 6. Check: Is this answer reasonable? Yes. The area of the trapezoid is less than the area of a rectangle with a base of [image: 8.2] yd and height [image: 3.4] yd, but more than the area of a rectangle with base [image: 5.6] yd and height [image: 3.4] yd.[image: A table with two rows. the first row is split into three columns. The first column is the formula Area of a rectangle (shown in red) equals base times height. On the next line under this it has numbers plugged into the formula; the base, 8.2 in parentheses times the height 3.4 in parentheses. Under this is it has the result 27.88 yards squared. The second column is the formula Area of a trapezoid with numbers already plugged in; one half times 3.4 yards times the quantity of 5.6 plus 8.2. Under this is has the result 23.46 yards squared. The third column is the formula Area of a rectangle (shown in blue) equals base times height. On the next line under it has number plugged into the formula; the base, 5.6 in parentheses times the height 3.4 in parentheses. Under this it has the result 19.04 yards squared. The second row shows that the Area of the red rectangle is greater than the Area of a trapezoid is greater than the Area of the blue rectangle. Beneath this, it shows the areas 27.88 for the red rectangle, 23.46 for the trapezoid, and 19.04 for the blue rectangle.] 
 	Step 7. Answer the question. 	Vinny has [image: 23.46] square yards in which he can plant. 
  
   [ohm_question hide_question_numbers=1]146944[/ohm_question]
  Find the Area of Irregular Figures
 So far, we have found area for rectangles, triangles, and trapezoids. An irregular figure is a figure that is not a standard geometric shape. Its area cannot be calculated using any of the standard area formulas. But some irregular figures are made up of two or more standard geometric shapes. To find the area of one of these irregular figures, we can split it into figures whose formulas we know and then add the areas of the figures.
 Find the area of the shaded region.
 [image: An image of an attached horizontal rectangle and a vertical rectangle is shown. The top is labeled 12, the side of the horizontal rectangle is labeled 4. The side is labeled 10, the width of the vertical rectangle is labeled 2.] Show Solution The given figure is irregular, but we can break it into two rectangles. The area of the shaded region will be the sum of the areas of both rectangles.
 [image: An image of an attached horizontal rectangle and a vertical rectangle is shown. The top is labeled 12, the side of the horizontal rectangle is labeled 4. The side is labeled 10, the width of the vertical rectangle is labeled 2.]
  
 The blue rectangle has a width of [image: 12] and a length of [image: 4]. The red rectangle has a width of [image: 2], but its length is not labeled. The right side of the figure is the length of the red rectangle plus the length of the blue rectangle. Since the right side of the blue rectangle is [image: 4] units long, the length of the red rectangle must be [image: 6] units.[image: An image of a blue horizontal rectangle attached to a red vertical rectangle is shown. The top is labeled 12, the side of the blue rectangle is labeled 4. The whole side is labeled 10, the blue portion is labeled 4 and the red portion is labeled 6. The width of the red rectangle is labeled 2.]
  
 [image: The first line says A sub figure equals A sub rectangle plus A sub red rectangle. Below this is A sub figure equals bh plus red bh. Below this is A sub figure equals 12 times 4 plus red 2 times 6. Below this is A sub figure equals 48 plus red 12. Below this is A sub figure equals 60.]
  
 The area of the figure is [image: 60] square units.
 Is there another way to split this figure into two rectangles? Try it, and make sure you get the same area.
 
   Find the area of the shaded region.
 [image: A blue geometric shape is shown. It looks like a rectangle with a triangle attached to the top on the right side. The left side is labeled 4, the top 5, the bottom 8, the right side 7.]
  
 Show Solution We can break this irregular figure into a triangle and rectangle. The area of the figure will be the sum of the areas of the triangle and the rectangle. The rectangle has a length of [image: 8] units and a width of [image: 4] units. We need to find the base and height of the triangle.
 Since both sides of the rectangle are [image: 4], the vertical side of the triangle is [image: 3] , which is [image: 7 - 4] .
 The length of the rectangle is [image: 8], so the base of the triangle will be [image: 3] , which is [image: 8 - 5] .
 [image: A geometric shape is shown. It is a blue rectangle with a red triangle attached to the top on the right side. The left side is labeled 4, the top 5, the bottom 8, the right side 7. The right side of the rectangle is labeled 4. The right side and bottom of the triangle are labeled 3.]
  
 Now we can add the areas to find the area of the irregular figure.
 [image: The top line reads A sub figure equals A sub rectangle plus A sub red triangle. The second line reads A sub figure equals lw plus one-half red bh. The next line says A sub figure equals 8 times 4 plus one-half times red 3 times red 3. The next line reads A sub figure equals 32 plus red 4.5. The last line says A sub figure equals 36.5 sq. units.]
  
 The area of the figure is [image: 36.5] square units.
  [ohm_question hide_question_numbers=1]246488[/ohm_question]
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				 	Find the volume and surface area of different shapes 
 
  Finding the Volume and Surface Area of Rectangular Solids
 When we explore three-dimensional shapes, understanding how to calculate the volume and surface area is crucial. Volume measures the space a shape occupies, while surface area describes the total area of all the surfaces of a three-dimensional object. For rectangular solids, which include cubes and rectangular prisms, these measurements are based on the object’s length, width, and height.
 volume and surface area of a rectangular solid
 For a rectangular solid with length [image: L], width [image: W], and height [image: H]:
  
 [image: A rectangular solid, with sides labeled L, W, and H. Beside it is Volume: V equals LWH equals BH. Below that is Surface Area: S equals 2LH plus 2LW plus 2WH.]

  For a rectangular solid with length [image: 14] cm, height [image: 17] cm, and width [image: 9] cm. Find the 	volume
 	surface area
 
 Show Solution Step 1 is the same for both 1. and 2., so we will show it just once.
 	Step 1. Read the problem. Draw the figure and
 label it with the given information.
  	[image: A rectangular prism with one side labeled 14, one labeled 9, and another labeled 17] 
  
 		Step 2. Identify what you are looking for. 	the volume of the rectangular solid 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: V] = volume 
 	Step 4. Translate.
 Write the appropriate formula.
 Substitute.
  	[image: V=LWH]
 [image: V=\mathrm{14}\cdot 9\cdot 17]  
 	Step 5. Solve the equation. 	[image: V=2,142] 
 	Step 6. Check
 We leave it to you to check your calculations.
  	  
 	Step 7. Answer the question. 	The volume is [image: 2,142] cubic centimeters. 
  
 
 		Step 2. Identify what you are looking for. 	the surface area of the solid 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: S] = surface area 
 	Step 4. Translate.
 Write the appropriate formula.
 Substitute.
  	[image: S=2LH+2LW+2WH]
 [image: S=2\left(14\cdot 17\right)+2\left(14\cdot 9\right)+2\left(9\cdot 17\right)]  
 	Step 5. Solve the equation. 	[image: S=1,034] 
 	Step 6. Check: Double-check with a calculator. 	  
 	Step 7. Answer the question. 	The surface area is [image: 1,034] square centimeters. 
  
 
 
   [ohm_question hide_question_numbers=1]287789[/ohm_question] Finding the Volume and Surface Area of a Cube
 A cube is a rectangular solid whose length, width, and height are equal. Substituting, [image: s] for the length, width, and height into the formulas for volume and surface area of a rectangular solid, we get:
 [image: \begin{array}{ccccc}V=LWH\hfill & & & & S=2LH+2LW+2WH\hfill \\ V=s\cdot s\cdot s\hfill & & & & S=2s\cdot s+2s\cdot s+2s\cdot s\hfill \\ V={s}^{3}\hfill & & & & S=2{s}^{2}+2{s}^{2}+2{s}^{2}\hfill \\ & & & & S=6{s}^{2}\hfill \end{array}]
 So for a cube, the formulas for volume and surface area are [image: V={s}^{3}] and [image: S=6{s}^{2}].
 volume and surface area of a cube
 For any cube with sides of length [image: s],
  
 [image: A cube. Each side is labeled s. Beside this is Volume: V equals s cubed. Below that is Surface Area: S equals 6 times s squared.]

  A cube is [image: 2.5] inches on each side. Find the 	volume
 	surface area
 
 Show Solution Step 1 is the same for both 1. and 2., so we will show it just once.
 	Step 1. Read the problem. Draw the figure and
 label it with the given information.
  	[image: A cube is shown with each side equal to 2.5] 
  
 		Step 2. Identify what you are looking for. 	the volume of the cube 
 	Step 3. Name. Choose a variable to represent it. 	let V = volume 
 	Step 4. Translate.
 Write the appropriate formula.
  	[image: V={s}^{3}] 
 	Step 5. Solve. Substitute and solve. 	[image: V={\left(2.5\right)}^{3}]
 [image: V=15.625]  
 	Step 6. Check: Check your work. 	  
 	Step 7. Answer the question. 	The volume is [image: 15.625] cubic inches. 
  
 
 		Step 2. Identify what you are looking for. 	the surface area of the cube 
 	Step 3. Name. Choose a variable to represent it. 	let S = surface area 
 	Step 4. Translate.
 Write the appropriate formula.
  	[image: S=6{s}^{2}] 
 	Step 5. Solve. Substitute and solve. 	[image: S=6\cdot {\left(2.5\right)}^{2}]
 [image: S=37.5]  
 	Step 6. Check: The check is left to you. 	  
 	Step 7. Answer the question. 	The surface area is [image: 37.5] square inches. 
  
 
 
   [ohm_question hide_question_numbers=1]287790[/ohm_question] Finding the Volume and Surface Area of a Sphere
 A sphere is the shape of a basketball, like a three-dimensional circle. Just like a circle, the size of a sphere is determined by its radius, which is the distance from the center of the sphere to any point on its surface. The formulas for the volume and surface area of a sphere are given below. Showing where these formulas come from, like we did for a rectangular solid, is beyond the scope of this course.
 volume and surface area of a sphere
 For a sphere with radius [image: r\text{:}]
  
 [image: A sphere, with radius labeled r. Beside this is Volume: V equals four-thirds times pi times r cubed. Below that is Surface Area: S equals 4 times pi times r squared.]
  
 Note: We will approximate [image: \pi] with [image: 3.14].
 
  It is important to note that for both the volume and surface area of a sphere you use the radius of the sphere. Sometimes questions will only give you the diameter ([image: d]). To find the radius when given the diameter [image: r = \frac{d}{2}] A sphere has a radius [image: 6] inches. Find its 	volume
 	surface area
 
 Show Solution Step 1 is the same for both 1. and 2., so we will show it just once.
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A sphere with a radius of 6] 
  
 		Step 2. Identify what you are looking for. 	the volume of the sphere 
 	Step 3. Name. Choose a variable to represent it. 	let [image: V] = volume 
 	Step 4. Translate. Write the appropriate formula. 	[image: V=\Large\frac{4}{3}\normalsize\pi {r}^{3}] 
 	Step 5. Solve. 	[image: V\approx \Large\frac{4}{3}\normalsize\left(3.14\right){6}^{3}] [image: V\approx 904.32\text{ cubic inches}] 
 	Step 6. Check: Double-check your math on a calculator. 	  
 	Step 7. Answer the question. 	The volume is approximately [image: 904.32] cubic inches. 
  
 
 		Step 2. Identify what you are looking for. 	the surface area of the cube 
 	Step 3. Name. Choose a variable to represent it. 	let S = surface area 
 	Step 4. Translate. Write the appropriate formula. 	[image: S=4\pi {r}^{2}] 
 	Step 5. Solve. 	[image: S\approx 4\left(3.14\right){6}^{2}] [image: S\approx 452.16] 
 	Step 6. Check: Double-check your math on a calculator 	  
 	Step 7. Answer the question. 	The surface area is approximately [image: 452.16] square inches. 
  
 
 
   [ohm_question hide_question_numbers=1]287791[/ohm_question] Finding the Volume and Surface Area of a Cylinder
 If you have ever seen a can of vegetables, you know what a cylinder looks like. A cylinder is a solid figure with two parallel circles of the same size at the top and bottom. The top and bottom of a cylinder are called the bases. The height [image: h] of a cylinder is the distance between the two bases. For all the cylinders we will work with here, the sides and the height, [image: h] , will be perpendicular to the bases.
 [image: A cylinder with an arrow pointing to the radius of the top labeling it r, radius. There is an arrow pointing to the height of the cylinder labeling it h, height.]
  
 volume and surface area of a cylinder
 For a cylinder with radius [image: r] and height [image: h]:
  
 [image: A cylinder, with the height labeled h and the radius of the top labeled r. Beside it is Volume: V equals pi times r squared times h or V equals capital B times h. Below this is Surface Area: S equals 2 times pi times r squared plus 2 times pi times r times h.]
  
 For a cylinder, the area of the base, [image: B], is the area of its circular base, [image: \pi {r}^{2}]. This is different from the area of the base for rectangular solids.
 
  A cylinder has height [image: 5] centimeters and radius [image: 3] centimeters. Find its 	volume
 	surface area
 
 Show Solution Step 1 is the same for both 1. and 2., so we will show it just once.
 	Step 1. Read the problem. Draw the figure and label
 it with the given information.
  	[image: A cylinder with height 5 and radius 3.] 
  
 		Step 2. Identify what you are looking for. 	the volume of the cylinder 
 	Step 3. Name. Choose a variable to represent it. 	let V = volume 
 	Step 4. Translate.
 Write the appropriate formula.
 Substitute. (Use [image: 3.14] for [image: \pi] )
  	[image: V=\pi {r}^{2}h]
 [image: V\approx \left(3.14\right){3}^{2}\cdot 5]  
 	Step 5. Solve. 	[image: V\approx 141.3] 
 	Step 6. Check: We leave it to you to check your calculations. 	  
 	Step 7. Answer the question. 	The volume is approximately [image: 141.3] cubic inches. 
  
 
 		Step 2. Identify what you are looking for. 	the surface area of the cylinder 
 	Step 3. Name. Choose a variable to represent it. 	let S = surface area 
 	Step 4. Translate.
 Write the appropriate formula.
 Substitute. (Use [image: 3.14] for [image: \pi] )
  	[image: S=2\pi {r}^{2}+2\pi rh]
 [image: S\approx 2\left(3.14\right){3}^{2}+2\left(3.14\right)\left(3\right)5]  
 	Step 5. Solve. 	[image: S\approx 150.72] 
 	Step 6. Check: We leave it to you to check your calculations. 	  
 	Step 7. Answer the question. 	The surface area is approximately [image: 150.72] square inches. 
  
 
 
   [ohm_question hide_question_numbers=1]287792[/ohm_question]   
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				What you’ll learn to do: Explain related rates
 We have seen that for quantities that are changing over time, the rates at which these quantities change are given by derivatives. If two related quantities are changing over time, the rates at which the quantities change are related. For example, if a balloon is being filled with air, both the radius of the balloon and the volume of the balloon are increasing. In this section, we consider several problems in which two or more related quantities are changing and we study how to determine the relationship between the rates of change of these quantities.
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				 	Show how quantities change using derivatives and explore how these changes are connected
 	Apply the chain rule to calculate how one changing quantity affects another
 
  Related-Rates Problem-Solving
 We have seen that for quantities that are changing over time, the rates at which these quantities change are given by derivatives. If two related quantities are changing over time, the rates at which the quantities change are related. For example, if a balloon is being filled with air, both the radius of the balloon and the volume of the balloon are increasing. In this section, we consider several problems in which two or more related quantities are changing and we study how to determine the relationship between the rates of change of these quantities.
 Setting up Related-Rates Problems
 In many real-world applications, related quantities are changing with respect to time. For example, if we consider the balloon example again, we can say that the rate of change in the volume, [image: V], is related to the rate of change in the radius, [image: r]. In this case, we say that [image: \frac{dV}{dt}] and [image: \frac{dr}{dt}] are related rates because [image: V] is related to [image: r]. Here we study several examples of related quantities that are changing with respect to time and we look at how to calculate one rate of change given another rate of change.
 A spherical balloon is being filled with air at the constant rate of [image: 2 \, \frac{\text{cm}^3}{\text{sec}}] (Figure 1). How fast is the radius increasing when the radius is [image: 3\, \text{cm}]?
 [image: Three balloons are shown at Times 1, 2, and 3. These balloons increase in volume and radius as time increases.]Figure 1. As the balloon is being filled with air, both the radius and the volume are increasing with respect to time. The volume of a sphere of radius [image: r] centimeters is
 [image: V=\frac{4}{3}\pi r^3 \, \text{cm}^3]
 Since the balloon is being filled with air, both the volume and the radius are functions of time. Therefore, [image: t] seconds after beginning to fill the balloon with air, the volume of air in the balloon is
 [image: V(t)=\frac{4}{3}\pi [r(t)]^3 \, \text{cm}^3]
 Differentiating both sides of this equation with respect to time and applying the chain rule, we see that the rate of change in the volume is related to the rate of change in the radius by the equation
 [image: V^{\prime}(t)=4\pi [r(t)]^2 \cdot r^{\prime}(t)]
 The balloon is being filled with air at the constant rate of 2 cm3/sec, so [image: V^{\prime}(t)=2 \, \text{cm}^3 / \sec]. Therefore,
 [image: 2 \, \text{cm}^3 / \sec =(4\pi [r(t)]^2 \, \text{cm}^2) \cdot (r^{\prime}(t) \, \text{cm/sec})],
 which implies
 [image: r^{\prime}(t)=\dfrac{1}{2\pi [r(t)]^2} \, \text{cm/sec}]
 When the radius [image: r=3 \, \text{cm}],
 [image: r^{\prime}(t)=\dfrac{1}{18\pi} \, \text{cm/sec}]
  Watch the following video to see the worked solution to the example above.
 https://youtube.com/watch?v=7SWaBGupLT0%3Fcontrols%3D0%26start%3D32%26end%3D212%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.1 Related Rates” here (opens in new window).
   What is the instantaneous rate of change of the radius when [image: r=6 \, \text{cm}]?
 Hint 
 [image: \frac{dr}{dt}=\dfrac{1}{2\pi r^2}]
  Show Solution 
 [image: \dfrac{1}{72\pi} \, \text{cm/sec}], or approximately 0.0044 cm/sec
   Before looking at other examples, let’s outline the problem-solving strategy we will be using to solve related-rates problems.
 How to: Solve a Related-Rates Problem
 	Variable Assignment: Assign symbols to all variables involved in the problem. If it helps, draw a diagram to visualize the scenario.
 	Information Setup: Clearly state the given information and what needs to be determined, using the assigned variables.
 	Equation Development: Formulate an equation that connects the variables. This relationship should encapsulate the dynamics of the problem.
 	Differentiation: Apply the chain rule to differentiate the equation with respect to time. This step transforms the static equation into one that describes rates of change.
 	Substitution and Solution: Plug in all known values of rates and other variables into the differentiated equation and solve for the unknown rate.
 
  We are able to solve related-rates problems using a similar approach to implicit differentiation. 
 Note that when solving a related-rates problem, it is crucial not to substitute known values too soon. For example, if the value for a changing quantity is substituted into an equation before both sides of the equation are differentiated, then that quantity will behave as a constant and its derivative will not appear in the new equation found in step 4. We examine this potential error in the first example on the next page.
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				Related-Rates Problem-Solving
 Examples of the Process
 Let’s now implement the strategy just described to solve several related-rates problems. The first example involves a plane flying overhead. The relationship we are studying is between the speed of the plane and the rate at which the distance between the plane and a person on the ground is changing.
 An airplane is flying overhead at a constant elevation of [image: 4000] ft. A man is viewing the plane from a position [image: 3000] ft from the base of a radio tower. The airplane is flying horizontally away from the man. If the plane is flying at the rate of [image: 600] ft/sec, at what rate is the distance between the man and the plane increasing when the plane passes over the radio tower?
 Show Solution 
 Step 1. Draw a picture, introducing variables to represent the different quantities involved.
 [image: A right triangle is made with a person on the ground, an airplane in the air, and a radio tower at the right angle on the ground. The hypotenuse is s, the distance on the ground between the person and the radio tower is x, and the side opposite the person (that is, the height from the ground to the airplane) is 4000 ft.]Figure 2. An airplane is flying at a constant height of 4000 ft. The distance between the person and the airplane and the person and the place on the ground directly below the airplane are changing. We denote those quantities with the variables [image: s] and [image: x], respectively. As shown, [image: x] denotes the distance between the man and the position on the ground directly below the airplane. The variable [image: s] denotes the distance between the man and the plane.
 Note that both [image: x] and [image: s] are functions of time. We do not introduce a variable for the height of the plane because it remains at a constant elevation of [image: 4000] ft. Since an object’s height above the ground is measured as the shortest distance between the object and the ground, the line segment of length [image: 4000] ft is perpendicular to the line segment of length [image: x] feet, creating a right triangle.
 Step 2. Since [image: x] denotes the horizontal distance between the man and the point on the ground below the plane, [image: dx/dt] represents the speed of the plane. We are told the speed of the plane is 600 ft/sec. Therefore, [image: \frac{dx}{dt}=600] ft/sec. Since we are asked to find the rate of change in the distance between the man and the plane when the plane is directly above the radio tower, we need to find [image: ds/dt] when [image: x=3000] ft.
 Step 3. From Figure 2, we can use the Pythagorean theorem to write an equation relating [image: x] and [image: s]:
 [image: [x(t)]^2+4000^2=[s(t)]^2].
 
 Step 4. Differentiating this equation with respect to time and using the fact that the derivative of a constant is zero, we arrive at the equation
 [image: x\frac{dx}{dt}=s\frac{ds}{dt}].
 
 Step 5. Find the rate at which the distance between the man and the plane is increasing when the plane is directly over the radio tower. That is, find [image: \frac{ds}{dt}] when [image: x=3000] ft.
 Since the speed of the plane is [image: 600] ft/sec, we know that [image: \frac{dx}{dt}=600] ft/sec. We are not given an explicit value for [image: s]; however, since we are trying to find [image: \frac{ds}{dt}] when [image: x=3000] ft, we can use the Pythagorean theorem to determine the distance [image: s] when [image: x=3000] and the height is [image: 4000] ft. Solving the equation
 [image: 3000^2+4000^2=s^2]
 for [image: s], we have [image: s=5000] ft at the time of interest. Using these values, we conclude that [image: ds/dt] is a solution of the equation
 [image: (3000)(600)=(5000) \cdot \frac{ds}{dt}].
 Therefore,
 [image: \frac{ds}{dt}=\frac{3000 \cdot 600}{5000}=360] ft/sec.
 
 Note: When solving related-rates problems, it is important not to substitute values for the variables too soon. For example, in step 3, we related the variable quantities [image: x(t)] and [image: s(t)] by the equation
 [image: [x(t)]^2+4000^2=[s(t)]^2].
 Since the plane remains at a constant height, it is not necessary to introduce a variable for the height, and we are allowed to use the constant 4000 to denote that quantity. However, the other two quantities are changing. If we mistakenly substituted [image: x(t)=3000] into the equation before differentiating, our equation would have been
 [image: 3000^2+4000^2=[s(t)]^2].
 After differentiating, our equation would become
 [image: 0=s(t)\frac{ds}{dt}].
 As a result, we would incorrectly conclude that [image: \frac{ds}{dt}=0].
 Watch the following video to see the worked solution to this example/
 https://youtube.com/watch?v=7SWaBGupLT0%3Fcontrols%3D0%26start%3D214%26end%3D527%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.1 Related Rates” here (opens in new window).
   What is the speed of the plane if the distance between the person and the plane is increasing at the rate of [image: 300] ft/sec?
 Hint 
 [image: \frac{ds}{dt}=300] ft/sec
  Show Solution 
 [image: 500] ft/sec
   What rate of change is necessary for the elevation angle of the camera if the camera is placed on the ground at a distance of [image: 4000] ft from the launch pad and the velocity of the rocket is [image: 500] ft/sec when the rocket is [image: 2000] ft off the ground?
 Hint 
 Find [image: \frac{d\theta}{dt}] when [image: h=2000] ft. At that time, [image: \frac{dh}{dt}=500] ft/sec.
  Show Solution 
 [image: \frac{1}{10}] rad/sec
   In the next example, we consider water draining from a cone-shaped funnel. We compare the rate at which the level of water in the cone is decreasing with the rate at which the volume of water is decreasing.
 Water is draining from the bottom of a cone-shaped funnel at the rate of [image: 0.03 \, \text{ft}^3 /\text{sec}]. The height of the funnel is [image: 2] ft and the radius at the top of the funnel is [image: 1] ft. At what rate is the height of the water in the funnel changing when the height of the water is [image: \frac{1}{2}] ft?
 Show Solution 
 Step 1: Draw a picture introducing the variables.
 [image: A funnel is shown with height 2 and radius 1 at its top. The funnel has water to height h, at which point the radius is r.]Figure 3. Water is draining from a funnel of height 2 ft and radius 1 ft. The height of the water and the radius of water are changing over time. We denote these quantities with the variables [image: h] and [image: r,] respectively. Let [image: h] denote the height of the water in the funnel, [image: r] denote the radius of the water at its surface, and [image: V] denote the volume of the water.
 Step 2: We need to determine [image: \frac{dh}{dt}] when [image: h=\frac{1}{2}] ft. We know that [image: \frac{dV}{dt}=-0.03 \text{ft}^3 / \text{sec}].
 Step 3: The volume of water in the cone is
 [image: V=\frac{1}{3}\pi r^2 h]
 From Figure 3, we see that we have similar triangles. Therefore, the ratio of the sides in the two triangles is the same. Therefore, [image: \frac{r}{h}=\frac{1}{2}] or [image: r=\frac{h}{2}]. Using this fact, the equation for volume can be simplified to
 [image: V=\frac{1}{3}\pi (\frac{h}{2})^2 h=\frac{\pi}{12}h^3]
 
 Step 4: Applying the chain rule while differentiating both sides of this equation with respect to time [image: t], we obtain
 [image: \frac{dV}{dt}=\frac{\pi}{4}h^2 \frac{dh}{dt}]
 
 Step 5: We want to find [image: \frac{dh}{dt}] when [image: h=\frac{1}{2}] ft. Since water is leaving at the rate of [image: 0.03 \, \text{ft}^3 / \text{sec}], we know that [image: \frac{dV}{dt}=-0.03 \, \text{ft}^3 / \text{sec}]. Therefore,
 [image: -0.03=\frac{\pi}{4}(\frac{1}{2})^2 \frac{dh}{dt}],
 which implies
 [image: -0.03=\frac{\pi}{16}\frac{dh}{dt}]
 It follows that
 [image: \frac{dh}{dt}=-\frac{0.48}{\pi}=-0.153] ft/sec.
 
 At what rate is the height of the water changing when the height of the water is [image: \frac{1}{4}] ft?
 Hint We need to find [image: \frac{dh}{dt}] when [image: h=\frac{1}{4}].
 Show Solution 
 [image: -0.61] ft/sec
   [ohm_question hide_question_numbers=1]16196[/ohm_question]
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				 	Show how quantities change using derivatives and explore how these changes are connected
 	Apply the chain rule to calculate how one changing quantity affects another
 
  Coffee Cooling Rate Analysis: Exploring Related Rates
 In this apply-it task, we’ll investigate the cooling rate of coffee in various containers, applying concepts of derivatives and the chain rule to real-world scenarios. This will help us understand how different factors affect the rate of temperature change over time.
 [image: Image of coffee cup]
  
 Given: The temperature of coffee [image: T(t)] over time [image: t] is given by: [image: T(t) = T_{a} + (T_{0} - T_{a})e^(-kt)], where:
 	[image: T(t)] is the temperature of coffee at time t min,
 	[image: T_{a}] is the ambient temperature,
 	[image: T_{0}] is the initial temperature of the coffee,
 	[image: k] is the cooling constant specific to the container,
 	[image: t] is time in minutes.
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				 	Explain and use linearization to approximate a function’s value near a specific point
 	Calculate and interpret differentials to estimate small changes in function values
 	Measure the accuracy of approximations made with differentials by calculating relative and percentage errors
 
  Linear Approximation of a Function at a Point
 We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we examine another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions are the easiest functions with which to work, so they provide a useful tool for approximating function values.
 Recall that the tangent line to the graph of [image: f] at [image: a] is given by the equation
 [image: y=f(a)+f^{\prime}(a)(x-a)].
  
 This is simply derived from the point-slope form of the equation of a line [image: y-{y}_{1}=m\left(x-{x}_{1}\right)] by adding  [image: {y}_{1}] to both sides!
  Consider the function [image: f(x)=\frac{1}{x}] at [image: a=2]. Since [image: f] is differentiable at [image: x=2] and [image: f^{\prime}(x)=-\frac{1}{x^2}], we see that [image: f^{\prime}(2)=-\frac{1}{4}].
 Therefore, the tangent line to the graph of [image: f] at [image: a=2] is given by the equation
 [image: y=\dfrac{1}{2}-\dfrac{1}{4}(x-2)]
 [image: This figure has two parts a and b. In figure a, the line f(x) = 1/x is shown with its tangent line at x = 2. In figure b, the area near the tangent point is blown up to show how good of an approximation the tangent is near x = 2.]Figure 1. (a) The tangent line to [image: f(x)=\frac{1}{x}] at [image: x=2] provides a good approximation to [image: f] for [image: x] near 2. (b) At [image: x=2.1], the value of [image: y] on the tangent line to [image: f(x)=\frac{1}{x}] is 0.475. The actual value of [image: f(2.1)] is [image: \frac{1}{2.1}], which is approximately 0.47619. Figure 1a shows a graph of [image: f(x)=\frac{1}{x}] along with the tangent line to [image: f] at [image: x=2]. Note that for [image: x] near [image: 2], the graph of the tangent line is close to the graph of [image: f]. As a result, we can use the equation of the tangent line to approximate [image: f(x)] for [image: x] near [image: 2].
 If [image: x=2.1], the [image: y] value of the corresponding point on the tangent line is
 [image: y=\dfrac{1}{2}-\dfrac{1}{4}(2.1-2)=0.475]
 The actual value of [image: f(2.1)] is given by
 [image: f(2.1)=\dfrac{1}{2.1}\approx 0.47619]
 Therefore, the tangent line gives us a fairly good approximation of [image: f(2.1)] (Figure 1b).
 However, note that for values of [image: x] far from [image: 2], the equation of the tangent line does not give us a good approximation. If [image: x=10], the [image: y]-value of the corresponding point on the tangent line is
 [image: y=\frac{1}{2}-\dfrac{1}{4}(10-2)=\dfrac{1}{2}-2=-1.5],
 whereas the value of the function at [image: x=10] is [image: f(10)=0.1].
 In general, for a differentiable function [image: f], the equation of the tangent line to [image: f] at [image: x=a] can be used to approximate [image: f(x)] for [image: x] near [image: a]. Therefore, we can write
 [image: f(x)\approx f(a)+f^{\prime}(a)(x-a)] for [image: x] near [image: a]
 We call the linear function
 [image: L(x)=f(a)+f^{\prime}(a)(x-a)]
 the linear approximation, or tangent line approximation, of [image: f] at [image: x=a]. This function [image: L] is also known as the linearization of [image: f] at [image: x=a].
 linear approximation
 Linear approximation, or tangent line approximation, is a mathematical method that uses the tangent at a specific point to estimate the values of a function near that point.
  Find the linear approximation of [image: f(x)=\sqrt{x}] at [image: x=9] and use the approximation to estimate [image: \sqrt{9.1}].
 Show Solution 
 Since we are looking for the linear approximation at [image: x=9], using the tangent line approximation, we know the linear approximation is given by
 [image: L(x)=f(9)+f^{\prime}(9)(x-9)].
 We need to find [image: f(9)] and [image: f^{\prime}(9)].
 [image: \begin{array}{lll} f(x)=\sqrt{x}& \Rightarrow & f(9)=\sqrt{9}=3 \\ f^{\prime}(x)=\frac{1}{2\sqrt{x}}& \Rightarrow & f^{\prime}(9)=\frac{1}{2\sqrt{9}}=\frac{1}{6} \end{array}]
 Therefore, the linear approximation is given by Figure 2.
 [image: L(x)=3+\frac{1}{6}(x-9)]
 Using the linear approximation, we can estimate [image: \sqrt{9.1}] by writing
 [image: \sqrt{9.1}=f(9.1)\approx L(9.1)=3+\frac{1}{6}(9.1-9)\approx 3.0167].
 [image: The function f(x) = the square root of x is shown with its tangent at (9, 3). The tangent appears to be a very good approximation from x = 6 to x = 12.]Figure 2. The local linear approximation to [image: f(x)=\sqrt{x}] at [image: x=9] provides an approximation to [image: f] for [image: x] near 9. Analysis
 Using a calculator, the value of [image: \sqrt{9.1}] to four decimal places is 3.0166. The value given by the linear approximation, 3.0167, is very close to the value obtained with a calculator, so it appears that using this linear approximation is a good way to estimate [image: \sqrt{x}], at least for [image: x] near 9. At the same time, it may seem odd to use a linear approximation when we can just push a few buttons on a calculator to evaluate [image: \sqrt{9.1}]. However, how does the calculator evaluate [image: \sqrt{9.1}]? The calculator uses an approximation! In fact, calculators and computers use approximations all the time to evaluate mathematical expressions; they just use higher-degree approximations.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=R5C9K3oedGQ%3Fcontrols%3D0%26start%3D128%26end%3D304%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.2 Linear Approximations and Differentials” here (opens in new window).
   Find the linear approximation of [image: f(x)= \sin x] at [image: x=\dfrac{\pi}{3}] and use it to approximate [image: \sin (62^{\circ})].
 Show Solution 
 First we note that since [image: \frac{\pi}{3}] rad is equivalent to [image: 60^{\circ}], using the linear approximation at [image: x=\pi /3] seems reasonable. The linear approximation is given by
 [image: L(x)=f(\frac{\pi}{3})+f^{\prime}(\frac{\pi}{3})(x-\frac{\pi}{3})].
 We see that
 [image: \begin{array}{lll}f(x)= \sin x & \Rightarrow & f(\frac{\pi}{3})= \sin (\frac{\pi}{3})=\frac{\sqrt{3}}{2} \\ f^{\prime}(x)= \cos x & \Rightarrow & f^{\prime}(\frac{\pi}{3})= \cos (\frac{\pi}{3})=\frac{1}{2} \end{array}]
 Therefore, the linear approximation of [image: f] at [image: x=\pi /3] is given by Figure 3.
 [image: L(x)=\frac{\sqrt{3}}{2}+\frac{1}{2}(x-\frac{\pi}{3})]
 To estimate [image: \sin (62^{\circ})] using [image: L], we must first convert [image: 62^{\circ}] to radians. We have [image: 62^{\circ}=\frac{62\pi}{180}] radians, so the estimate for [image: \sin (62^{\circ})] is given by
 [image: \sin (62^{\circ})=f(\frac{62\pi}{180})\approx L(\frac{62\pi }{180})=\frac{\sqrt{3}}{2}+\frac{1}{2}(\frac{62\pi }{180}-\frac{\pi }{3})=\frac{\sqrt{3}}{2}+\frac{1}{2}(\frac{2\pi }{180})=\frac{\sqrt{3}}{2}+\frac{\pi }{180}\approx 0.88348].
 [image: The function f(x) = sin x is shown with its tangent at (π/3, square root of 3 / 2). The tangent appears to be a very good approximation for x near π / 3.]Figure 3. The linear approximation to [image: f(x)= \sin x] at [image: x=\frac{\pi}{3}] provides an approximation to [image: \sin x] for [image: x] near [image: \frac{\pi}{3}.] Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=R5C9K3oedGQ%3Fcontrols%3D0%26start%3D305%26end%3D437%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.2 Linear Approximations and Differentials” here (opens in new window).
   Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation for [image: f(x)=(1+x)^n] at [image: x=0], which can be used to estimate roots and powers for real numbers near [image: 1]. The same idea can be extended to a function of the form [image: f(x)=(m+x)^n] to estimate roots and powers near a different number [image: m].
 Find the linear approximation of [image: f(x)=(1+x)^n] at [image: x=0]. Use this approximation to estimate [image: (1.01)^3].
 Show Solution 
 The linear approximation at [image: x=0] is given by
 [image: L(x)=f(0)+f^{\prime}(0)(x-0)].
  
 Because
 [image: \begin{array}{lll} f(x)=(1+x)^n & \Rightarrow & f(0)=1 \\ f^{\prime}(x)=n(1+x)^{n-1} & \Rightarrow & f^{\prime}(0)=n, \end{array}]
  
 the linear approximation is given by Figure 4a.
 [image: L(x)=1+n(x-0)=1+nx]
  
 We can approximate [image: (1.01)^3] by evaluating [image: L(0.01)] when [image: n=3]. We conclude that
 [image: (1.01)^3=f(1.01)\approx L(1.01)=1+3(0.01)=1.03].
 [image: This figure has two parts a and b. In figure a, the line f(x) = (1 + x)3 is shown with its tangent line at (0, 1). In figure b, the area near the tangent point is blown up to show how good of an approximation the tangent is near (0, 1).]Figure 4. (a) The linear approximation of [image: f(x)] at [image: x=0] is [image: L(x)]. (b) The actual value of [image: 1.01^3] is 1.030301. The linear approximation of [image: f(x)] at [image: x=0] estimates [image: 1.01^3] to be 1.03.   [ohm_question hide_question_numbers=1]288391[/ohm_question]
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				Differentials and Amount of Error
 Computing Differentials
 We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the amount a function value changes as a result of a small change in the input. To discuss this more formally, we define a related concept: differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small change in input values.
 When we first looked at derivatives, we used the Leibniz notation [image: dy/dx] to represent the derivative of [image: y] with respect to [image: x]. Although we used the expressions [image: dy] and [image: dx] in this notation, they did not have meaning on their own.
 Here we see a meaning to the expressions [image: dy] and [image: dx]. Suppose [image: y=f(x)] is a differentiable function. Let [image: dx] be an independent variable that can be assigned any nonzero real number, and define the dependent variable [image: dy] by
 [image: dy=f^{\prime}(x) \, dx]/
 It is important to notice that [image: dy] is a function of both [image: x] and [image: dx]. The expressions [image: dy] and [image: dx] are called differentials.
 We can divide both sides of the equation by [image: dx], which yields
 [image: \frac{dy}{dx}=f^{\prime}(x)]
 This is the familiar expression we have used to denote a derivative. The first equation is known as the differential form of the second one.
 differentials
 Differentials, denoted as [image: dy] and [image: dx], provide a method to estimate the rate of change of a function [image: y=f(x)] due to a small change in [image: x].
  
 By representing the derivative [image: \frac{dy}{dx}=f^{\prime}(x)] in terms of differentials, [image: dy] can be understood as the change in [image: y] resulting from an infinitesimal increment [image: dx] in [image: x].
  For each of the following functions, find [image: dy] and evaluate when [image: x=3] and [image: dx=0.1].
 	[image: y=x^2+2x]
 	[image: y= \cos x]
 
 Show Solution 
 The key step is calculating the derivative. When we have that, we can obtain [image: dy] directly.
 	Since [image: f(x)=x^2+2x], we know [image: f^{\prime}(x)=2x+2], and therefore [image: dy=(2x+2) \, dx].
 When [image: x=3] and [image: dx=0.1],
 [image: dy=(2 \cdot 3+2)(0.1)=0.8].
 
 	Since [image: f(x)= \cos x], [image: f^{\prime}(x)=−\sin (x)]. This gives us [image: dy=−\sin x \, dx].
 When [image: x=3] and [image: dx=0.1],
 [image: dy=−\sin (3)(0.1)=-0.1 \sin (3)].
 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=R5C9K3oedGQ%3Fcontrols%3D0%26start%3D736%26end%3D851%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.2 Linear Approximations and Differentials” here (opens in new window).
   We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a function resulting from a small change in input values.
 Consider a function [image: f] that is differentiable at point [image: a]. Suppose the input [image: x] changes by a small amount. We are interested in how much the output [image: y] changes. If [image: x] changes from [image: a] to [image: a+dx], then the change in [image: x] is [image: dx] (also denoted [image: \Delta x]), and the change in [image: y] is given by
 [image: \Delta y=f(a+dx)-f(a)]
 Instead of calculating the exact change in [image: y], however, it is often easier to approximate the change in [image: y] by using a linear approximation.
 For [image: x] near [image: a], [image: f(x)] can be approximated by the linear approximation
 [image: L(x)=f(a)+f^{\prime}(a)(x-a)]
 Therefore, if [image: dx] is small,
 [image: f(a+dx)\approx L(a+dx)=f(a)+f^{\prime}(a)(a+dx-a)]
 That is,
 [image: f(a+dx)-f(a)\approx L(a+dx)-f(a)=f^{\prime}(a) \, dx.]
 In other words, the actual change in the function [image: f] if [image: x] increases from [image: a] to [image: a+dx] is approximately the difference between [image: L(a+dx)] and [image: f(a)], where [image: L(x)] is the linear approximation of [image: f] at [image: a]. By definition of [image: L(x)], this difference is equal to [image: f^{\prime}(a)dx].
 In summary,
 [image: \Delta y=f(a+dx)-f(a)\approx L(a+dx)-f(a)=f^{\prime}(a) \, dx=dy]
 Therefore, we can use the differential [image: dy=f^{\prime}(a) \, dx] to approximate the change in [image: y] if [image: x] increases from [image: x=a] to [image: x=a+dx]. We can see this in the following graph.
 [image: A function y = f(x) is shown along with its tangent line at (a, f(a)). The tangent line is denoted L(x). The x axis is marked with a and a + dx, with a dashed line showing the distance between a and a + dx as dx. The points (a + dx, f(a + dx)) and (a + dx, L(a + dx)) are marked on the curves for y = f(x) and y = L(x), respectively. The distance between f(a) and L(a + dx) is marked as dy = f’(a) dx, and the distance between f(a) and f(a + dx) is marked as Δy = f(a + dx) – f(a).]Figure 5. The differential [image: dy=f^{\prime}(a) \, dx] is used to approximate the actual change in [image: y] if [image: x] increases from [image: a] to [image: a+dx]. We now take a look at how to use differentials to approximate the change in the value of the function that results from a small change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values of functions and the result is very close to what we would obtain with the more exact calculation.
 Let [image: y=x^2+2x].
 Compute [image: \Delta y] and [image: dy] at [image: x=3] if [image: dx=0.1].
 Show Solution 
 The actual change in [image: y] if [image: x] changes from [image: x=3] to [image: x=3.1] is given by
 [image: \Delta y=f(3.1)-f(3)=[(3.1)^2+2(3.1)]-[3^2+2(3)]=0.81]
  
 The approximate change in [image: y] is given by [image: dy=f^{\prime}(3) \, dx]. Since [image: f^{\prime}(x)=2x+2], we have
 [image: dy=f^{\prime}(3) \, dx=(2(3)+2)(0.1)=0.8].
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				Differentials and Amount of Error Cont.
 Calculating the Amount of Error
 Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are calculated based on measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An error in the measurement of the radius leads to an error in the computed value of the area. Here we examine this type of error and study how differentials can be used to estimate the error.
 Consider a function [image: f] with an input that is a measured quantity. Suppose the exact value of the measured quantity is [image: a], but the measured value is [image: a+dx]. We say the measurement error is [image: dx] (or [image: \Delta x]). As a result, an error occurs in the calculated quantity [image: f(x)]. This type of error is known as a propagated error and is given by
 [image: \Delta y=f(a+dx)-f(a)]
 Since all measurements are prone to some degree of error, we do not know the exact value of a measured quantity, so we cannot calculate the propagated error exactly. However, given an estimate of the accuracy of a measurement, we can use differentials to approximate the propagated error [image: \Delta y].
 Specifically, if [image: f] is a differentiable function at [image: a], the propagated error is
 [image: \Delta y\approx dy=f^{\prime}(a) \, dx]
 Unfortunately, we do not know the exact value [image: a]. However, we can use the measured value [image: a+dx], and estimate
 [image: \Delta y\approx dy\approx f^{\prime}(a+dx) \, dx]
 In the next example, we look at how differentials can be used to estimate the error in calculating the volume of a box if we assume the measurement of the side length is made with a certain amount of accuracy.
 Suppose the side length of a cube is measured to be [image: 5] cm with an accuracy of [image: 0.1] cm.
 	Use differentials to estimate the error in the computed volume of the cube.
 	Compute the volume of the cube if the side length is (i) [image: 4.9] cm and (ii) [image: 5.1] cm to compare the estimated error with the actual potential error.
 
 Show Solution 
 	The measurement of the side length is accurate to within [image: \pm 0.1] cm. Therefore, [image: -0.1\le dx\le 0.1].
 The volume of a cube is given by [image: V=x^3], which leads to
 [image: dV=3x^2 \, dx].
 Using the measured side length of [image: 5] cm, we can estimate that
 [image: -3(5)^2(0.1)\le dV\le 3(5)^2(0.1)].
 Therefore,
 [image: -7.5\le dV\le 7.5].
 
 	If the side length is actually [image: 4.9] cm, then the volume of the cube is [image: V(4.9)=(4.9)^3=117.649 \, \text{cm}^3].
 If the side length is actually 5[image: .1] cm, then the volume of the cube is
 [image: V(5.1)=(5.1)^3=132.651\, \text{cm}^3].
 Therefore, the actual volume of the cube is between [image: 117.649] and [image: 132.651]. Since the side length is measured to be [image: 5] cm, the computed volume is [image: V(5)=5^3=125]. Therefore, the error in the computed volume is
 [image: 117.649-125\le \Delta V\le 132.651-125].
 That is,
 [image: -7.351\le \Delta V\le 7.651].
 We see the estimated error [image: dV] is relatively close to the actual potential error in the computed volume.
 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=R5C9K3oedGQ%3Fcontrols%3D0%26start%3D1193%26end%3D1461%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.2 Linear Approximations and Differentials” here (opens in new window).
   The measurement error [image: dx \, (=\Delta x)] and the propagated error [image: \Delta y] are absolute errors. We are typically interested in the size of an error relative to the size of the quantity being measured or calculated.
 Given an absolute error [image: \Delta q] for a particular quantity, we define the relative error as [image: \frac{\Delta q}{q}], where [image: q] is the actual value of the quantity. The percentage error is the relative error expressed as a percentage.
 relative and percentage error
 Relative error ([image: \frac{\Delta q}{q}]) and percentage error measure how significant an error is compared to the true value of a quantity. Relative error gives a scale-independent error measure, while percentage error expresses this error as a percentage, providing a clear indication of accuracy in measurements.
  For example, if we measure the height of a ladder to be [image: 63] in. when the actual height is [image: 62] in., the absolute error is [image: 1] in. but the relative error is [image: \frac{1}{62}=0.016], or [image: 1.6 \%].
 By comparison, if we measure the width of a piece of cardboard to be [image: 8.25] in. when the actual width is [image: 8] in., our absolute error is [image: \frac{1}{4}] in., whereas the relative error is [image: \frac{0.25}{8}=\frac{1}{32}], or [image: 3.1\%].
 Therefore, the percentage error in the measurement of the cardboard is larger, even though [image: 0.25] in. is less than [image: 1] in.
  An astronaut using a camera measures the radius of Earth as [image: 4000] mi with an error of [image: \pm 80] mi. Let’s use differentials to estimate the relative and percentage error of using this radius measurement to calculate the volume of Earth, assuming the planet is a perfect sphere.
 Show Solution 
 If the measurement of the radius is accurate to within [image: \pm 80], we have
 [image: -80\le dr\le 80].
 Since the volume of a sphere is given by [image: V=(\frac{4}{3})\pi r^3], we have
 [image: dV=4\pi r^2 \, dr].
 Using the measured radius of [image: 4000] mi, we can estimate
 [image: -4\pi (4000)^2(80)\le dV\le 4\pi (4000)^2(80)].
 To estimate the relative error, consider [image: \frac{dV}{V}]. Since we do not know the exact value of the volume [image: V], use the measured radius [image: r=4000] mi to estimate [image: V]. We obtain [image: V\approx (\frac{4}{3})\pi (4000)^3]. Therefore the relative error satisfies
 [image: \dfrac{-4\pi (4000)^2(80)}{4\pi (4000)^3 / 3}\le \dfrac{dV}{V}\le \dfrac{4\pi (4000)^2(80)}{4\pi (4000)^3 /3}],
 which simplifies to
 [image: -0.06\le \frac{dV}{V}\le 0.06].
 The relative error is [image: 0.06] and the percentage error is [image: 6 \%].
   Determine the percentage error if the radius of Earth is measured to be [image: 3950] mi with an error of [image: \pm 100] mi.
 Hint 
 Use the fact that [image: dV=4\pi r^2 \, dr] to find [image: dV/V].
  Show Solution 
 [image: 7.6\%]
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				 	Explain and use linearization to approximate a function’s value near a specific point
 	Calculate and interpret differentials to estimate small changes in function values
 	Measure the accuracy of approximations made with differentials by calculating relative and percentage errors
 
  Differentials in Action: From Medical Dosages to Weather Forecasts
 In this apply-it task, we’ll explore how differentials and linearization can be used in medical dosage calculations and weather forecasting. These examples will demonstrate the practical applications of these mathematical concepts in real-world scenarios.
 Part 1: Medication Dosage Calculation
 A doctor is determining the appropriate dosage of a certain medication for patients based on their weight. The recommended dosage [image: D] (in milligrams) of the medication can be modeled by a function of the patient’s weight [image: w] (in kilograms):
 [image: D(w) = 5w^(\frac{2}{3})]
 [ohm_question hide_question_numbers=1]288238[/ohm_question]
  [ohm_question hide_question_numbers=1]288239[/ohm_question]
  [ohm_question hide_question_numbers=1]288240[/ohm_question]
  Part 2: Rainfall Volume Estimation
 A meteorologist is predicting the volume of rainfall over a circular region based on the measured radius of the storm. The radius is measured to be [image: 50] km, with a possible error of [image: ±0.5] km. The volume [image: V] of rainfall is modeled as the volume of a cylinder, where the height [image: h] represents the average rainfall depth, which is [image: 2] cm ([image: 0.02] km).
 The volume [image: V] of the rainfall can be expressed as:
 [image: V = πr²h]
 [ohm_question hide_question_numbers=1]288241[/ohm_question] [ohm_question hide_question_numbers=1]288242[/ohm_question] [ohm_question hide_question_numbers=1]288243[/ohm_question] [ohm_question hide_question_numbers=1]288244[/ohm_question]  
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				 	Define and Identify the highest and lowest points of a function on a graph, both overall and within specific sections
 	Locate points on a function within a specific range where the slope is zero or undefined (critical points)
 	Explain how to use critical points to find the highest or lowest values of a function within a limited range
 
  Extrema and Critical Points
 Given a particular function, we are often interested in determining the largest and smallest values of the function. This information is important in creating accurate graphs. Finding the maximum and minimum values of a function also has practical significance because we can use this method to solve optimization problems, such as maximizing profit, minimizing the amount of material used in manufacturing an aluminum can, or finding the maximum height a rocket can reach. In this section, we look at how to use derivatives to find the largest and smallest values for a function.
 Absolute Extrema
 Consider the function [image: f(x)=x^2+1] over the interval [image: (−\infty ,\infty )]. As [image: x\to \pm \infty], [image: f(x)\to \infty]. Therefore, the function does not have a largest value. However, since [image: x^2+1\ge 1] for all real numbers [image: x] and [image: x^2+1=1] when [image: x=0], the function has a smallest value, [image: 1], when [image: x=0].
 [image: The function f(x) = x2 + 1 is graphed, and its minimum of 1 is seen to be at x = 0.]Figure 1. The given function has an absolute minimum of 1 at [image: x=0]. The function does not have an absolute maximum. We say that [image: 1] is the absolute minimum of [image: f(x)=x^2+1] and it occurs at [image: x=0]. We say that [image: f(x)=x^2+1] does not have an absolute maximum. 
 absolute maximum and extremum
 Let [image: f] be a function defined over an interval [image: I] and let [image: c\in I].
  
 We say [image: f] has an absolute maximum on [image: I] at [image: c] if [image: f(c)\ge f(x)] for all [image: x\in I].
  
 We say [image: f] has an absolute minimum on [image: I] at [image: c] if [image: f(c)\le f(x)] for all [image: x\in I].
  
 If [image: f] has an absolute maximum on [image: I] at [image: c] or an absolute minimum on [image: I] at [image: c], we say [image: f] has an absolute extremum on [image: I] at [image: c].
  Before proceeding, let’s note two important issues regarding this definition.
 First, the term absolute here does not refer to absolute value. An absolute extremum may be positive, negative, or zero.
 Second, if a function [image: f] has an absolute extremum over an interval [image: I] at [image: c], the absolute extremum is [image: f(c)]. The real number [image: c] is a point in the domain at which the absolute extremum occurs.
 Consider the function [image: f(x)=\frac{1}{(x^2+1)}] over the interval [image: (−\infty ,\infty )]. Since
 [image: f(0)=1\ge \dfrac{1}{x^2+1}=f(x)]
  
 for all real numbers [image: x], we say [image: f] has an absolute maximum over [image: (−\infty ,\infty )] at [image: x=0]. The absolute maximum is [image: f(0)=1]. It occurs at [image: x=0], as shown in Figure 2b.
  So remember: the maximum/minimum = [image: y]; the location of the maximum/minimum = [image: x].
  A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure 2 shows several functions and some of the different possibilities regarding absolute extrema.
 <img src="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11210805/CNX_Calc_Figure_04_03_010.jpg" alt="This figure has six parts a, b, c, d, e, and f. In figure a, the line f(x) = x3 is shown, and it is noted that it has no absolute minimum and no absolute maximum. In figure b, the line f(x) = 1/(x2 + 1) is shown, which is near 0 for most of its length and rises to a bump at (0, 1); it has no absolute minimum, but does have an absolute maximum of 1 at x = 0. In figure c, the line f(x) = cos x is shown, which has absolute minimums of −1 at ±π, ±3π, … and absolute maximums of 1 at 0, ±2π, ±4π, …. In figure d, the piecewise function f(x) = 2 – x2 for 0 ≤ x Figure 2. Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of [image: (−\infty ,\infty )]. Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.
 However, the following theorem, called the extreme value theorem, guarantees that a continuous function [image: f] over a closed, bounded interval [image: [a,b]] has both an absolute maximum and an absolute minimum. 
 extreme value theorem
 If [image: f] is a continuous function over the closed, bounded interval [image: [a,b]], then there is a point in [image: [a,b]] at which [image: f] has an absolute maximum over [image: [a,b]] and there is a point in [image: [a,b]] at which [image: f] has an absolute minimum over [image: [a,b]].
  The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis.
 There are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be continuous over a closed, bounded interval. If the interval [image: I] is open or the function has even one point of discontinuity, the function may not have an absolute maximum or absolute minimum over [image: I].
 Consider the functions shown in Figure 2(d), (e), and (f).
 <img src="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11210805/CNX_Calc_Figure_04_03_010.jpg" alt="This figure has six parts a, b, c, d, e, and f. In figure a, the line f(x) = x3 is shown, and it is noted that it has no absolute minimum and no absolute maximum. In figure b, the line f(x) = 1/(x2 + 1) is shown, which is near 0 for most of its length and rises to a bump at (0, 1); it has no absolute minimum, but does have an absolute maximum of 1 at x = 0. In figure c, the line f(x) = cos x is shown, which has absolute minimums of −1 at ±π, ±3π, … and absolute maximums of 1 at 0, ±2π, ±4π, …. In figure d, the piecewise function f(x) = 2 – x2 for 0 ≤ x Figure 2. Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of [image: (−\infty ,\infty )]. Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.
 All three of these functions are defined over bounded intervals. However, the function in graph (e) is the only one that has both an absolute maximum and an absolute minimum over its domain.
 The extreme value theorem cannot be applied to the functions in graphs (d) and (f) because neither of these functions is continuous over a closed, bounded interval.
 Although the function in graph (d) is defined over the closed interval [image: [0,4]], the function is discontinuous at [image: x=2]. The function has an absolute maximum over [image: [0,4]] but does not have an absolute minimum.
 The function in graph (f) is continuous over the half-open interval [image: [0,2)], but is not defined at [image: x=2], and therefore is not continuous over a closed, bounded interval. The function has an absolute minimum over [image: [0,2)], but does not have an absolute maximum over [image: [0,2)].
 These two graphs illustrate why a function over a bounded interval may fail to have an absolute maximum and/or absolute minimum.
  Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in determining where absolute extrema occur.
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				Extrema and Critical Points
 Local Extrema and Critical Points
 Consider the function [image: f] shown in below.
 [image: The function f(x) is shown, which curves upward from quadrant III, slows down in quadrant II, achieves a local maximum on the y-axis, decreases to achieve a local minimum in quadrant I at x = 1, increases to a local maximum at x = 2 that is greater than the other local maximum, and then decreases rapidly through quadrant IV.]Figure 3. This function [image: f] has two local maxima and one local minimum. The local maximum at [image: x=2] is also the absolute maximum. The graph can be described as two mountains with a valley in the middle. The absolute maximum value of the function occurs at the higher peak, at [image: x=2].
 However, [image: x=0] is also a point of interest. Although [image: f(0)] is not the largest value of [image: f], the value [image: f(0)] is larger than [image: f(x)] for all [image: x] near [image: 0]. We say [image: f] has a local maximum at [image: x=0].
 Similarly, the function [image: f] does not have an absolute minimum, but it does have a local minimum at [image: x=1] because [image: f(1)] is less than [image: f(x)] for [image: x] near [image: 1].
 local extremum
 A function [image: f] has a local maximum at [image: c] if there exists an open interval [image: I] containing [image: c] such that [image: I] is contained in the domain of [image: f] and [image: f(c)\ge f(x)] for all [image: x\in I].
  
 A function [image: f] has a local minimum at [image: c] if there exists an open interval [image: I] containing [image: c] such that [image: I] is contained in the domain of [image: f] and [image: f(c)\le f(x)] for all [image: x\in I].
  
 A function [image: f] has a local extremum at [image: c] if [image: f] has a local maximum at [image: c] or [image: f] has a local minimum at [image: c].
  Note that if [image: f] has an absolute extremum at [image: c] and [image: f] is defined over an interval containing [image: c], then [image: f(c)] is also considered a local extremum. If an absolute extremum for a function [image: f] occurs at an endpoint, we do not consider that to be a local extremum, but instead refer to that as an endpoint extremum.
  Given the graph of a function [image: f], it is sometimes easy to see where a local maximum or local minimum occurs. However, it is not always easy to see, since the interesting features on the graph of a function may not be visible because they occur at a very small scale. Also, we may not have a graph of the function.
 In these cases, how can we use a formula for a function to determine where these extrema occur?
 To answer this question, let’s look at Figure 3 again.
 [image: The function f(x) is shown, which curves upward from quadrant III, slows down in quadrant II, achieves a local maximum on the y-axis, decreases to achieve a local minimum in quadrant I at x = 1, increases to a local maximum at x = 2 that is greater than the other local maximum, and then decreases rapidly through quadrant IV.]Figure 3. This function [image: f] has two local maxima and one local minimum. The local maximum at [image: x=2] is also the absolute maximum The local extrema occur at [image: x=0], [image: x=1], and [image: x=2]. Notice that at [image: x=0] and [image: x=1], the derivative [image: f^{\prime}(x)=0]. At [image: x=2], the derivative [image: f^{\prime}(x)] does not exist, since the function [image: f] has a corner there.
 In fact, if [image: f] has a local extremum at a point [image: x=c], the derivative [image: f^{\prime}(c)] must satisfy one of the following conditions: either [image: f^{\prime}(c)=0] or [image: f^{\prime}(c)] is undefined.
 Such a value [image: c] is known as a critical point and it is important in finding extreme values for functions.
 critical point
 Let [image: c] be an interior point in the domain of [image: f]. We say that [image: c] is a critical point of [image: f] if [image: f^{\prime}(c)=0] or [image: f^{\prime}(c)] is undefined.
  As mentioned earlier, if [image: f] has a local extremum at a point [image: x=c], then [image: c] must be a critical point of [image: f]. This fact is known as Fermat’s theorem.
 Fermat’s theorem
 If [image: f] has a local extremum at [image: c] and [image: f] is differentiable at [image: c], then [image: f^{\prime}(c)=0].
  Proof
 
 Suppose [image: f] has a local extremum at [image: c] and [image: f] is differentiable at [image: c]. We need to show that [image: f^{\prime}(c)=0]. To do this, we will show that [image: f^{\prime}(c)\ge 0] and [image: f^{\prime}(c)\le 0], and therefore [image: f^{\prime}(c)=0]. Since [image: f] has a local extremum at [image: c], [image: f] has a local maximum or local minimum at [image: c]. Suppose [image: f] has a local maximum at [image: c]. The case in which [image: f] has a local minimum at [image: c] can be handled similarly. There then exists an open interval [image: I] such that [image: f(c)\ge f(x)] for all [image: x\in I]. Since [image: f] is differentiable at [image: c], from the definition of the derivative, we know that
 [image: f^{\prime}(c)=\underset{x\to c}{\lim}\dfrac{f(x)-f(c)}{x-c}]
  
 Since this limit exists, both one-sided limits also exist and equal [image: f^{\prime}(c)]. Therefore,
 [image: f^{\prime}(c)=\underset{x\to c^+}{\lim}\dfrac{f(x)-f(c)}{x-c}],
  
 and
 [image: f^{\prime}(c)=\underset{x\to c^-}{\lim}\dfrac{f(x)-f(c)}{x-c}]
  
 Since [image: f(c)] is a local maximum, we see that [image: f(x)-f(c)\le 0] for [image: x] near [image: c]. Therefore, for [image: x] near [image: c], but [image: x>c], we have [image: \frac{f(x)-f(c)}{x-c}\le 0]. From the equations above we conclude that [image: f^{\prime}(c)\le 0]. Similarly, it can be shown that [image: f^{\prime}(c)\ge 0]. Therefore, [image: f^{\prime}(c)=0].
 [image: _\blacksquare]
  From Fermat’s theorem, we conclude that if [image: f] has a local extremum at [image: c], then either [image: f^{\prime}(c)=0] or [image: f^{\prime}(c)] is undefined. In other words, local extrema can only occur at critical points.
 Note this theorem does not claim that a function [image: f] must have a local extremum at a critical point. Rather, it states that critical points are candidates for local extrema.
 Consider the function [image: f(x)=x^3]. We have [image: f^{\prime}(x)=3x^2=0] when [image: x=0]. Therefore, [image: x=0] is a critical point. However, [image: f(x)=x^3] is increasing over [image: (−\infty ,\infty )], and thus [image: f] does not have a local extremum at [image: x=0].
  In Figure 4, we see several different possibilities for critical points. In some of these cases, the functions have local extrema at critical points, whereas in other cases the functions do not. Note that these graphs do not show all possibilities for the behavior of a function at a critical point.
 [image: This figure has five parts a, b, c, d, and e. In figure a, a parabola is shown facing down in quadrant I; there is a horizontal tangent line at the local maximum marked f’(c) = 0. In figure b, there is a function drawn with an asymptote at c, meaning that the function increases toward infinity on both sides of c; it is noted that f’(c) is undefined. In figure c, a version of the absolute value graph is shown that has been shifted so that its minimum is in quadrant I with x = c. It is noted that f’(c) is undefined. In figure d, a version of the function f(x) = x3 is shown that has been shifted so that its inflection point is in quadrant I with x = c. Its inflection point at (c, f(c)) has a horizontal line through it, and it is noted that f’(c) = 0. In figure e, a version of the function f(x) = x1/3 is shown that has been shifted so that its inflection point is in quadrant I with x = c. Its inflection point at (c, f(c)) has a vertical line through it, and it is noted that f’(c) is undefined.]Figure 4. (a–e) A function [image: f] has a critical point at [image: c] if [image: f^{\prime}(c)=0] or [image: f^{\prime}(c)] is undefined. A function may or may not have a local extremum at a critical point. Later in this module we look at analytical methods for determining whether a function actually has a local extremum at a critical point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine whether a critical point is associated with a local extremum.
 For each of the following functions, find all critical points. Use a graphing utility to determine whether the function has a local extremum at each of the critical points.
 	[image: f(x)=\frac{1}{3}x^3-\frac{5}{2}x^2+4x]
 	[image: f(x)=(x^2-1)^3]
 	[image: f(x)=\dfrac{4x}{1+x^2}]
 
 Show Solution 
 	The derivative [image: f^{\prime}(x)=x^2-5x+4] is defined for all real numbers [image: x]. Therefore, we only need to find the values for [image: x] where [image: f^{\prime}(x)=0]. Since [image: f^{\prime}(x)=x^2-5x+4=(x-4)(x-1)], the critical points are [image: x=1] and [image: x=4]. From the graph of [image: f] in Figure 5, we see that [image: f] has a local maximum at [image: x=1] and a local minimum at [image: x=4].
 [image: The function f(x) = (1/3) x3 – (5/2) x2 + 4x is graphed. The function has local maximum at x = 1 and local minimum at x = 4.]Figure 5. This function has a local maximum and a local minimum. 
 	Using the chain rule, we see the derivative is [image: f^{\prime}(x)=3(x^2-1)^2(2x)=6x(x^2-1)^2]
 Therefore, [image: f] has critical points when [image: x=0] and when [image: x^2-1=0]. We conclude that the critical points are [image: x=0,\pm 1]. From the graph of [image: f] in Figure 6, we see that [image: f] has a local (and absolute) minimum at [image: x=0], but does not have a local extremum at [image: x=1] or [image: x=-1].
 [image: The function f(x) = (x2 − 1)3 is graphed. The function has local minimum at x = 0, and inflection points at x = ±1.]Figure 6. This function has three critical points: [image: x=0], [image: x=1], and [image: x=-1]. The function has a local (and absolute) minimum at [image: x=0], but does not have extrema at the other two critical points. 
 	By the chain rule, we see that the derivative is [image: f^{\prime}(x)=\dfrac{(1+x^2 \cdot 4)-4x(2x)}{(1+x^2)^2}=\dfrac{4-4x^2}{(1+x^2)^2}]
 The derivative is defined everywhere. Therefore, we only need to find values for [image: x] where [image: f^{\prime}(x)=0]. Solving [image: f^{\prime}(x)=0], we see that [image: 4-4x^2=0], which implies [image: x=\pm 1]. Therefore, the critical points are [image: x=\pm 1]. From the graph of [image: f] in Figure 7, we see that [image: f] has an absolute maximum at [image: x=1] and an absolute minimum at [image: x=-1]. Hence, [image: f] has a local maximum at [image: x=1] and a local minimum at [image: x=-1]. (Note that if [image: f] has an absolute extremum over an interval [image: I] at a point [image: c] that is not an endpoint of [image: I], then [image: f] has a local extremum at [image: c].)
 [image: The function f(x) = 4x/(1 + x2) is graphed. The function has local/absolute maximum at x = 1 and local/absolute minimum at x = −1.]Figure 7. This function has an absolute maximum and an absolute minimum. 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=UBaioDQW1L8%3Fcontrols%3D0%26start%3D629%26end%3D1122%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.3 Maxima and Minima” here (opens in new window).
   [ohm_question hide_question_numbers=1]207990[/ohm_question]
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				Extrema and Critical Points
 Locating Absolute Extrema
 The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Let’s look at Figure 2 again.
 <img src="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11210805/CNX_Calc_Figure_04_03_010.jpg" alt="This figure has six parts a, b, c, d, e, and f. In figure a, the line f(x) = x3 is shown, and it is noted that it has no absolute minimum and no absolute maximum. In figure b, the line f(x) = 1/(x2 + 1) is shown, which is near 0 for most of its length and rises to a bump at (0, 1); it has no absolute minimum, but does have an absolute maximum of 1 at x = 0. In figure c, the line f(x) = cos x is shown, which has absolute minimums of −1 at ±π, ±3π, … and absolute maximums of 1 at 0, ±2π, ±4π, …. In figure d, the piecewise function f(x) = 2 – x2 for 0 ≤ x Figure 2. Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of [image: (−\infty ,\infty )]. Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.
 One or both of these absolute extrema could occur at an endpoint. If an absolute extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local extremum. Therefore, by Fermat’s Theorem, the point [image: c] at which the local extremum occurs must be a critical point. We summarize this result in the following theorem.
 location of absolute extrema
 Let [image: f] be a continuous function over a closed, bounded interval [image: I]. The absolute maximum of [image: f] over [image: I] and the absolute minimum of [image: f] over [image: I] must occur at endpoints of [image: I] or at critical points of [image: f] in [image: I].
  With this idea in mind, let’s examine a procedure for locating absolute extrema.
 How to: Locate Absolute Extrema over a Closed Interval
 Consider a continuous function [image: f] defined over the closed interval [image: [a,b]].
 	Evaluate the Function at Endpoints: Calculate [image: f(a)] and [image: f(b)], where [image: f] is defined on the closed interval [image: [a,b]].
 	Identify Critical Points: Find all critical points of [image: f] within the interval [image: [a,b]] and evaluate [image: f] at these points.
 	Determine Extrema: Compare the values from steps 1 and 2. The largest value is the absolute maximum, and the smallest is the absolute minimum of [image: f] on [image: [a,b]].
 
  Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.
 For each of the following functions, find the absolute maximum and absolute minimum over the specified interval and state where those values occur.
 	[image: f(x)=−x^2+3x-2] over [image: [1,3]].
 	[image: f(x)=x^2-3x^{\frac{2}{3}}] over [image: [0,2]].
 
 Show Solution 
 	Step 1. Evaluate [image: f] at the endpoints [image: x=1] and [image: x=3]. [image: f(1)=0] and [image: f(3)=-2]
 Step 2. Since [image: f^{\prime}(x)=-2x+3], [image: f^{\prime}] is defined for all real numbers [image: x]. Therefore, there are no critical points where the derivative is undefined. It remains to check where [image: f^{\prime}(x)=0]. Since [image: f^{\prime}(x)=-2x+3=0] at [image: x=\frac{3}{2}] and [image: \frac{3}{2}] is in the interval [image: [1,3]], [image: f(\frac{3}{2})] is a candidate for an absolute extremum of [image: f] over [image: [1,3]]. We evaluate [image: f(\frac{3}{2})] and find
 [image: f\left(\frac{3}{2}\right)=\frac{1}{4}]
 Step 3. We set up the following table to compare the values found in steps 1 and 2.
 	[image: x] 	[image: f(x)] 	Conclusion 
  	0 	0 	  
 	[image: \frac{3}{2}] 	[image: \frac{1}{4}] 	Absolute maximum 
 	3 	-2 	Absolute minimum 
  
 From the table, we find that the absolute maximum of [image: f] over the interval [image: [1,3]] is [image: \frac{1}{4}], and it occurs at [image: x=\frac{3}{2}]. The absolute minimum of [image: f] over the interval [image: [1,3]] is -2, and it occurs at [image: x=3] as shown in the following graph.
 [image: The function f(x) = – x2 + 3x – 2 is graphed from (1, 0) to (3, −2), with its maximum marked at (3/2, 1/4).]Figure 8. This function has both an absolute maximum and an absolute minimum. 
 	Step 1. Evaluate [image: f] at the endpoints [image: x=0] and [image: x=2]. [image: f(0)=0] and [image: f(2)=4-3\sqrt[3]{4}\approx -0.762]
 Step 2. The derivative of [image: f] is given by
 [image: f^{\prime}(x)=2x-\dfrac{2}{x^{\frac{1}{3}}}=\dfrac{2x^{\frac{4}{3}}-2}{x^{\frac{1}{3}}}]
 for [image: x\ne 0]. The derivative is zero when [image: 2x^{\frac{4}{3}}-2=0], which implies [image: x=\pm 1]. The derivative is undefined at [image: x=0]. Therefore, the critical points of [image: f] are [image: x=0,1,-1]. The point [image: x=0] is an endpoint, so we already evaluated [image: f(0)] in step 1. The point [image: x=-1] is not in the interval of interest, so we need only evaluate [image: f(1)]. We find that
 [image: f(1)=-2]
 Step 3. We compare the values found in steps 1 and 2, in the following table.
 	[image: x] 	[image: f(x)] 	Conclusion 
  	0 	0 	Absolute maximum 
 	1 	-2 	Absolute minimum 
 	2 	-0.762 	  
  
 We conclude that the absolute maximum of [image: f] over the interval [image: [0,2]] is zero, and it occurs at [image: x=0]. The absolute minimum is −2, and it occurs at [image: x=1] as shown in the following graph.
 [image: The function f(x) = x2 – 3x2/3 is graphed from (0, 0) to (2, −0.762), with its minimum marked at (1, −2).]Figure 9. This function has an absolute maximum at an endpoint of the interval. 
 
 Watch the following video to see the worked solution to the first part of this example.
 https://youtube.com/watch?v=UBaioDQW1L8%3Fcontrols%3D0%26start%3D1123%26end%3D1272%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.3 Maxima and Minima” here (opens in new window).
   [ohm_question hide_question_numbers=1]288392[/ohm_question]
  At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local extrema and determined that if a function [image: f] has a local extremum at a point [image: c], then [image: c] must be a critical point of [image: f]. However, [image: c] being a critical point is not a sufficient condition for [image: f] to have a local extremum at [image: c]. Later in this module, we show how to determine whether a function actually has a local extremum at a critical point. First, however, we need to introduce the Mean Value Theorem, which will help as we analyze the behavior of the graph of a function.
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				 	Define and Identify the highest and lowest points of a function on a graph, both overall and within specific sections
 	Locate points on a function within a specific range where the slope is zero or undefined (critical points)
 	Explain how to use critical points to find the highest or lowest values of a function within a limited range
 
  Navigating Extrema: Mastering Maximum and Minimum Function Values
 In calculus, finding the maximum and minimum values of a function is a crucial skill with wide-ranging applications in optimization problems across various fields. This apply-it task focuses on identifying and classifying these extreme values for a diverse set of functions over specified intervals. You’ll encounter functions with different characteristics – polynomial, rational, trigonometric, and those involving roots – each presenting unique challenges in determining their extrema.
 As you work through these problems, you’ll need to apply various techniques, including finding critical points, evaluating endpoints of closed intervals, and considering the behavior of functions on open intervals. Remember to distinguish between local and absolute extrema, and pay attention to the domain restrictions for each function. This exercise will sharpen your ability to analyze function behavior and make precise determinations about their maximum and minimum values, skills that are fundamental in advanced mathematical analysis and real-world problem-solving.
 [ohm_question hide_question_numbers=1]288245[/ohm_question] [ohm_question hide_question_numbers=1]288246[/ohm_question] [ohm_question hide_question_numbers=1]288247[/ohm_question] [ohm_question hide_question_numbers=1]288248[/ohm_question] [ohm_question hide_question_numbers=1]288250[/ohm_question] [ohm_question hide_question_numbers=1]288251[/ohm_question] 
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				 	Use Rolle’s theorem and the Mean Value Theorem to show how functions behave between two points
 	Discuss three key implications of the Mean Value Theorem for understanding function behavior
 
  The Mean Value Theorem
 The Mean Value Theorem is one of the most important theorems in calculus. We look at some of its implications at the end of this section. First, let’s start with a special case of the Mean Value Theorem, called Rolle’s theorem.
 Rolle’s Theorem
 Informally, Rolle’s theorem states that if the outputs of a differentiable function [image: f] are equal at the endpoints of an interval, then there must be an interior point [image: c] where [image: f^{\prime}(c)=0]. Figure 1 illustrates this theorem.
 [image: The figure is divided into three parts labeled a, b, and c. Figure a shows the first quadrant with values a, c, and b marked on the x-axis. A downward-facing parabola is drawn such that its values at a and b are the same. The point c is the global maximum, and it is noted that f’(c) = 0. Figure b shows the first quadrant with values a, c, and b marked on the x-axis. An upward-facing parabola is drawn such that its values at a and b are the same. The point c is the global minimum, and it is noted that f’(c) = 0. Figure c shows the first quadrant with points a, c1, c2, and b marked on the x-axis. One period of a sine wave is drawn such that its values at a and b are equal. The point c1 is the global maximum, and it is noted that f’(c1) = 0. The point c2 is the global minimum, and it is noted that f’(c2) = 0.]Figure 1. If a differentiable function f satisfies [image: f(a)=f(b)], then its derivative must be zero at some point(s) between [image: a] and [image: b]. Rolle’s theorem
 Let [image: f] be a continuous function over the closed interval [image: [a,b]] and differentiable over the open interval [image: (a,b)] such that [image: f(a)=f(b)]. There then exists at least one [image: c \in (a,b)] such that [image: f^{\prime}(c)=0].
  Proof
 
 Let [image: k=f(a)=f(b)]. We consider three cases:
 	[image: f(x)=k] for all [image: x \in (a,b)].
 	There exists [image: x \in (a,b)] such that [image: f(x)>k].
 	There exists [image: x \in (a,b)] such that [image: f(x) k].
 
 Case 1: If [image: f(x)=k] for all [image: x \in (a,b)], then [image: f^{\prime}(x)=0] for all [image: x \in (a,b)].
 Case 2: Since [image: f] is a continuous function over the closed, bounded interval [image: [a,b]], by the extreme value theorem, it has an absolute maximum. Also, since there is a point [image: x \in (a,b)] such that [image: f(x)>k], the absolute maximum is greater than [image: k]. Therefore, the absolute maximum does not occur at either endpoint. As a result, the absolute maximum must occur at an interior point [image: c \in (a,b)]. Because [image: f] has a maximum at an interior point [image: c], and [image: f] is differentiable at [image: c], by Fermat’s theorem, [image: f^{\prime}(c)=0].
 Case 3: The case when there exists a point [image: x \in (a,b)] such that [image: f(x) k] is analogous to case 2, with maximum replaced by minimum.
 [image: _\blacksquare]
  An important point about Rolle’s theorem is that the differentiability of the function [image: f] is critical. If [image: f] is not differentiable, even at a single point, the result may not hold.
 For example, the function [image: f(x)=|x|-1] is continuous over [image: [-1,1]] and [image: f(-1)=0=f(1)], but [image: f^{\prime}(c) \ne 0] for any [image: c \in (-1,1)] as shown in the following figure.
 [image: The function f(x) = |x| − 1 is graphed. It is shown that f(1) = f(−1), but it is noted that there is no c such that f’(c) = 0.]Figure 2. Since [image: f(x)=|x|-1] is not differentiable at [image: x=0], the conditions of Rolle’s theorem are not satisfied. In fact, the conclusion does not hold here; there is no [image: c \in (-1,1)] such that [image: f^{\prime}(c)=0]. Let’s now consider functions that satisfy the conditions of Rolle’s theorem and calculate explicitly the points [image: c] where [image: f^{\prime}(c)=0].
 For each of the following functions, verify that the function satisfies the criteria stated in Rolle’s theorem and find all values [image: c] in the given interval where [image: f^{\prime}(c)=0].
 	[image: f(x)=x^2+2x] over [image: [-2,0]]
 	[image: f(x)=x^3-4x] over [image: [-2,2]]
 
 Show Solution 
 	Since [image: f] is a polynomial, it is continuous and differentiable everywhere. In addition, [image: f(-2)=0=f(0)]. Therefore, [image: f] satisfies the criteria of Rolle’s theorem. We conclude that there exists at least one value [image: c \in (-2,0)] such that [image: f^{\prime}(c)=0]. Since [image: f^{\prime}(x)=2x+2=2(x+1)], we see that [image: f^{\prime}(c)=2(c+1)=0] implies [image: c=-1] as shown in the following graph.
 [image: The function f(x) = x2 +2x is graphed. It is shown that f(0) = f(−2), and a dashed horizontal line is drawn at the absolute minimum at (−1, −1).]Figure 3. This function is continuous and differentiable over [image: [-2,0]], [image: f^{\prime}(c)=0] when [image: c=-1]. 
 	As in part a., [image: f] is a polynomial and therefore is continuous and differentiable everywhere. Also, [image: f(-2)=0=f(2)]. That said, [image: f] satisfies the criteria of Rolle’s theorem. Differentiating, we find that [image: f^{\prime}(x)=3x^2-4]. Therefore, [image: f^{\prime}(c)=0] when [image: x=\pm \frac{2}{\sqrt{3}}]. Both points are in the interval [image: [-2,2]], and, therefore, both points satisfy the conclusion of Rolle’s theorem as shown in the following graph.
 [image: The function f(x) = x3 – 4x is graphed. It is obvious that f(2) = f(−2) = f(0). Dashed horizontal lines are drawn at x = ±2/square root of 3, which are the local maximum and minimum.]Figure 4. For this polynomial over [image: [-2,2]], [image: f^{\prime}(c)=0] at [image: x=\pm 2/\sqrt{3}]. 
 
   Verify that the function [image: f(x)=2x^2-8x+6] defined over the interval [image: [1,3]] satisfies the conditions of Rolle’s theorem. Find all points [image: c] guaranteed by Rolle’s theorem.
 Hint 
 Find all values [image: c], where [image: f^{\prime}(c)=0].
  Show Solution 
 [image: c=2]
   Watch the following video to see the worked solution to the two previous examples.
 https://youtube.com/watch?v=meMefcJWbrQ%3Fcontrols%3D0%26start%3D118%26end%3D339%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.4 Mean Value Theorem” here (opens in new window).
   
	

			CC licensed content, Original
	4.4 Mean Value Theorem. Authored by: Ryan Melton. License: CC BY: Attribution

CC licensed content, Shared previously
	Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Retrieved from: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction



			


		
	
		
			
	
		123

		The Mean Value Theorem: Learn It 2

								

	
				The Mean Value Theorem and Its Meaning
 Rolle’s theorem is a special case of the Mean Value Theorem. In Rolle’s theorem, we consider differentiable functions [image: f]defined on a closed interval [image: [a,b]] with [image: f(a)=f(b)]. The Mean Value Theorem generalizes Rolle’s theorem by considering functions that do not necessarily have equal value at the endpoints. Consequently, we can view the Mean Value Theorem as a slanted version of Rolle’s theorem (Figure 5). 
 [image: A vaguely sinusoidal function y = f(x) is drawn. On the x-axis, a, c1, c2, and b are marked. On the y-axis, f(a) and f(b) are marked. The function f(x) starts at (a, f(a)), decreases to c1, increases to c2, and then decreases to (b, f(b)). A secant line is drawn between (a, f(a)) and (b, f(b)), and it is noted that this line has slope (f(b) – f(a))/(b − a). The tangent lines at c1 and c2 are drawn, and these lines are parallel to the secant line. It is noted that the slopes of these tangent lines are f’(c1) and f’(c2), respectively.]Figure 5. The Mean Value Theorem says that for a function that meets its conditions, at some point the tangent line has the same slope as the secant line between the ends. For this function, there are two values [image: c_1] and [image: c_2] such that the tangent line to [image: f] at [image: c_1] and [image: c_2] has the same slope as the secant line. The Mean Value Theorem states that if [image: f] is continuous over the closed interval [image: [a,b]] and differentiable over the open interval [image: (a,b)], then there exists a point [image: c \in (a,b)] such that the tangent line to the graph of [image: f] at [image: c] is parallel to the secant line connecting [image: (a,f(a))] and [image: (b,f(b))].
 Mean Value Theorem
 Let [image: f] be continuous over the closed interval [image: [a,b]] and differentiable over the open interval [image: (a,b)]. Then, there exists at least one point [image: c \in (a,b)] such that
 [image: f^{\prime}(c)=\dfrac{f(b)-f(a)}{b-a}]
  Proof
 
 The proof follows from Rolle’s theorem by introducing an appropriate function that satisfies the criteria of Rolle’s theorem. Consider the line connecting [image: (a,f(a))] and [image: (b,f(b))]. Since the slope of that line is
 [image: \dfrac{f(b)-f(a)}{b-a}]
  
 and the line passes through the point [image: (a,f(a))], the equation of that line can be written as
 [image: y=\dfrac{f(b)-f(a)}{b-a}(x-a)+f(a)]
  
 Let [image: g(x)] denote the vertical difference between the point [image: (x,f(x))] and the point [image: (x,y)] on that line. Therefore,
 [image: g(x)=f(x)-\left[\dfrac{f(b)-f(a)}{b-a}(x-a)+f(a)\right]]
 [image: A vaguely sinusoidal function y = f(x) is drawn. On the x-axis, a and b are marked. On the y-axis, f(a) and f(b) are marked. The function f(x) starts at (a, f(a)), decreases, then increases, and then decreases to (b, f(b)). A secant line is drawn between (a, f(a)) and (b, f(b)), and it is noted that this line has equation y = ((f(b) – f(a))/(b − a)) (x − a) + f(x). A line is drawn between the maximum of f(x) and the secant line and it is marked g(x).]Figure 6. The value [image: g(x)] is the vertical difference between the point [image: (x,f(x))] and the point [image: (x,y)] on the secant line connecting [image: (a,f(a))] and [image: (b,f(b)).] Since the graph of [image: f] intersects the secant line when [image: x=a] and [image: x=b], we see that [image: g(a)=0=g(b)]. Since [image: f] is a differentiable function over [image: (a,b)], [image: g] is also a differentiable function over [image: (a,b)]. Furthermore, since [image: f] is continuous over [image: [a,b]], [image: g] is also continuous over [image: [a,b]]. Therefore, [image: g] satisfies the criteria of Rolle’s theorem. Consequently, there exists a point [image: c \in (a,b)] such that [image: g^{\prime}(c)=0]. Since
 [image: g^{\prime}(x)=f^{\prime}(x)-\dfrac{f(b)-f(a)}{b-a}],
  
 we see that
 [image: g^{\prime}(c)=f^{\prime}(c)-\dfrac{f(b)-f(a)}{b-a}]
  
 Since [image: g^{\prime}(c)=0], we conclude that
 [image: f^{\prime}(c)=\dfrac{f(b)-f(a)}{b-a}]
 [image: _\blacksquare]
  In the next example, we show how the Mean Value Theorem can be applied to the function [image: f(x)=\sqrt{x}] over the interval [image: [0,9]]. The method is the same for other functions, although sometimes with more interesting consequences.
 For [image: f(x)=\sqrt{x}] over the interval [image: [0,9]], show that [image: f] satisfies the hypothesis of the Mean Value Theorem, and therefore there exists at least one value [image: c \in (0,9)] such that [image: f^{\prime}(c)] is equal to the slope of the line connecting [image: (0,f(0))] and [image: (9,f(9))]. Find these values [image: c] guaranteed by the Mean Value Theorem.
 Show Solution 
 We know that [image: f(x)=\sqrt{x}] is continuous over [image: [0,9]] and differentiable over [image: (0,9)]. Therefore, [image: f] satisfies the hypotheses of the Mean Value Theorem, and there must exist at least one value [image: c \in (0,9)] such that [image: f^{\prime}(c)] is equal to the slope of the line connecting [image: (0,f(0))] and [image: (9,f(9))] (Figure 7). To determine which value(s) of [image: c] are guaranteed, first calculate the derivative of [image: f]. The derivative [image: f^{\prime}(x)=\frac{1}{2\sqrt{x}}]. The slope of the line connecting [image: (0,f(0))] and [image: (9,f(9))] is given by
 [image: \dfrac{f(9)-f(0)}{9-0}=\dfrac{\sqrt{9}-\sqrt{0}}{9-0}=\dfrac{3}{9}=\dfrac{1}{3}]
 We want to find [image: c] such that [image: f^{\prime}(c)=\frac{1}{3}]. That is, we want to find [image: c] such that
 [image: \dfrac{1}{2\sqrt{c}}=\dfrac{1}{3}]
 Solving this equation for [image: c], we obtain [image: c=\frac{9}{4}]. At this point, the slope of the tangent line equals the slope of the line joining the endpoints.
 [image: The function f(x) = the square root of x is graphed from (0, 0) to (9, 3). There is a secant line drawn from (0, 0) to (9, 3). At point (9/4, 3/2), there is a tangent line that is drawn, and this line is parallel to the secant line.]Figure 7. The slope of the tangent line at [image: c=\frac{9}{4}] is the same as the slope of the line segment connecting [image: (0,0)] and [image: (9,3)].   One application that helps illustrate the Mean Value Theorem involves velocity.
 Suppose we drive a car for [image: 1] hr down a straight road with an average velocity of [image: 45] mph.
 Let [image: s(t)] and [image: v(t)] denote the position and velocity of the car, respectively, for [image: 0 \le t \le 1] hr. Assuming that the position function [image: s(t)] is differentiable, we can apply the Mean Value Theorem to conclude that, at some time [image: c \in (0,1)], the speed of the car was exactly
 [image: v(c)=s^{\prime}(c)=\dfrac{s(1)-s(0)}{1-0}=45] mph
  If a rock is dropped from a height of [image: 100] ft, its position [image: t] seconds after it is dropped until it hits the ground is given by the function [image: s(t)=-16t^2+100].
 	Determine how long it takes before the rock hits the ground.
 	Find the average velocity [image: v_{\text{avg}}] of the rock for when the rock is released and the rock hits the ground.
 	Find the time [image: t] guaranteed by the Mean Value Theorem when the instantaneous velocity of the rock is [image: v_{\text{avg}}].
 
 Show Solution 
 	When the rock hits the ground, its position is [image: s(t)=0]. Solving the equation [image: -16t^2+100=0] for [image: t], we find that [image: t=\pm \frac{5}{2}] sec. Since we are only considering [image: t \ge 0], the ball will hit the ground [image: \frac{5}{2}] sec after it is dropped.
 	The average velocity is given by: [image: v_{\text{avg}}=\frac{s(5/2)-s(0)}{5/2-0}=\frac{1-100}{5/2}=-40] ft/sec
 
 	The instantaneous velocity is given by the derivative of the position function. Therefore, we need to find a time [image: t] such that [image: v(t)=s^{\prime}(t)=v_{\text{avg}}=-40] ft/sec. Since [image: s(t)] is continuous over the interval [image: [0,5/2]] and differentiable over the interval [image: (0,5/2)], by the Mean Value Theorem, there is guaranteed to be a point [image: c \in (0,5/2)] such that [image: s^{\prime}(t)=\frac{s(5/2)-s(0)}{5/2-0}=-40]
 Taking the derivative of the position function [image: s(t)], we find that [image: s^{\prime}(t)=-32t]. Therefore, the equation reduces to [image: s^{\prime}(t)=-32c=-40]. Solving this equation for [image: t], we have [image: t=\frac{5}{4}]. Therefore, [image: \frac{5}{4}] sec after the rock is dropped, the instantaneous velocity equals the average velocity of the rock during its free fall: [image: -40] ft/sec.
 [image: The function s(t) = −16t2 + 100 is graphed from (0, 100) to (5/2, 0). There is a secant line drawn from (0, 100) to (5/2, 0). At the point corresponding to x = 5/4, there is a tangent line that is drawn, and this line is parallel to the secant line.]Figure 8. At time [image: t=\frac{5}{4}] sec, the velocity of the rock is equal to its average velocity from the time it is dropped until it hits the ground. 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=meMefcJWbrQ%3Fcontrols%3D0%26start%3D931%26end%3D1103%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.4 Mean Value Theorem” here (opens in new window).
   Watch the following video to see the worked solution to the two previous examples.
 https://youtube.com/watch?v=meMefcJWbrQ%3Fcontrols%3D0%26start%3D118%26end%3D339%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.4 Mean Value Theorem” here (opens in new window).
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				Corollaries of the Mean Value Theorem
 Let’s now look at three corollaries of the Mean Value Theorem. These results have important consequences, which we use in upcoming sections.
 At this point, we know the derivative of any constant function is zero. The Mean Value Theorem allows us to conclude that the converse is also true. In particular, if [image: f^{\prime}(x)=0] for all [image: x] in some interval [image: I], then [image: f(x)] is constant over that interval. This result may seem intuitively obvious, but it has important implications that are not obvious, and we discuss them shortly.
 Corollary 1: functions with a derivative of zero
 Let [image: f] be differentiable over an interval [image: I]. If [image: f^{\prime}(x)=0] for all [image: x \in I], then [image: f(x)] is constant for all [image: x \in I].
  Proof
 
 Since [image: f] is differentiable over [image: I], [image: f] must be continuous over [image: I]. Suppose [image: f(x)] is not constant for all [image: x] in [image: I]. Then there exist [image: a,b \in I], where [image: a \ne b] and [image: f(a) \ne f(b)]. Choose the notation so that [image: a<b]. Therefore,
 [image: \dfrac{f(b)-f(a)}{b-a} \ne 0]
  
 Since [image: f] is a differentiable function, by the Mean Value Theorem, there exists [image: c \in (a,b)] such that
 [image: f^{\prime}(c)=\dfrac{f(b)-f(a)}{b-a}]
  
 Therefore, there exists [image: c \in I] such that [image: f^{\prime}(c) \ne 0], which contradicts the assumption that [image: f^{\prime}(x)=0] for all [image: x \in I].
 [image: _\blacksquare]
  From the example above, it follows that if two functions have the same derivative, they differ by, at most, a constant.
 Corollary 2: constant difference theorem
 If [image: f] and [image: g] are differentiable over an interval [image: I] and [image: f^{\prime}(x)=g^{\prime}(x)] for all [image: x \in I], then [image: f(x)=g(x)+C] for some constant [image: C].
  Proof
 
 Let [image: h(x)=f(x)-g(x)]. Then, [image: h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0] for all [image: x \in I]. By Corollary 1, there is a constant [image: C] such that [image: h(x)=C] for all [image: x \in I]. Therefore, [image: f(x)=g(x)+C] for all [image: x \in I].
 [image: _\blacksquare]
  The third corollary of the Mean Value Theorem discusses when a function is increasing and when it is decreasing.
 Recall that a function [image: f] is increasing over [image: I] if [image: f(x_1) < f(x_2)] whenever [image: x_1 < _2], whereas [image: f] is decreasing over [image: I] if [image: f(x_1) > f(x_2)] whenever [image: x_1 < x_2].
  Using the Mean Value Theorem, we can show that if the derivative of a function is positive, then the function is increasing; if the derivative is negative, then the function is decreasing (Figure 9).
 [image: image]0. Then in decreases from (a, f(a)) to (b, f(b)). In this section it is noted that f’ 0.” width=”731″ height=”302″> Figure 9. If a function has a positive derivative over some interval [image: I], then the function increases over that interval [image: I]; if the derivative is negative over some interval [image: I], then the function decreases over that interval [image: I]. This fact is important because it means that for a given function [image: f], if there exists a function [image: F] such that [image: F^{\prime}(x)=f(x)]; then, the only other functions that have a derivative equal to [image: f] are [image: F(x)+C] for some constant [image: C]. We discuss this result in more detail later in the chapter.
 Corollary 3: increasing and decreasing functions
 Let [image: f] be continuous over the closed interval [image: [a,b]] and differentiable over the open interval [image: (a,b)].
 	If [image: f^{\prime}(x)>0] for all [image: x \in (a,b)], then [image: f] is an increasing function over [image: [a,b]].
 	If [image: f^{\prime}(x)<0] for all [image: x \in (a,b)], then [image: f] is a decreasing function over [image: [a,b]].
 
  Proof
 
 We will prove 1.; the proof of 2. is similar. Suppose [image: f] is not an increasing function on [image: I]. Then there exist [image: a] and [image: b] in [image: I] such that [image: a<b], but [image: f(a) \ge f(b)]. Since [image: f] is a differentiable function over [image: I], by the Mean Value Theorem there exists [image: c \in (a,b)] such that
 [image: f^{\prime}(c)=\dfrac{f(b)-f(a)}{b-a}]
  
 Since [image: f(a) \ge f(b)], we know that [image: f(b)-f(a) \le 0]. Also, [image: a<b] tells us that [image: b-a>0]. We conclude that
 [image: f^{\prime}(c)=\dfrac{f(b)-f(a)}{b-a} \le 0]
  
 However, [image: f^{\prime}(x)>0] for all [image: x \in I]. This is a contradiction, and therefore [image: f] must be an increasing function over [image: I].
 [image: _\blacksquare]
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				 	Use Rolle’s theorem and the Mean Value Theorem to show how functions behave between two points
 	Discuss three key implications of the Mean Value Theorem for understanding function behavior
 
  Calculus in Action: Rolle’s Theorem and Mean Value Theorem in Industry and Nature
 In this apply-it task, we’ll explore the practical applications of two fundamental theorems of calculus: Rolle’s Theorem and the Mean Value Theorem. These powerful tools allow us to analyze rates of change and find critical points in various real-world scenarios. We’ll investigate how these theorems can be applied in quality control for manufacturing processes and in understanding temperature fluctuations throughout the day. By working through these problems, you’ll gain insight into how abstract mathematical concepts translate into valuable insights in engineering and meteorology.
 [ohm_question hide_question_numbers=1]288304[/ohm_question]
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				 	Use the first derivative to determine where a function is going up or down, and identify points that might be local highs or lows
 	Apply the second derivative to find out where a function curves upward or downward and locate points where this curvature changes
 	Use the second derivative test to determine if a point on a graph is the highest or lowest within specific sections
 
  The First Derivative Test
 Corollary 3 of the Mean Value Theorem showed that if the derivative of a function is positive over an interval [image: I] then the function is increasing over [image: I]. On the other hand, if the derivative of the function is negative over an interval [image: I], then the function is decreasing over [image: I] as shown in the following figure.
 [image: image]0. In other words, f is increasing. Figure b shows a function increasing concavely from (a, f(a)) to (b, f(b)). At two points the derivative is taken and it is noted that at both f’ > 0. In other words, f is increasing. Figure c shows a function decreasing concavely from (a, f(a)) to (b, f(b)). At two points the derivative is taken and it is noted that at both f’ < 0. In other words, f is decreasing. Figure d shows a function decreasing convexly from (a, f(a)) to (b, f(b)). At two points the derivative is taken and it is noted that at both f’ Figure 1. Both functions are increasing over the interval [image: (a,b)]. At each point [image: x], the derivative [image: f^{\prime}(x)>0]. Both functions are decreasing over the interval [image: (a,b)]. At each point [image: x], the derivative [image: f^{\prime}(x)<0]. A continuous function [image: f] has a local maximum at point [image: c] if and only if [image: f] switches from increasing to decreasing at point [image: c]. Similarly, [image: f] has a local minimum at [image: c] if and only if [image: f] switches from decreasing to increasing at [image: c].
 If [image: f] is a continuous function over an interval [image: I] containing [image: c] and differentiable over [image: I], except possibly at [image: c], the only way [image: f] can switch from increasing to decreasing (or vice versa) at point [image: c] is if [image: {f}^{\prime }] changes sign as [image: x] increases through [image: c.]
 If [image: f] is differentiable at [image: c,] the only way that [image: {f}^{\prime }.] can change sign as [image: x] increases through [image: c] is if [image: f^{\prime}(c)=0].
 Therefore, for a function [image: f] that is continuous over an interval [image: I] containing [image: c] and differentiable over [image: I], except possibly at [image: c], the only way [image: f] can switch from increasing to decreasing (or vice versa) is if [image: f^{\prime}(c)=0] or [image: f^{\prime}(c)] is undefined.
 Consequently, to locate local extrema for a function [image: f], we look for points [image: c] in the domain of [image: f] such that [image: f^{\prime}(c)=0] or [image: f^{\prime}(c)] is undefined. Recall that such points are called critical points of [image: f]. Note that [image: f] need not have a local extrema at a critical point. The critical points are candidates for local extrema only.
 In Figure 2, we show that if a continuous function [image: f] has a local extremum, it must occur at a critical point, but a function may not have a local extremum at a critical point. We show that if [image: f] has a local extremum at a critical point, then the sign of [image: f^{\prime}] switches as [image: x] increases through that point.
 [image: image]0. Then, f decreases from x = a to x = b (so f’ 0. The function has an inversion point at c, and it is marked f’(c) = 0. The function increases some more to d (so f’ > 0), which is the global maximum. It is marked that f’(d) = 0. Then the function decreases and it is marked that f’ > 0.” width=”867″ height=”429″> Figure 2. The function [image: f] has four critical points: [image: a,b,c], and [image: d]. The function [image: f] has local maxima at [image: a] and [image: d], and a local minimum at [image: b]. The function [image: f] does not have a local extremum at [image: c]. The sign of [image: f^{\prime}] changes at all local extrema. Using Figure 2, we summarize the main results regarding local extrema.
 	If a continuous function [image: f] has a local extremum, it must occur at a critical point [image: c].
 	The function has a local extremum at the critical point [image: c] if and only if the derivative [image: f^{\prime}] switches sign as [image: x] increases through [image: c].
 	Therefore, to test whether a function has a local extremum at a critical point [image: c], we must determine the sign of [image: f^{\prime}(x)] to the left and right of [image: c].
 
 This result is known as the first derivative test.
 first derivative test
 Suppose that [image: f] is a continuous function over an interval [image: I] containing a critical point [image: c]. If [image: f] is differentiable over [image: I], except possibly at point [image: c], then [image: f(c)] satisfies one of the following descriptions:
 	If [image: f^{\prime}] changes sign from positive when [image: x < c] to negative when [image: x > c], then [image: f(c)] is a local maximum of [image: f].
 	If [image: f^{\prime}] changes sign from negative when [image: x < c] to positive when [image: x >], then [image: f(c)] is a local minimum of [image: f].
 	If [image: f^{\prime}] has the same sign for [image: x < c] and [image: x>c], then [image: f(c)] is neither a local maximum nor a local minimum of [image: f].
 
  We can summarize the first derivative test as a strategy for locating local extrema.
 How to: Use the First Derivative Test
 To determine local extrema of a function [image: f(x)] that is continuous on an interval [image: [a,b]], follow these steps:
 		Identify Critical Points: Find all critical points of [image: f(x)] within the interval and note these points along with the endpoints [image: a] and [image: b].
 	Divide the Interval: Segment the interval [image: [a,b]] using the critical points as boundaries, creating smaller subintervals.
 	Analyze the Sign of [image: f′(x)]: Evaluate the derivative [image: f′(x)] within each subinterval. A change in the sign of [image: f′(x)] across a critical point indicates a local extremum at that point: 	If [image: f′(x)] changes from positive to negative, [image: f(x)] has a local maximum at the critical point.
 	If [image: f′(x)] changes from negative to positive, [image: f(x)] has a local minimum at the critical point.
 	If [image: f′(x)] does not change sign, [image: f(x)] does not have a local extremum at that critical point.
 
 
 	Compare Values: Evaluate [image: f(x)] at the critical points and endpoints to identify the absolute maximum and minimum over the interval.
 
 
 
  Recall that when talking about local extrema, the value of the extremum is the [image: y] value and the location of the extremum is the [image: x] value.
  Now let’s look at how to use this strategy to locate all local extrema for particular functions.
 Use the first derivative test to find the location of all local extrema for [image: f(x)=x^3-3x^2-9x-1]. Use a graphing utility to confirm your results.
 Show Solution 
 Step 1. The derivative is [image: f^{\prime}(x)=3x^2-6x-9]. To find the critical points, we need to find where [image: f^{\prime}(x)=0]. Factoring the polynomial, we conclude that the critical points must satisfy:
 [image: 3(x^2-2x-3)=3(x-3)(x+1)=0]
 Therefore, the critical points are [image: x=3,-1]. Now divide the interval [image: (−\infty ,\infty)] into the smaller intervals [image: (−\infty ,-1), \, (-1,3)], and [image: (3,\infty)].
 Step 2. Since [image: f^{\prime}] is a continuous function, to determine the sign of [image: f^{\prime}(x)] over each subinterval, it suffices to choose a point over each of the intervals [image: (−\infty ,-1), \, (-1,3)], and [image: (3,\infty)] and determine the sign of [image: f^{\prime}] at each of these points.
 For example, let’s choose [image: x=-2, \, x=0], and [image: x=4] as test points.
 	Interval 	Test Point 	Sign of [image: f^{\prime}(x)=3(x-3)(x+1)] at Test Point 	Conclusion 
  	[image: (−\infty ,-1)] 	[image: x=-2] 	[image: (+)(−)(−)=+] 	[image: f] is increasing. 
 	[image: (-1,3)] 	[image: x=0] 	[image: (+)(−)(+)=−] 	[image: f] is decreasing. 
 	[image: (3,\infty)] 	[image: x=4] 	[image: (+)(+)(+)=+] 	[image: f] is increasing. 
  
 Step 3. Since [image: f^{\prime}] switches sign from positive to negative as [image: x] increases through [image: 1, \, f] has a local maximum at [image: x=-1].
 Since [image: f^{\prime}] switches sign from negative to positive as [image: x] increases through [image: 3, \, f] has a local minimum at [image: x=3].
 These analytical results agree with the following graph.
 [image: The function f(x) = x3 – 3x2 – 9x – 1 is graphed. It has a maximum at x = −1 and a minimum at x = 3. The function is increasing before x = −1, decreasing until x = 3, and then increasing after that.]Figure 3. The function [image: f] has a maximum at [image: x=-1] and a minimum at [image: x=3] Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=PBeo4ZJ-FGY%3Fcontrols%3D0%26start%3D164%26end%3D313%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.5 Derivatives and the Shape of a Graph” here (opens in new window).
   Use the first derivative test to find the location of all local extrema for [image: f(x)=5x^{\frac{1}{3}}-x^{\frac{5}{3}}]. Use a graphing utility to confirm your results.
 Show Solution 
 Step 1. The derivative is
 [image: f^{\prime}(x)=\frac{5}{3}x^{-2/3}-\frac{5}{3}x^{2/3}=\frac{5}{3x^{2/3}}-\frac{5x^{2/3}}{3}=\frac{5-5x^{4/3}}{3x^{2/3}}=\frac{5(1-x^{4/3})}{3x^{2/3}}].
 The derivative [image: f^{\prime}(x)=0] when [image: 1-x^{4/3}=0]. Therefore, [image: f^{\prime}(x)=0] at [image: x=\pm 1].
 The derivative [image: f^{\prime}(x)] is undefined at [image: x=0]. Therefore, we have three critical points: [image: x=0], [image: x=1], and [image: x=-1].
 Consequently, divide the interval [image: (−\infty ,\infty)] into the smaller intervals [image: (−\infty ,-1), \, (-1,0), \, (0,1)], and [image: (1,\infty )].
 Step 2: Since [image: f^{\prime}] is continuous over each subinterval, it suffices to choose a test point [image: x] in each of the intervals from step 1 and determine the sign of [image: f^{\prime}] at each of these points. The points [image: x=-2, \, x=-\frac{1}{2}, \, x=\frac{1}{2}], and [image: x=2] are test points for these intervals.
 	Interval 	Test Point 	Sign of [image: f^{\prime}(x)=\frac{5(1-x^{4/3})}{3x^{2/3}}] at Test Point 	Conclusion 
  	[image: (−\infty ,-1)] 	[image: x=-2] 	[image: \frac{(+)(−)}{+}=−] 	[image: f] is decreasing. 
 	[image: (-1,0)] 	[image: x=-\frac{1}{2}] 	[image: \frac{(+)(+)}{+}=+] 	[image: f] is increasing. 
 	[image: (0,1)] 	[image: x=\frac{1}{2}] 	[image: \frac{(+)(+)}{+}=+] 	[image: f] is increasing. 
 	[image: (1,\infty )] 	[image: x=2] 	[image: \frac{(+)(−)}{+}=−] 	[image: f] is decreasing. 
  
 Step 3: Since [image: f] is decreasing over the interval [image: (−\infty ,-1)] and increasing over the interval [image: (-1,0)], [image: f] has a local minimum at [image: x=-1].
 Since [image: f] is increasing over the interval [image: (-1,0)] and the interval [image: (0,1)], [image: f] does not have a local extremum at [image: x=0].
 Since [image: f] is increasing over the interval [image: (0,1)] and decreasing over the interval [image: (1,\infty ), \, f] has a local maximum at [image: x=1].
 The analytical results agree with the following graph.
 [image: The function f(x) = 5x1/3 – x5/3 is graphed. It decreases to its local minimum at x = −1, increases to x = 1, and then decreases after that.]Figure 4. The function f has a local minimum at [image: x=-1] and a local maximum at [image: x=1].   [ohm_question hide_question_number=1]288394[/ohm_question]
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				Concavity and Points of Inflection
 We now know how to determine where a function is increasing or decreasing. However, there is another issue to consider regarding the shape of the graph of a function. If the graph curves, does it curve upward or curve downward? This notion is called the concavity of the function.
 Figure 5(a) shows a function [image: f] with a graph that curves upward. As [image: x] increases, the slope of the tangent line increases. Thus, since the derivative increases as [image: x] increases, [image: f^{\prime}] is an increasing function. We say this function [image: f] is concave up.
 Figure 5(b) shows a function [image: f] that curves downward. As [image: x] increases, the slope of the tangent line decreases. Since the derivative decreases as [image: x] increases, [image: f^{\prime}] is a decreasing function. We say this function [image: f] is concave down.
 [image: This figure is broken into four figures labeled a, b, c, and d. Figure a shows a function increasing convexly from (a, f(a)) to (b, f(b)). At two points the derivative is taken and both are increasing, but the one taken further to the right is increasing more. It is noted that f’ is increasing and f is concave up. Figure b shows a function increasing concavely from (a, f(a)) to (b, f(b)). At two points the derivative is taken and both are increasing, but the one taken further to the right is increasing less. It is noted that f’ is decreasing and f is concave down. Figure c shows a function decreasing concavely from (a, f(a)) to (b, f(b)). At two points the derivative is taken and both are decreasing, but the one taken further to the right is decreasing less. It is noted that f’ is increasing and f is concave up. Figure d shows a function decreasing convexly from (a, f(a)) to (b, f(b)). At two points the derivative is taken and both are decreasing, but the one taken further to the right is decreasing more. It is noted that f’ is decreasing and f is concave down.]Figure 5. (a), (c) Since [image: f^{\prime}] is increasing over the interval [image: (a,b)], we say [image: f] is concave up over [image: (a,b)]. (b), (d) Since [image: f^{\prime}] is decreasing over the interval [image: (a,b)], we say [image: f] is concave down over [image: (a,b)]. concave up and concave down
 Let [image: f] be a function that is differentiable over an open interval [image: I].
 	If [image: f^{\prime}] is increasing over [image: I], we say [image: f] is concave up over [image: I].
 	If [image: f^{\prime}] is decreasing over [image: I], we say [image: f] is concave down over [image: I].
 
  In general, without having the graph of a function [image: f], how can we determine its concavity?
 By definition, a function [image: f] is concave up if [image: f^{\prime}] is increasing. From Corollary 3, we know that if [image: f^{\prime}] is a differentiable function, then [image: f^{\prime}] is increasing if its derivative [image: f^{\prime \prime}(x)>0]. Therefore, a function [image: f] that is twice differentiable is concave up when [image: f^{\prime \prime}(x)>0].
 Similarly, a function [image: f] is concave down if [image: f^{\prime}] is decreasing. We know that a differentiable function [image: f^{\prime}] is decreasing if its derivative [image: f^{\prime \prime}(x)<0]. Therefore, a twice-differentiable function [image: f] is concave down when [image: f^{\prime \prime}(x)<0].
 Applying this logic is known as the concavity test.
 test for concavity
 Let [image: f] be a function that is twice differentiable over an interval [image: I].
 	If [image: f^{\prime \prime}(x)>0] for all [image: x \in I], then [image: f] is concave up over [image: I].
 	If [image: f^{\prime \prime}(x)<0] for all [image: x \in I], then [image: f] is concave down over [image: I].
 
  We conclude that we can determine the concavity of a function [image: f] by looking at the second derivative of [image: f]. In addition, we observe that a function [image: f] can switch concavity (Figure 6). However, a continuous function can switch concavity only at a point [image: x] if [image: f^{\prime \prime}(x)=0] or [image: f^{\prime \prime}(x)] is undefined. 
 <img id="16" src="https://openstax.org/apps/archive/20210421.141058/resources/7abb392a249b7e8a60b3285996e777d73855d665" alt="A sinusoidal function is shown that has been shifted into the first quadrant. The function starts decreasing, so f’ 0. The function reaches the local minimum and starts increasing, so f’ > 0 and f’’ > 0. It is noted that the slope is increasing for these two intervals. The function then reaches an inflection point (a, f(a)) and from here the slop is decreasing even though the function continues to increase, so f’ > 0 and f’’ < 0. The function reaches the maximum and then starts decreasing, so f’ < 0 and f’’ Figure 6. Since [image: f^{\prime \prime}(x)>0] for [image: x<a], the function [image: f] is concave up over the interval [image: (−\infty,a)]. Since [image: f^{\prime \prime}(x)<0] for [image: x>a], the function [image: f] is concave down over the interval [image: (a,\infty)]. The point [image: (a,f(a))] is an inflection point of [image: f].
 Consequently, to determine the intervals where a function [image: f] is concave up and concave down, we look for those values of [image: x] where [image: f^{\prime \prime}(x)=0] or [image: f^{\prime \prime}(x)] is undefined. When we have determined these points, we divide the domain of [image: f] into smaller intervals and determine the sign of [image: f^{\prime \prime}] over each of these smaller intervals.
 If [image: f^{\prime \prime}] changes sign as we pass through a point [image: x], then [image: f] changes concavity. It is important to remember that a function [image: f] may not change concavity at a point [image: x] even if [image: f^{\prime \prime}(x)=0] or [image: f^{\prime \prime}(x)] is undefined. If, however, [image: f] does change concavity at a point [image: a] and [image: f] is continuous at [image: a], we say the point [image: (a,f(a))] is an inflection point of [image: f].
 inflection point
 If [image: f] is continuous at [image: a] and [image: f] changes concavity at [image: a], the point [image: (a,f(a))] is an inflection point of [image: f].
  For the function [image: f(x)=x^3-6x^2+9x+30], determine all intervals where [image: f] is concave up and all intervals where [image: f] is concave down. List all inflection points for [image: f]. Use a graphing utility to confirm your results.
 Show Solution 
 To determine concavity, we need to find the second derivative [image: f^{\prime \prime}(x)].
 The first derivative is [image: f^{\prime}(x)=3x^2-12x+9], so the second derivative is [image: f^{\prime \prime}(x)=6x-12].
 If the function changes concavity, it occurs either when [image: f^{\prime \prime}(x)=0] or [image: f^{\prime \prime}(x)] is undefined. Since [image: f^{\prime \prime}] is defined for all real numbers [image: x], we need only find where [image: f^{\prime \prime}(x)=0].
 Solving the equation [image: 6x-12=0], we see that [image: x=2] is the only place where [image: f] could change concavity.
 We now test points over the intervals [image: (−\infty ,2)] and [image: (2,\infty)] to determine the concavity of [image: f]. The points [image: x=0] and [image: x=3] are test points for these intervals.
 	Interval 	Test Point 	Sign of [image: f^{\prime \prime}(x)=6x-12] at Test Point 	Conclusion 
  	[image: (−\infty ,2)] 	[image: x=0] 	[image: -] 	[image: f] is concave down 
 	[image: (2,\infty )] 	[image: x=3] 	[image: +] 	[image: f] is concave up. 
  
 We conclude that [image: f] is concave down over the interval [image: (−\infty ,2)] and concave up over the interval [image: (2,\infty)]. Since [image: f] changes concavity at [image: x=2], the point [image: (2,f(2))=(2,32)] is an inflection point. Figure 7 confirms the analytical results.
 [image: The function f(x) = x3 – 6x2 + 9x + 30 is graphed. The inflection point (2, 32) is marked, and it is roughly equidistant from the two local extrema.]Figure 7. The given function has a point of inflection at [image: (2,32)] where the graph changes concavity. Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=PBeo4ZJ-FGY%3Fcontrols%3D0%26start%3D600%26end%3D713%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end. You can view the transcript for this segmented clip of “4.5 Derivatives and the Shape of a Graph” here (opens in new window).
  The table and figure below summarize how the first and second derivatives of a function [image: f(x)] inform the characteristics of its graph.
 What Derivatives Tell Us about Graphs 	Sign of [image: f^{\prime}] 	Sign of [image: f^{\prime \prime}] 	Is [image: f] increasing or decreasing? 	Concavity 
  	Positive 	Positive 	Increasing 	Concave up 
 	Positive 	Negative 	Increasing 	Concave down 
 	Negative 	Positive 	Decreasing 	Concave up 
 	Negative 	Negative 	Decreasing 	Concave down 
  
 <img id="20" src="https://openstax.org/apps/archive/20210421.141058/resources/b4fd75d3ef022de52e9f3b782e4d8908f12a7e23" alt="A function is graphed in the first quadrant. It is broken up into four sections, with the breaks coming at the local minimum, inflection point, and local maximum, respectively. The first section is decreasing and concave up; here, f’ 0. The second section is increasing and concave up; here, f’ > 0 and f’’ > 0. The third section is increasing and concave down; here, f’ > 0 and f’’ < 0. The fourth section is increasing and concave down; here, f’ < 0 and f’’ Figure 8. Consider a twice-differentiable function [image: f] over an open interval [image: I]. If [image: f^{\prime}(x)>0] for all [image: x \in I], the function is increasing over [image: I]. If [image: f^{\prime}(x)<0] for all [image: x \in I], the function is decreasing over [image: I]. If [image: f^{\prime \prime}(x)>0] for all [image: x \in I], the function is concave up. If [image: f^{\prime \prime}(x)<0] for all [image: x \in I], the function is concave down on [image: I].
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				The Second Derivative Test
 The first derivative test provides a systematic approach to identify local extrema, but in some cases, using the second derivative can be more straightforward. A function must have a local extremum at a critical point, but not all critical points are extremas.
 Consider a function [image: f] that is twice-differentiable on an open interval [image: I] containing [image: a].
 	If [image: f^{\prime \prime}(x)<0] and [image: f^{\prime}(a)=0], [image: f]is concave down at [image: a], indicating a local maximum.
 	If [image: f^{\prime \prime}(x)>0] and [image: f^{\prime}(a)=0], [image: f]is concave up at [image: a], suggesting a local minimum at [image: a].
 
 Furthermore, if [image: f^{\prime \prime}] is continuous over [image: I] and remains positive, [image: f] is consistently concave up across [image: I], which helps in determining the behavior of [image: f] at other critical points.
 For instance, suppose there exists a point [image: b] such that [image: f^{\prime}(b)=0] and [image: f^{\prime \prime}] is positive throughout, [image: f] has a local minimum at [image: b]. The second derivative thus confirms the nature of local extrema by providing insight into the concavity of the function at critical points.
 <img id="21" src="https://openstax.org/apps/archive/20210421.141058/resources/b4c5748b2ddf90fa36c58b811e8bda2a1d0025e5" alt="A function f(x) is graphed in the first quadrant with a and b marked on the x-axis. The function is vaguely sinusoidal, increasing first to x = a, then decreasing to x = b, and increasing again. At (a, f(a)), the tangent is marked, and it is noted that f’(a) = 0 and f’’(a) 0.” width=”487″ height=”272″> Figure 9. Consider a twice-differentiable function [image: f] such that [image: f^{\prime \prime}] is continuous. Since [image: f^{\prime}(a)=0] and [image: f^{\prime \prime}(a)<0], there is an interval [image: I] containing [image: a] such that for all [image: x] in [image: I], [image: f] is increasing if [image: x<a] and [image: f] is decreasing if [image: x>a]. As a result, [image: f] has a local maximum at [image: x=a]. Since [image: f^{\prime}(b)=0] and [image: f^{\prime \prime}(b)>0], there is an interval [image: I] containing [image: b] such that for all [image: x] in [image: I], [image: f] is decreasing if [image: x<b] and [image: f] is increasing if [image: x>b]. As a result, [image: f] has a local minimum at [image: x=b].
 second derivative test
 Suppose [image: f^{\prime}(c)=0, \, f^{\prime \prime}] is continuous over an interval containing [image: c].
 	If [image: f^{\prime \prime}(c)>0], then [image: f] has a local minimum at [image: c].
 	If [image: f^{\prime \prime}(c)<0], then [image: f] has a local maximum at [image: c].
 	If [image: f^{\prime \prime}(c)=0], then the test is inconclusive.
 
  Note that for case iii. when [image: f^{\prime \prime}(c)=0], then [image: f] may have a local maximum, local minimum, or neither at [image: c].
  The functions [image: f(x)=x^3], [image: f(x)=x^4], and [image: f(x)=−x^4] all have critical points at [image: x=0]. In each case, the second derivative is zero at [image: x=0].
 However, the function [image: f(x)=x^4] has a local minimum at [image: x=0] whereas the function [image: f(x)=−x^4] has a local maximum at [image: x=0] and the function [image: f(x)=x^3] does not have a local extremum at [image: x=0].
  Let’s now look at how to use the second derivative test to determine whether [image: f] has a local maximum or local minimum at a critical point [image: c] where [image: f^{\prime}(c)=0].
 Use the second derivative to find the location of all local extrema for [image: f(x)=x^5-5x^3].
 Show Solution 
 To apply the second derivative test, we first need to find critical points [image: c] where [image: f^{\prime}(c)=0].
 The derivative is [image: f^{\prime}(x)=5x^4-15x^2]. Therefore, [image: f^{\prime}(x)=5x^4-15x^2=5x^2(x^2-3)=0] when [image: x=0,\pm \sqrt{3}].
 To determine whether [image: f] has a local extrema at any of these points, we need to evaluate the sign of [image: f^{\prime \prime}] at these points. The second derivative is
 [image: f^{\prime \prime}(x)=20x^3-30x=10x(2x^2-3)].
 In the following table, we evaluate the second derivative at each of the critical points and use the second derivative test to determine whether [image: f] has a local maximum or local minimum at any of these points.
 	[image: x] 	[image: f^{\prime \prime}(x)] 	Conclusion 
  	[image: −\sqrt{3}] 	[image: -30\sqrt{3}] 	Local maximum 
 	[image: 0] 	[image: 0] 	Second derivative test is inconclusive 
 	[image: \sqrt{3}] 	[image: 30\sqrt{3}] 	Local minimum 
  
 By the second derivative test, we conclude that [image: f] has a local maximum at [image: x=−\sqrt{3}] and [image: f] has a local minimum at [image: x=\sqrt{3}]. The second derivative test is inconclusive at [image: x=0].
 To determine whether [image: f] has a local extrema at [image: x=0], we apply the first derivative test.
 To evaluate the sign of [image: f^{\prime}(x)=5x^2(x^2-3)] for [image: x \in (−\sqrt{3},0)] and [image: x \in (0,\sqrt{3})], let [image: x=-1] and [image: x=1] be the two test points. Since [image: f^{\prime}(-1)<0] and [image: f^{\prime}(1)<0], we conclude that [image: f] is decreasing on both intervals and, therefore, [image: f] does not have a local extrema at [image: x=0] as shown in the following graph.
 [image: The function f(x) = x5 – 5x3 is graphed. The function increases to (negative square root of 3, 10), then decreases to an inflection point at 0, continues decreasing to (square root of 3, −10), and then increases.]Figure 10. The function [image: f] has a local maximum at [image: x=−\sqrt{3}] and a local minimum at [image: x=\sqrt{3}] Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=PBeo4ZJ-FGY%3Fcontrols%3D0%26start%3D789%26end%3D1016%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.5 Derivatives and the Shape of a Graph” here (opens in new window)
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				 	Use the first derivative to determine where a function is going up or down, and identify points that might be local highs or lows
 	Apply the second derivative to find out where a function curves upward or downward and locate points where this curvature changes
 	Use the second derivative test to determine if a point on a graph is the highest or lowest within specific sections
 
  Roller Coaster Calculus: Analyzing Thrills through Functions
 In this activity, we will explore the dynamic world of roller coaster physics by analyzing the mathematical model of a roller coaster track’s height as a function of its horizontal distance. Using calculus, we will calculate the first and second derivatives to determine the slope and concavity of the track, identify critical points, and classify extrema and inflection points. This hands-on exercise will enhance your understanding of how mathematical concepts are used to analyze real-world scenarios in engineering and physics.
 [image: A rollercoaster]
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				 	Change logarithmic equations into exponential equations
 
  Convert from Logarithmic to Exponential Form
 Understanding the relationship between logarithmic and exponential forms is fundamental. This conversion can be succinctly represented as follows:
 [image: {\mathrm{log}}_{b}\left(x\right)=y\Leftrightarrow {b}^{y}=x,\text{}b>0,b\ne 1]
 Here, [image: b] is always a positive number and cannot be equal to [image: 1].
 [image: Think b to the y equals x.]
 The logarithm function [image: \log_{b}(x)] is conventionally written with parentheses to clearly denote the function’s input, similar to [image: f(x)]. However, when dealing with a single variable or a simple expression, parentheses might be omitted, leading to the notation [image: \log_{b}x]. It’s important to note that many calculators might still require parentheses around the input [image: x].
  The notation [image: \log_{b}(c)=a] can be interpreted as [image: b^a=c]. This implies that the base [image: b] raised to the power [image: a] equals [image: c].
 [image: logb (c) = a means b to the A power equals C.]
 It’s common to see [image: ln] representing the natural logarithm, which uses [image: e] (approximately [image: 2.718]) as its base. The notation [image: ln] corresponds to [image: \log_e], emphasizing the natural logarithm’s specific base.
 logarithmic functions
 A logarithm base [image: b] of a positive number [image: x] satisfies the following definition: For [image: x>0,b>0,b\ne 1], [image: y={\mathrm{log}}_{b}\left(x\right)\text{ is equal to }{b}^{y}=x], where
 	we read [image: {\mathrm{log}}_{b}\left(x\right)] as, “the logarithm with base [image: b] of [image: x]” or the “log base [image: b] of [image: x].”
 	the logarithm y is the exponent to which [image: b] must be raised to get [image: x].
 	if no base [image: b] is indicated, the base of the logarithm is assumed to be [image: 10].
 
  Also, since the logarithmic and exponential functions switch the [image: x] and [image: y] values, the domain and range of the exponential function are interchanged for the logarithmic function. Therefore,
 	the domain of the logarithm function with base [image: b \text{ is} \left(0,\infty \right)].
 	the range of the logarithm function with base [image: b \text{ is} \left(-\infty ,\infty \right)].
 
 Can we take the logarithm of a negative number?
 No. Because the base of an exponential function is always positive, no power of that base can ever be negative. We can never take the logarithm of a negative number. Also, we cannot take the logarithm of zero. Calculators may output a log of a negative number when in complex mode, but the log of a negative number is not a real number.
  How To: Convert a Logarithmic Equation to Exponential Form
 Given a logarithmic equation in the format [image: \log_{b}(x)=y]:
 	Identify the Components: Recognize [image: b] as the base, [image: y] as the logarithmic result, and [image: x] as the argument of the logarithm.
 	Convert to Exponential Form: Rewrite the equation from logarithmic to exponential form by setting the base [image: b] raised to the power [image: y] equal to [image: x]. This translates to [image: b^y=x].
 
  Write the following logarithmic equations in exponential form.
 	[image: {\mathrm{log}}_{6}\left(\sqrt{6}\right)=\frac{1}{2}]
 	[image: {\mathrm{log}}_{3}\left(9\right)=2]
 	[image: {\mathrm{log}}_{10}\left(1,000,000\right)=6]
 	[image: {\mathrm{log}}_{5}\left(25\right)=2]
 
 Show Solution First, identify the values of [image: b], [image: y], and [image: x]. Then, write the equation in the form [image: {b}^{y}=x].
 	[image: {\mathrm{log}}_{6}\left(\sqrt{6}\right)=\frac{1}{2}] Here, [image: b=6,y=\frac{1}{2},\text{and } x=\sqrt{6}]. Therefore, the equation [image: {\mathrm{log}}_{6}\left(\sqrt{6}\right)=\frac{1}{2}] is equal to [image: {6}^{\frac{1}{2}}=\sqrt{6}].
 	[image: {\mathrm{log}}_{3}\left(9\right)=2] Here, [image: b = 3], [image: y = 2], and [image: x = 9]. Therefore, the equation [image: {\mathrm{log}}_{3}\left(9\right)=2] is equal to [image: {3}^{2}=9].
 	[image: {\mathrm{log}}_{10}\left(1,000,000\right)=6] is equal to [image: {10}^{6}=1,000,000]
 	[image: {\mathrm{log}}_{5}\left(25\right)=2] is equal to [image: {5}^{2}=25]
 
   [ohm_question hide_question_numbers=1]288397[/ohm_question]
  Convert from Exponential to Logarithmic Form
 To convert from exponential to logarithmic form, we follow the same steps in reverse. We identify the base [image: b], exponent [image: x], and output [image: y]. Then we write [image: x={\mathrm{log}}_{b}\left(y\right)].
 Write the following exponential equations in logarithmic form.
 	[image: {2}^{3}=8]
 	[image: {5}^{2}=25]
 	[image: {10}^{-4}=\frac{1}{10,000}]
 
 Show Solution First, identify the values of [image: b], [image: y], and [image: x]. Then, write the equation in the form [image: x={\mathrm{log}}_{b}\left(y\right)].
 	[image: {2}^{3}=8] Here, [image: b = 2], [image: x = 3], and [image: y = 8]. Therefore, the equation [image: {2}^{3}=8] is equal to [image: {\mathrm{log}}_{2}\left(8\right)=3].
 	[image: {5}^{2}=25] Here, [image: b = 5], [image: x = 2], and [image: y = 25]. Therefore, the equation [image: {5}^{2}=25] is equal to [image: {\mathrm{log}}_{5}\left(25\right)=2].
 	[image: {10}^{-4}=\frac{1}{10,000}] Here, [image: b = 10], [image: x = –4,] and [image: y=\frac{1}{10,000}]. Therefore, the equation [image: {10}^{-4}=\frac{1}{10,000}] is equal to [image: {\text{log}}_{10}\left(\frac{1}{10,000}\right)=-4].
 
   [ohm_question hide_question_numbers=1]288398[/ohm_question]
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				 	Use the power rule to simplify logarithmic expressions
 
  Using the Power Rule for Logarithms
 The power rule for logarithms is a fundamental concept that simplifies the process of working with logarithmic expressions involving powers.
 How can we take the logarithm of a power, such as [image: {x}^{2}]? One method is as follows:
 [image: \begin{array}{l}{\mathrm{log}}_{b}\left({x}^{2}\right)\hfill & ={\mathrm{log}}_{b}\left(x\cdot x\right)\hfill \\ \hfill & ={\mathrm{log}}_{b}x+{\mathrm{log}}_{b}x\hfill \\ \hfill & =2{\mathrm{log}}_{b}x\hfill \end{array}]
  Notice that we used the product rule for logarithms to find a solution for the example above. By doing so, we have derived the power rule for logarithms, which says that the log of a power is equal to the exponent times the log of the base. Keep in mind that although the input to a logarithm may not be written as a power, we may be able to change it to a power. 
 [image: \begin{array}{lll}100={10}^{2}, \hfill & \sqrt{3}={3}^{\frac{1}{2}}, \hfill & \frac{1}{e}={e}^{-1}\hfill \end{array}]
  power rule for logarithms
 The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the product of the exponent times the logarithm of the base.
 [image: {\mathrm{log}}_{b}\left({M}^{n}\right)=n{\mathrm{log}}_{b}M]
  Rewrite [image: {\mathrm{log}}_{2}{x}^{5}].
 Show Solution 
 The argument is already written as a power, so we identify the exponent, [image: 5], and the base, [image: x], and rewrite the equivalent expression by multiplying the exponent times the logarithm of the base.
 [image: {\mathrm{log}}_{2}\left({x}^{5}\right)=5{\mathrm{log}}_{2}x]
   Rewrite [image: {\mathrm{log}}_{3}\left(25\right)] using the power rule for logs.
 Show Solution 
 Expressing the argument as a power, we get [image: {\mathrm{log}}_{3}\left(25\right)={\mathrm{log}}_{3}\left({5}^{2}\right)].
 Next we identify the exponent, [image: 2], and the base, [image: 5], and rewrite the equivalent expression by multiplying the exponent times the logarithm of the base.
 [image: {\mathrm{log}}_{3}\left({5}^{2}\right)=2{\mathrm{log}}_{3}\left(5\right)]
   [ohm_question hide_question_numbers=1]288399[/ohm_question]
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				 	Write formulas to calculate the area, perimeter, and volume of different shapes
 
  Find the Perimeter and Area of a Rectangle
 A rectangle has four sides and four right angles. The opposite sides of a rectangle are the same length. We refer to one side of the rectangle as the length, [image: L], and the adjacent side as the width, [image: W].
 [image: A rectangle is shown. Each angle is marked with a square. The top and bottom are labeled L, the sides are labeled W.]
  
 The perimeter, [image: P], of the rectangle is the distance around the rectangle. If you started at one corner and walked around the rectangle, you would walk [image: L+W+L+W] units, or two lengths and two widths. The perimeter then is
 [image: \begin{array}{c}P=L+W+L+W\hfill \\ \hfill \text {or} \hfill \\ P=2L+2W\hfill \end{array}]
 What about the area of a rectangle? Below is a rectangular rug. It is [image: 2] feet long by [image: 3] feet wide, and its area is [image: 6] square feet. Since [image: A=2\cdot 3], we see that the area, [image: A], is the length, [image: L], times the width, [image: W], so the area of a rectangle is [image: A=L\cdot W].
 [image: A rectangle made up of 6 squares. The bottom is 2 squares across and marked as 2, the side is 3 squares long and marked as 3.]
 properties of rectangles
 	Rectangles have four sides and four right [image: \left(\text{90}^ \circ\right)] angles.
 	The lengths of opposite sides are equal.
 	The perimeter, [image: P], of a rectangle is the sum of twice the length and twice the width. See the first image.
 
 [image: P=2L+2W \text{ or } P = 2(L+W)]
  
 	The area, [image: A], of a rectangle is the length times the width. The area will be expressed in square units.
 
 [image: A=L\cdot W]

  The length of a rectangle is [image: 32] meters and the width is [image: 20] meters. Find the 	Perimeter
 	Area
 
 Show Solution 		Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A rectangle with the top and bottom labeled 32 m and the sides labeled 20 m] 
 	Step 2. Identify what you are looking for. 	the perimeter of a rectangle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: P] = the perimeter 
 	Step 4. Translate. Write the appropriate formula. Substitute. 	[image: The formula P = 2L + 2W. The formula is then written again with 32 substituted in for L and 20 substituted in for W] 
 	Step 5. Solve the equation. 	[image: P=64+40] [image: P=104] 
 	Step 6. Check. 	[image: p\stackrel{?}{=}104]
 [image: 20+32+20+32\stackrel{?}{=}104]
 [image: 104=104\checkmark]  
 	Step 7. Answer the question. 	The perimeter of the rectangle is [image: 104] meters. 
  
 
 		Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A rectangle with the top and bottom labeled 32 m and the sides labeled 20 m] 
 	Step 2. Identify what you are looking for. 	the area of a rectangle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = the area 
 	Step 4. Translate. Write the appropriate formula. Substitute. 	[image: The formula A = L times W. The formula is then written again with 32 substituted in for L and 20 substituted in for W] 
 	Step 5. Solve the equation. 	[image: A=640] 
 	Step 6. Check. 	[image: A\stackrel{?}{=}640]
 [image: 32\cdot 20\stackrel{?}{=}640]
 [image: 640=640\checkmark]  
 	Step 7. Answer the question. 	The area of the rectangle is [image: 640] square meters. 
  
 
 
   [ohm_question hide_question_numbers=1]288400[/ohm_question] Find the Area and Perimeter of a Triangle
 We now know how to find the area of a rectangle. We can use this fact to help us visualize the formula for the area of a triangle. In the rectangle below, we’ve labeled the length [image: b] and the width [image: h], so its area is [image: bh].
 [image: A rectangle with the side labeled h and the bottom labeled b. The center says A equals bh.]
  
 We can divide this rectangle into two congruent triangles (see the image below). Triangles that are congruent have identical side lengths and angles, and so their areas are equal. The area of each triangle is one-half the area of the rectangle, or [image: \Large\frac{1}{2}\normalsize bh]. This example helps us see why the formula for the area of a triangle is [image: A=\Large\frac{1}{2}\normalsize bh].
 [image: A rectangle with a diagonal line drawn from the upper left corner to the bottom right corner. The side of the rectangle is labeled h and the bottom is labeled b. Each triangle says one-half bh. To the right of the rectangle, it says "Area of each triangle A = one-half bh".]
  
 To find the area of the triangle, you need to know its base and height. The base is the length of one side of the triangle, usually the side at the bottom. The height is the length of the line that connects the base to the opposite vertex, and makes a [image: \text{90}^ \circ] angle with the base. The image below shows three triangles with the base and height of each marked.
 [image: Three triangles. The triangle on the left is a right triangle. The bottom is labeled b and the side is labeled h. The middle triangle is an acute triangle. The bottom is labeled b. There is a dotted line from the top vertex to the base of the triangle, forming a right angle with the base. That line is labeled h. The triangle on the right is an obtuse triangle. The bottom of the triangle is labeled b. The base has a dotted line extended out and forms a right angle with a dotted line to the top of the triangle. The vertical line is labeled h.]
 triangle properties
 For any triangle [image: \Delta ABC], the sum of the measures of the angles is [image: \text{180}^ \circ].
  
 [image: m\angle{A}+m\angle{B}+m\angle{C}=180^\circ]
  
 The perimeter of a triangle is the sum of the lengths of the sides.
  
 [image: P=a+b+c]
  
 The area of a triangle is one-half the base, [image: b], times the height, [image: h].
  
 [image: A={\Large\frac{1}{2}}bh]
  
 [image: A triangle, with vertices labeled A, B, and C. The sides are labeled a, b, and c. There is a vertical dotted line from vertex B at the top of the triangle to the base of the triangle, meeting the base at a right angle. The dotted line is labeled h.]
  
 
  Find the area of a triangle whose base is [image: 11] inches and whose height is [image: 8] inches. Show Solution 
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A triangle with the base labeled 11 in and a dotted vertical line from the top vertex to the base to form a right angle. This dotted line is labeled 8 in.] 
 	Step 2. Identify what you are looking for. 	the area of the triangle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = area of the triangle 
 	Step 4.Translate.
 Write the appropriate formula.
 Substitute.
  	[image: The equation A = one half times b times h. The equation is written again with 11 substituted for b and 8 substituted for h.] 
 	Step 5. Solve the equation. 	[image: A=44] square inches. 
 	Step 6. Check.
  	[image: A=\frac{1}{2}bh]
 [image: 44\stackrel{?}{=}\frac{1}{2}(11)8]
 [image: 44=44\quad\checkmark]  
 	Step 7. Answer the question. 	The area is [image: 44] square inches. 
  
   [ohm_question hide_question_numbers=1]288402[/ohm_question]
  Find the Circumference and Area of Circles
 The properties of circles have been studied for over [image: 2,000] years. All circles have exactly the same shape, but their sizes are affected by the length of the radius, a line segment from the center to any point on the circle. A line segment that passes through a circle’s center connecting two points on the circle is called a diameter. The diameter is twice as long as the radius. The distance around a circle is called its circumference.
 [image: A circle is shown. A dotted line running through the widest portion of the circle is labeled as a diameter. A dotted line from the center of the circle to a point on the circle is labeled as a radius. Along the edge of the circle is the circumference.]
  
 Archimedes discovered that for circles of all different sizes, dividing the circumference by the diameter always gives the same number. The value of this number is pi, symbolized by Greek letter [image: \pi] (pronounced “pie”). We approximate [image: \pi] with [image: 3.14] or [image: \Large\frac{22}{7}] depending on whether the radius of the circle is given as a decimal or a fraction.
 If you use the [image: \pi] key on your calculator to do the calculations in this section, your answers will be slightly different from the answers shown. That is because the [image: \pi] key uses more than two decimal places. properties of circles
 [image: An image of a circle is shown. There is a line drawn through the widest part at the center of the circle with a red dot indicating the center of the circle. The line is labeled d. The two segments from the center of the circle to the outside of the circle are each labeled r.]
  
 
 	[image: r] is the length of the radius
 	[image: d] is the length of the diameter
 	[image: d=2r]
 	Circumference is the perimeter of a circle. The formula for circumference is [image: C=2\pi r]
 	The formula for area of a circle is [image: A=\pi {r}^{2}]
 
 
  A circular sandbox has a radius of [image: 2.5] feet. Find the
 	Circumference of the sandbox
 	Area of the sandbox
 
 Show Solution 	1. Circumference of the sandbox 
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A circle with radius labeled as 2.5 feet] 
 	Step 2. Identify what you are looking for. 	the circumference of the circle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: C] = circumference of the circle 
 	Step 4. Translate. Write the appropriate formula Substitute 	[image: C=2\pi r] [image: C=2\pi \left(2.5\right)] 
 	Step 5. Solve the equation. 	[image: C\approx 2\left(3.14\right)\left(2.5\right)] [image: C\approx 15\text{ft}] 
 	Step 6. Check. Does this answer make sense? 	Yes. If we draw a square around the circle, its sides would be [image: 5] ft (twice the radius), so its perimeter would be [image: 20] ft. This is slightly more than the circle’s circumference, [image: 15.7] ft. [image: A circle in a red square. The circle's radius is shown as 2.5 feet and the sides of the square are each labeled as 5 feet.] 
 	Step 7. Answer the question. 	The circumference of the sandbox is [image: 15.7] feet. 
  
 	2. Area of the sandbox 
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A circle with radius labeled as 2.5 feet] 
 	Step 2. Identify what you are looking for. 	the area of the circle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = the area of the circle 
 	Step 4. Translate. Write the appropriate formula Substitute 	[image: A=\pi {r}^{2}] [image: A=\pi{\left(2.5\right)}^{2}] 
 	Step 5. Solve the equation. 	[image: A\approx \left(3.14\right){\left(2.5\right)}^{2}] [image: A\approx 19.625\text{ sq. ft}] 
 	Step 6. Check. Does this answer make sense? 	Yes. If we draw a square around the circle, its sides would be [image: 5] ft, as shown in part 1. So the area of the square would be [image: 25] sq. ft. This is slightly more than the circle’s area, [image: 19.625] sq. ft. 
 	Step 7. Answer the question. 	The area of the circle is [image: 19.625] square feet. 
  
   [ohm_question hide_question_numbers=1]146563[/ohm_question]
  Find the Volume and Surface Area of Rectangular Solids
 Volume measures the space a shape occupies, while surface area describes the total area of all the surfaces of a three-dimensional object. For rectangular solids, which include cubes and rectangular prisms, these measurements are based on the object’s length, width, and height.
 volume and surface area of a rectangular solid
 For a rectangular solid with length [image: L], width [image: W], and height [image: H]:
  
 [image: A rectangular solid, with sides labeled L, W, and H. Beside it is Volume: V equals LWH equals BH. Below that is Surface Area: S equals 2LH plus 2LW plus 2WH.]

  For a rectangular solid with length [image: 14] cm, height [image: 17] cm, and width [image: 9] cm. Find the 	Volume
 	Surface area
 
 Show Solution Step 1 is the same for both 1. and 2., so we will show it just once.
 	Step 1. Read the problem. Draw the figure and
 label it with the given information.
  	[image: A rectangular prism with one side labeled 14, one labeled 9, and another labeled 17] 
  
 		Step 2. Identify what you are looking for. 	the volume of the rectangular solid 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: V] = volume 
 	Step 4. Translate.
 Write the appropriate formula.
 Substitute.
  	[image: V=LWH]
 [image: V=\mathrm{14}\cdot 9\cdot 17]  
 	Step 5. Solve the equation. 	[image: V=2,142] 
 	Step 6. Check
 We leave it to you to check your calculations.
  	  
 	Step 7. Answer the question. 	The volume is [image: 2,142] cubic centimeters. 
  
 
 		Step 2. Identify what you are looking for. 	the surface area of the solid 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: S] = surface area 
 	Step 4. Translate.
 Write the appropriate formula.
 Substitute.
  	[image: S=2LH+2LW+2WH]
 [image: S=2\left(14\cdot 17\right)+2\left(14\cdot 9\right)+2\left(9\cdot 17\right)]  
 	Step 5. Solve the equation. 	[image: S=1,034] 
 	Step 6. Check: Double-check with a calculator. 	  
 	Step 7. Answer the question. 	The surface area is [image: 1,034] square centimeters. 
  
 
 
   [ohm_question hide_question_numbers=1]146789[/ohm_question]
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				 	Determine limits and predict how functions behave as x increases or decreases indefinitely
 	Identify and distinguish horizontal and slanting lines that a graph approaches but never touches
 	Use a function’s derivatives to accurately sketch its graph
 
  Limits at Infinity
 We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a function [image: f] defined on an unbounded domain, we also need to know the behavior of [image: f] as [image: x \to \pm \infty]. In this section, we define limits at infinity and show how these limits affect the graph of a function. At the end of this section, we outline a strategy for graphing an arbitrary function [image: f].
 We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function with an infinite limit at infinity. We have looked at vertical asymptotes in other modules; in this section, we deal with horizontal and oblique asymptotes.
 Limits at Infinity and Horizontal Asymptotes
 Recall that [image: \underset{x \to a}{\lim}f(x)=L] means [image: f(x)] becomes arbitrarily close to [image: L] as long as [image: x] is sufficiently close to [image: a]. We can extend this idea to limits at infinity.
 Consider the function [image: f(x)=2+\frac{1}{x}].
 As can be seen graphically in Figure 1 and numerically in the table beneath it, as the values of [image: x] get larger, the values of [image: f(x)] approach [image: 2]. We say the limit as [image: x] approaches [image: \infty] of [image: f(x)] is [image: 2] and write:
 [image: \underset{x\to \infty }{\lim}f(x)=2].
 Similarly, for [image: x<0], as the values [image: |x|] get larger, the values of [image: f(x)] approaches [image: 2]. We say the limit as [image: x] approaches [image: −\infty] of [image: f(x)] is [image: 2] and write:
 [image: \underset{x\to a}{\lim}f(x)=2].
 [image: The function f(x) 2 + 1/x is graphed. The function starts negative near y = 2 but then decreases to −∞ near x = 0. The function then decreases from ∞ near x = 0 and gets nearer to y = 2 as x increases. There is a horizontal line denoting the asymptote y = 2.]Figure 1. The function approaches the asymptote [image: y=2] as [image: x] approaches [image: \pm \infty]. Values of a function [image: f] as [image: x \to \pm \infty] 	[image: x] 	[image: 10] 	[image: 100] 	[image: 1,000] 	[image: 10,000] 
 	[image: 2+\frac{1}{x}] 	[image: 2.1] 	[image: 2.01] 	[image: 2.001] 	[image: 2.0001] 
 	[image: x] 	[image: -10] 	[image: -100] 	[image: -1000] 	[image: -10,000] 
 	[image: 2+\frac{1}{x}] 	[image: 1.9] 	[image: 1.99] 	[image: 1.999] 	[image: 1.9999] 
  
  More generally, for any function [image: f], we say the limit as [image: x \to \infty] of [image: f(x)] is [image: L] if [image: f(x)] becomes arbitrarily close to [image: L] as long as [image: x] is sufficiently large. In that case, we write:
 [image: \underset{x\to \infty}{\lim}f(x)=L].
 Similarly, we say the limit as [image: x\to −\infty] of [image: f(x)] is [image: L] if [image: f(x)] becomes arbitrarily close to [image: L] as long as [image: x<0] and [image: |x|] is sufficiently large. In that case, we write:
 [image: \underset{x\to −\infty }{\lim}f(x)=L].
 We now look at the definition of a function having a limit at infinity.
 limit at infinity (informal)
 If the values of [image: f(x)] become arbitrarily close to [image: L] as [image: x] becomes sufficiently large, we say the function [image: f] has a limit at infinity and write:
 [image: \underset{x\to \infty }{\lim}f(x)=L]
  
 If the values of [image: f(x)] becomes arbitrarily close to [image: L] for [image: x<0] as [image: |x|] becomes sufficiently large, we say that the function [image: f] has a limit at negative infinity and write:
 [image: \underset{x\to -\infty }{\lim}f(x)=L]
  If the values [image: f(x)] are getting arbitrarily close to some finite value [image: L] as [image: x\to \infty] or [image: x\to −\infty], the graph of [image: f] approaches the line [image: y=L]. In that case, the line [image: y=L] is a horizontal asymptote of [image: f].
 For the function [image: f(x)=\frac{1}{x}], since [image: \underset{x\to \infty }{\lim}f(x)=0], the line [image: y=0] is a horizontal asymptote of [image: f(x)=\frac{1}{x}].
  horizontal asymptote
 If [image: \underset{x\to \infty }{\lim}f(x)=L] or [image: \underset{x \to −\infty}{\lim}f(x)=L], we say the line [image: y=L] is a horizontal asymptote of [image: f].
  [image: The figure is broken up into two figures labeled a and b. Figure a shows a function f(x) approaching but never touching a horizontal dashed line labeled L from above. Figure b shows a function f(x) approaching but never a horizontal dashed line labeled M from below.]Figure 2: As [image: x \to \infty], the values of [image: f] are getting arbitrarily close to [image: L]. The line [image: y = L] is a horizontal asymptote of [image: f]. (b) As [image: x \to -\infty], the values of [image: f] are getting arbitrarily close to [image: M]. The line [image: y = M] is a horizontal asymptote of [image: f]. A function cannot cross a vertical asymptote because the graph must approach infinity (or negative infinity) from at least one direction as [image: x] approaches the vertical asymptote. However, a function may cross a horizontal asymptote. In fact, a function may cross a horizontal asymptote an unlimited number of times.
 The function [image: f(x)=\frac{ \cos x}{x}+1] shown below intersects the horizontal asymptote [image: y=1] an infinite number of times as it oscillates around the asymptote with ever-decreasing amplitude.
 [image: The function f(x) = (cos x)/x + 1 is shown. It decreases from (0, ∞) and then proceeds to oscillate around y = 1 with decreasing amplitude.]Figure 3. The graph of [image: f(x)=\cos x/x+1] crosses its horizontal asymptote [image: y=1] an infinite number of times.  The algebraic limit laws and squeeze theorem we introduced earlier also apply to limits at infinity. We illustrate how to use these laws to compute several limits at infinity.
 For each of the following functions [image: f], evaluate [image: \underset{x\to \infty }{\lim}f(x)] and [image: \underset{x\to −\infty }{\lim}f(x)]. Determine the horizontal asymptote(s) for [image: f].
 	[image: f(x)=5-\frac{2}{x^2}]
 	[image: f(x)=\dfrac{\sin x}{x}]
 	[image: f(x)= \tan^{-1} (x)]
 
 Show Solution 
 	Using the algebraic limit laws, we have:[image: \underset{x\to \infty }{\lim}(5-\frac{2}{x^2})=\underset{x\to \infty }{\lim}5-2(\underset{x\to \infty }{\lim}\frac{1}{x})(\underset{x\to \infty }{\lim}\frac{1}{x})=5-2 \cdot 0=5].Similarly, [image: \underset{x\to -\infty }{\lim}f(x)=5]. Therefore, [image: f(x)=5-\frac{2}{x^2}] has a horizontal asymptote of [image: y=5] and [image: f] approaches this horizontal asymptote as [image: x\to \pm \infty] as shown in the following graph.
 [image: The function f(x) = 5 – 2/x2 is graphed. The function approaches the horizontal asymptote y = 5 as x approaches ±∞.]Figure 4. This function approaches a horizontal asymptote as [image: x\to \pm \infty]. 
 	Since [image: -1\le \sin x\le 1] for all [image: x], we have: [image: \frac{-1}{x}\le \frac{\sin x}{x}\le \frac{1}{x}]
 for all [image: x \ne 0]. Also, since,
 [image: \underset{x\to \infty }{\lim}\frac{-1}{x}=0=\underset{x\to \infty }{\lim}\frac{1}{x}],
 we can apply the squeeze theorem to conclude that:
 [image: \underset{x\to \infty }{\lim}\frac{\sin x}{x}=0]
 Similarly,
 [image: \underset{x\to −\infty}{\lim}\frac{\sin x}{x}=0]
  
 Thus, [image: f(x)=\frac{\sin x}{x}] has a horizontal asymptote of [image: y=0] and [image: f(x)] approaches this horizontal asymptote as [image: x\to \pm \infty] as shown in the following graph.
 [image: The function f(x) = (sin x)/x is shown. It has a global maximum at (0, 1) and then proceeds to oscillate around y = 0 with decreasing amplitude.]Figure 5. This function crosses its horizontal asymptote multiple times. 
 	To evaluate [image: \underset{x\to \infty }{\lim} \tan^{-1} (x)] and [image: \underset{x\to −\infty}{\lim} \tan^{-1} (x)], we first consider the graph of [image: y= \tan (x)] over the interval [image: (−\pi /2,\pi /2)] as shown in the following graph.
 [image: The function f(x) = tan x is shown. It increases from (−π/2, −∞), passes through the origin, and then increases toward (π/2, ∞). There are vertical dashed lines marking x = ±π/2.]Figure 6. The graph of [image: \tan x] has vertical asymptotes at [image: x=\pm \frac{\pi }{2}] 
 
 Since [image: \underset{x\to (\pi/2)^-}{\lim} \tan x=\infty], it follows that:
 [image: \underset{x\to \infty }{\lim} \tan^{-1} (x)=\frac{\pi }{2}]
 Similarly, since [image: \underset{x\to (\pi/2)^+}{\lim} \tan x=−\infty], it follows that:
 [image: \underset{x\to −\infty}{\lim} \tan^{-1} (x)=-\frac{\pi }{2}]
 As a result, [image: y=\frac{\pi }{2}] and [image: y=-\frac{\pi }{2}] are horizontal asymptotes of [image: f(x)= \tan^{-1} (x)] as shown in the following graph.
 [image: The function f(x) = tan−1 x is shown. It increases from (−∞, −π/2), passes through the origin, and then increases toward (∞, π/2). There are horizontal dashed lines marking y = ±π/2.]Figure 7. This function has two horizontal asymptotes. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=0OVSQCWCzqc%3Fcontrols%3D0%26start%3D70%26end%3D307%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes” here (opens in new window).
  [ohm_question hide_question_numbers=1]169165[/ohm_question]
  Infinite Limits at Infinity
 Sometimes the values of a function [image: f] become arbitrarily large as [image: x\to \infty] (or as [image: x\to −\infty )]. In this case, we write [image: \underset{x\to \infty }{\lim}f(x)=\infty] (or [image: \underset{x\to −\infty }{\lim}f(x)=\infty )].
 On the other hand, if the values of [image: f] are negative but become arbitrarily large in magnitude as [image: x\to \infty] (or as [image: x\to −\infty )], we write [image: \underset{x\to \infty }{\lim}f(x)=−\infty] (or [image: \underset{x\to −\infty }{\lim}f(x)=−\infty )].
 Consider the function [image: f(x)=x^3].
 [image: The function f(x) = x3 is graphed. It is apparent that this function rapidly approaches infinity as x approaches infinity.]Figure 8. For this function, the functional values approach infinity as [image: x\to \pm \infty]. Values of a power function as [image: x\to \pm \infty] 	[image: x] 	[image: 10] 	[image: 20] 	[image: 50] 	[image: 100] 	[image: 1000] 
 	[image: x^3] 	[image: 1000] 	[image: 8000] 	[image: 125,000] 	[image: 1,000,000] 	[image: 1,000,000,000] 
 	[image: x] 	[image: -10] 	[image: -20] 	[image: -50] 	[image: -100] 	[image: -1000] 
 	[image: x^3] 	[image: -1000] 	[image: -8000] 	[image: -125,000] 	[image: -1,000,000] 	[image: -1,000,000,000] 
  
 As seen in the table and figure above, as [image: x\to \infty] the values [image: f(x)] become arbitrarily large. Therefore, [image: \underset{x\to \infty }{\lim}x^3=\infty].
 On the other hand, as [image: x\to −\infty], the values of [image: f(x)=x^3] are negative but become arbitrarily large in magnitude. Consequently, [image: \underset{x\to −\infty }{\lim}x^3=−\infty].
  infinite limits at infinity (informal)
 
 We say a function [image: f] has an infinite limit at infinity and write:
 [image: \underset{x\to \infty }{\lim}f(x)=\infty]
  
 if [image: f(x)] becomes arbitrarily large for [image: x] sufficiently large. We say a function has a negative infinite limit at infinity and write:
 [image: \underset{x\to \infty }{\lim}f(x)=−\infty]
  
 if [image: f(x)<0] and [image: |f(x)|] becomes arbitrarily large for [image: x] sufficiently large.
  
 Similarly, we can define infinite limits as [image: x\to −\infty].
  
	

			CC licensed content, Original
	4.6 Limits at Infinity and Asymptotes. Authored by: Ryan Melton. License: CC BY: Attribution

CC licensed content, Shared previously
	Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Retrieved from: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction



			


		
	
		
			
	
		134

		Limits at Infinity and Asymptotes: Learn It 2

								

	
				Limits at Infinity Cont.
 Formal Definitions
 Earlier, we used the terms arbitrarily close, arbitrarily large, and sufficiently large to define limits at infinity informally. Although these terms provide accurate descriptions of limits at infinity, they are not precise mathematically.
 Here are more formal definitions of limits at infinity. 
 limits at infinity (formal)
 
 We say a function [image: f] has a limit at infinity, if there exists a real number [image: L] such that for all [image: \varepsilon >0], there exists [image: N>0] such that
 [image: |f(x)-L|<\varepsilon]
 for all [image: x>N]. In that case, we write
 [image: \underset{x\to \infty }{\lim}f(x)=L]
 We say a function [image: f] has a limit at negative infinity if there exists a real number [image: L] such that for all [image: \varepsilon >0], there exists [image: N<0] such that
 [image: |f(x)-L|<\varepsilon]
 for all [image: x<N]. In that case, we write
 [image: \underset{x\to −\infty }{\lim}f(x)=L]
  [image: The function f(x) is graphed, and it has a horizontal asymptote at L. L is marked on the y axis, as is L + ॉ and L – ॉ. On the x axis, N is marked as the value of x such that f(x) = L + ॉ.]Figure 9. For a function with a limit at infinity, for all [image: x>N], [image: |f(x)-L|<\varepsilon]. Earlier in this section, we used graphical evidence and numerical evidence to conclude that [image: \underset{x\to \infty }{\lim}\left(2+\frac{1}{x}\right)=2]. Here we use the formal definition of limit at infinity to prove this result.
 Use the formal definition of limit at infinity to prove that [image: \underset{x\to \infty }{\lim}\left(2+\frac{1}{x}\right)=2].
 Show Solution 
 Let [image: \varepsilon >0]. Let [image: N=\frac{1}{\varepsilon }].
 Therefore, for all [image: x>N], we have:
 [image: \left| 2+\dfrac{1}{x}-2 \right| =\left| \dfrac{1}{x} \right|=\dfrac{1}{x}<\dfrac{1}{N}=\varepsilon].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=0OVSQCWCzqc%3Fcontrols%3D0%26start%3D450%26end%3D630%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes” here (opens in new window).
  We now turn our attention to a more precise definition for an infinite limit at infinity.
 infinite limit at infinity (formal)
 
 We say a function [image: f] has an infinite limit at infinity and write
 [image: \underset{x\to \infty }{\lim}f(x)=\infty]
 if for all [image: M>0], there exists an [image: N>0] such that
 [image: f(x)>M]
 for all [image: x>N].
  
 We say a function has a negative infinite limit at infinity and write
 [image: \underset{x\to \infty }{\lim}f(x)=−\infty]
 if for all [image: M<0], there exists an [image: N>0] such that
 [image: f(x)<M]
 for all [image: x>N].
 Similarly we can define limits as [image: x\to −\infty].
  [image: The function f(x) is graphed. It continues to increase rapidly after x = N, and f(N) = M.]Figure 10. For a function with an infinite limit at infinity, for all [image: x>N], [image: f(x)>M]. Earlier, we used graphical evidence and numerical evidence to conclude that [image: \underset{x\to \infty }{\lim}x^3=\infty]. Here we use the formal definition of infinite limit at infinity to prove that result.
 Use the formal definition of infinite limit at infinity to prove that [image: \underset{x\to \infty }{\lim}x^3=\infty].
 Show Solution 
 Let [image: M>0]. Let [image: N=\sqrt[3]{M}]. Then, for all [image: x>N], we have:
 [image: x^3>N^3=(\sqrt[3]{M})^3=M].
 Therefore, [image: \underset{x\to \infty }{\lim}x^3=\infty].
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=0OVSQCWCzqc%3Fcontrols%3D0%26start%3D666%26end%3D816%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes” here (opens in new window).
  [ohm_question hide_question_numbers=1]288426[/ohm_question]
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				End Behavior
 The behavior of a function as [image: x\to \pm \infty] is called the function’s end behavior. At each of the function’s ends, the function could exhibit one of the following types of behavior:
 	The function [image: f(x)] approaches a horizontal asymptote [image: y=L].
 	The function [image: f(x)\to \infty] or [image: f(x)\to −\infty].
 	The function does not approach a finite limit, nor does it approach [image: \infty] or [image: −\infty]. In this case, the function may have some oscillatory behavior.
 
 Let’s consider several classes of functions here and look at the different types of end behaviors for these functions.
 End Behavior for Polynomial Functions
 Consider the power function [image: f(x)=x^n] where [image: n] is a positive integer. From Figure 11 and Figure 12, we see that,
 [image: \underset{x\to \infty }{\lim}x^n=\infty; \, n=1,2,3, \cdots]
 and,
 [image: \underset{x\to −\infty }{\lim}x^n=\begin{cases} \infty; & n=2,4,6,\cdots \\ -\infty; & n=1,3,5,\cdots \end{cases}]
 [image: The functions x2, x4, and x6 are graphed, and it is apparent that as the exponent grows the functions increase more quickly.]Figure 11. For power functions with an even power of [image: n], [image: \underset{x\to \infty }{\lim}x^n=\infty =\underset{x\to −\infty }{\lim}x^n]. [image: The functions x, x3, and x5 are graphed, and it is apparent that as the exponent grows the functions increase more quickly.]Figure 12. For power functions with an odd power of [image: n], [image: \underset{x\to \infty }{\lim}x^n=\infty] and [image: \underset{x\to −\infty}{\lim}x^n=−\infty]. Using these facts, it is not difficult to evaluate [image: \underset{x\to \infty }{\lim}cx^n] and [image: \underset{x\to −\infty }{\lim}cx^n], where [image: c] is any constant and [image: n] is a positive integer.
 evaluating limits of power functions
 If [image: c>0], the graph of [image: y=cx^n] is a vertical stretch or compression of [image: y=x^n], and therefore,
 [image: \underset{x\to \infty }{\lim}cx^n=\underset{x\to \infty }{\lim}x^n] and [image: \underset{x\to −\infty }{\lim}cx^n=\underset{x\to −\infty}{\lim}x^n] if [image: c>0]
 If [image: c<0], the graph of [image: y=cx^n] is a vertical stretch or compression combined with a reflection about the [image: x]-axis, and therefore,
 [image: \underset{x\to \infty }{\lim}cx^n=−\underset{x\to \infty }{\lim}x^n] and [image: \underset{x\to −\infty}{\lim}cx^n=−\underset{x\to −\infty }{\lim}x^n] if [image: c<0]
 If [image: c=0, \, y=cx^n=0], in which case [image: \underset{x\to \infty }{\lim}cx^n=0=\underset{x\to −\infty }{\lim}cx^n].
  For each function [image: f], evaluate [image: \underset{x\to \infty }{\lim}f(x)] and [image: \underset{x\to −\infty }{\lim}f(x)].
 	[image: f(x)=-5x^3]
 	[image: f(x)=2x^4]
 
 Show Solution 
 	Since the coefficient of [image: x^3] is [image: -5], the graph of [image: f(x)=-5x^3] involves a vertical stretch and reflection of the graph of [image: y=x^3] about the [image: x]-axis. Therefore, [image: \underset{x\to \infty }{\lim}(-5x^3)=−\infty] and [image: \underset{x\to −\infty }{\lim}(-5x^3)=\infty].
 	Since the coefficient of [image: x^4] is [image: 2], the graph of [image: f(x)=2x^4] is a vertical stretch of the graph of [image: y=x^4]. Therefore, [image: \underset{x\to \infty }{\lim}2x^4=\infty] and [image: \underset{x\to −\infty }{\lim}2x^4=\infty].
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=0OVSQCWCzqc%3Fcontrols%3D0%26start%3D877%26end%3D983%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes” here (opens in new window).
  We now look at how the limits at infinity for power functions can be used to determine [image: \underset{x\to \pm \infty }{\lim}f(x)] for any polynomial function [image: f].
 Consider a polynomial function
 [image: f(x)=a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0]
  
 of degree [image: n \ge 1] so that [image: a_n \ne 0]. Factoring, we see that,
 [image: f(x)=a_n x^n (1+\frac{a_{n-1}}{a_n}\frac{1}{x}+ \cdots + \frac{a_1}{a_n}\frac{1}{x^{n-1}} + \frac{a_0}{a_n}\frac{1}{x^n})].
  
 As [image: x\to \pm \infty], all the terms inside the parentheses approach zero except the first term. We conclude that,
 [image: \underset{x\to \pm \infty }{\lim}f(x)=\underset{x\to \pm \infty }{\lim} a_n x^n].
  The function [image: f(x)=5x^3-3x^2+4] behaves like [image: g(x)=5x^3] as [image: x\to \pm \infty] as shown below.
 [image: Both functions f(x) = 5x3 – 3x2 + 4 and g(x) = 5x3 are plotted. Their behavior for large positive and large negative numbers converges.]Figure 13. The end behavior of a polynomial is determined by the behavior of the term with the largest exponent. Table 1. A polynomial’s end behavior is determined by the term with the largest exponent. 	[image: x] 	[image: 10] 	[image: 100] 	[image: 1000] 
 	[image: f(x)=5x^3-3x^2+4] 	[image: 4704] 	[image: 4,970,004] 	[image: 4,997,000,004] 
 	[image: g(x)=5x^3] 	[image: 5000] 	[image: 5,000,000] 	[image: 5,000,000,000] 
 	[image: x] 	[image: -10] 	[image: -100] 	[image: -1000] 
 	[image: f(x)=5x^3-3x^2+4] 	[image: -5296] 	[image: -5,029,996] 	[image: -5,002,999,996] 
 	[image: g(x)=5x^3] 	[image: -5000] 	[image: -5,000,000] 	[image: -5,000,000,000] 
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 End Behavior for Algebraic Functions
 The end behavior for rational functions and functions involving radicals is a little more complicated than for polynomials.
 Note that this is not your first encounter with horizontal asymptotes. It may be helpful to recall what you already know about them.
 The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and denominator.
 	Case 1: Degree of numerator is less than degree of denominator: horizontal asymptote at [image: y=0]
 	Case 2: Degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant asymptote. 	If the degree of the numerator is greater than the degree of the denominator by more than one, the end behavior of the function’s graph will mimic that of the graph of the reduced ratio of leading terms.
 
 
 	Case 3: Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading coefficients.
 
  In the example below, we show that the limits at infinity of a rational function [image: f(x)=\frac{p(x)}{q(x)}] depend on the relationship between the degree of the numerator and the degree of the denominator.
 To evaluate the limits at infinity for a rational function, we divide the numerator and denominator by the highest power of [image: x] appearing in the denominator. This determines which term in the overall expression dominates the behavior of the function at large values of [image: x].
 For each of the following functions, determine the limits as [image: x\to \infty] and [image: x\to −\infty]. Then, use this information to describe the end behavior of the function.
 	[image: f(x)=\frac{3x-1}{2x+5}] (Note: The degree of the numerator and the denominator are the same.)
 	[image: f(x)=\frac{3x^2+2x}{4x^3-5x+7}] (Note: The degree of numerator is less than the degree of the denominator.)
 	[image: f(x)=\frac{3x^2+4x}{x+2}] (Note: The degree of numerator is greater than the degree of the denominator.)
 
 Show Solution 
 	The highest power of [image: x] in the denominator is [image: x]. Therefore, dividing the numerator and denominator by [image: x] and applying the algebraic limit laws, we see that, [image: \begin{array}{ll} \underset{x\to \pm \infty }{\lim}\frac{3x-1}{2x+5} & =\underset{x\to \pm \infty }{\lim}\frac{3-1/x}{2+5/x} \\ & =\frac{\underset{x\to \pm \infty }{\lim}(3-1/x)}{\underset{x\to \pm \infty }{\lim}(2+5/x)} \\ & =\frac{\underset{x\to \pm \infty }{\lim}3-\underset{x\to \pm \infty }{\lim}1/x}{\underset{x\to \pm \infty }{\lim}2+\underset{x\to \pm \infty }{\lim}5/x} \\ & =\frac{3-0}{2+0}=\frac{3}{2}. \end{array}]
 Since [image: \underset{x\to \pm \infty }{\lim}f(x)=\frac{3}{2}], we know that [image: y=\frac{3}{2}] is a horizontal asymptote for this function as shown in the following graph.
 [image: The function f(x) = (3x + 1)/(2x + 5) is plotted as is its horizontal asymptote at y = 3/2.]Figure 14. The graph of this rational function approaches a horizontal asymptote as [image: x\to \pm \infty]. 
 	Since the largest power of [image: x] appearing in the denominator is [image: x^3], divide the numerator and denominator by [image: x^3]. After doing so and applying algebraic limit laws, we obtain, [image: \underset{x\to \pm \infty }{\lim}\frac{3x^2+2x}{4x^3-5x+7}=\underset{x\to \pm \infty }{\lim}\frac{3/x+2/x^2}{4-5/x^2+7/x^3}=\frac{3(0)+2(0)}{4-5(0)+7(0)}=0]
 Therefore [image: f] has a horizontal asymptote of [image: y=0] as shown in the following graph.
 [image: The function f(x) = (3x2 + 2x)/(4x2 – 5x + 7) is plotted as is its horizontal asymptote at y = 0.]Figure 15. The graph of this rational function approaches the horizontal asymptote [image: y=0] as [image: x\to \pm \infty]. 
 	Dividing the numerator and denominator by [image: x], we have, [image: \underset{x\to \pm \infty }{\lim}\frac{3x^2+4x}{x+2}=\underset{x\to \pm \infty }{\lim}\frac{3x+4}{1+2/x}].
 As [image: x\to \pm \infty], the denominator approaches 1. As [image: x\to \infty], the numerator approaches [image: +\infty]. As [image: x\to −\infty], the numerator approaches [image: −\infty]. Therefore [image: \underset{x\to \infty }{\lim}f(x)=\infty], whereas [image: \underset{x\to −\infty }{\lim}f(x)=−\infty] as shown in the following figure.
 [image: The function f(x) = (3x2 + 4x)/(x + 2) is plotted. It appears to have a diagonal asymptote as well as a vertical asymptote at x = −2.]Figure 16. As [image: x\to \infty], the values [image: f(x)\to \infty]. As [image: x\to −\infty], the values [image: f(x)\to −\infty]. 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=0OVSQCWCzqc%3Fcontrols%3D0%26start%3D984%26end%3D1278%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes” here (opens in new window).
  Before proceeding, consider the graph of [image: f(x)=\frac{(3x^2+4x)}{(x+2)}] shown below.
 [image: The function f(x) = (3x2 + 4x)/(x + 2) is plotted as is its diagonal asymptote y = 3x – 2.]Figure 17. The graph of the rational function [image: f(x)=(3x^2+4x)/(x+2)] approaches the oblique asymptote [image: y=3x-2] as [image: x\to \pm \infty]. As [image: x\to \infty] and [image: x\to −\infty], the graph of [image: f] appears almost linear. Although [image: f] is certainly not a linear function, we now investigate why the graph of [image: f] seems to be approaching a linear function.
 First, using long division of polynomials, we can write,
 [image: f(x)=\frac{3x^2+4x}{x+2}=3x-2+\frac{4}{x+2}]
 Since [image: \frac{4}{(x+2)}\to 0] as [image: x\to \pm \infty], we conclude that,
 [image: \underset{x\to \pm \infty }{\lim}(f(x)-(3x-2))=\underset{x\to \pm \infty }{\lim}\frac{4}{x+2}=0]
 Therefore, the graph of [image: f] approaches the line [image: y=3x-2] as [image: x\to \pm \infty]. This line is known as an oblique asymptote for [image: f].
 We can summarize the results of the example above to make the following conclusion regarding end behavior for rational functions.
 end behavior for rational functions
 Consider a rational function
 [image: f(x)=\frac{p(x)}{q(x)}=\frac{a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0}],
 where [image: a_n\ne 0] and [image: b_m \ne 0].
 	If the degree of the numerator is the same as the degree of the denominator [image: (n=m)], then [image: f] has a horizontal asymptote of [image: y=a_n/b_m] as [image: x\to \pm \infty].
 	If the degree of the numerator is less than the degree of the denominator [image: (n < m)], then [image: f] has a horizontal asymptote of [image: y=0] as [image: x\to \pm \infty].
 	If the degree of the numerator is greater than the degree of the denominator [image: (n>m)], then [image: f] does not have a horizontal asymptote. The limits at infinity are either positive or negative infinity, depending on the signs of the leading terms.
 
  
 
 In addition, using long division, the function can be rewritten as
 [image: f(x)=\frac{p(x)}{q(x)}=g(x)+\frac{r(x)}{q(x)}],
 where the degree of [image: r(x)] is less than the degree of [image: q(x)]. As a result, [image: \underset{x\to \pm \infty }{\lim}r(x)/q(x)=0].
 Therefore, the values of [image: [f(x)-g(x)]] approach zero as [image: x\to \pm \infty].
 If the degree of [image: p(x)] is exactly one more than the degree of [image: q(x)] [image: (n=m+1)], the function [image: g(x)] is a linear function. In this case, we call [image: g(x)] an oblique asymptote.
 Find the limits as [image: x\to \infty] and [image: x\to −\infty] for [image: f(x)=\frac{3x-2}{\sqrt{4x^2+5}}] and describe the end behavior of [image: f].
 Show Solution 
 Let’s use the same strategy as we did for rational functions: divide the numerator and denominator by a power of [image: x]. To determine the appropriate power of [image: x], consider the expression [image: \sqrt{4x^2+5}] in the denominator. Since,
 [image: \sqrt{4x^2+5}\approx \sqrt{4x^2}=2|x|]
 for large values of [image: x] in effect [image: x] appears just to the first power in the denominator.
 Therefore, we divide the numerator and denominator by [image: |x|].
 Then, using the fact that [image: |x|=x] for [image: x>0], [image: |x|=−x] for [image: x<0], and [image: |x|=\sqrt{x^2}] for all [image: x], we calculate the limits as follows:
 [image: \begin{array}{lll} \underset{x\to \infty }{\lim}\frac{3x-2}{\sqrt{4x^2+5}} & = & \underset{x\to \infty }{\lim}\frac{(1/|x|)(3x-2)}{(1/|x|)\sqrt{4x^2+5}} \\ & = & \underset{x\to \infty }{\lim}\frac{(1/x)(3x-2)}{\sqrt{(1/x^2)(4x^2+5)}} \\ & = & \underset{x\to \infty }{\lim}\frac{3-2/x}{\sqrt{4+5/x^2}}=\frac{3}{\sqrt{4}}=\frac{3}{2} \\ \underset{x\to −\infty }{\lim}\frac{3x-2}{\sqrt{4x^2+5}} & = & \underset{x\to −\infty }{\lim}\frac{(1/|x|)(3x-2)}{(1/|x|)\sqrt{4x^2+5}} \\ & = & \underset{x\to −\infty }{\lim}\frac{(-1/x)(3x-2)}{\sqrt{(1/x^2)(4x^2+5)}} \\ & = & \underset{x\to −\infty }{\lim}\frac{-3+2/x}{\sqrt{4+5/x^2}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}. \end{array}]
 Therefore, [image: f(x)] approaches the horizontal asymptote [image: y=\frac{3}{2}] as [image: x\to \infty] and the horizontal asymptote [image: y=-\frac{3}{2}] as [image: x\to −\infty] as shown in the following graph.
  
 [image: The function f(x) = (3x − 2)/(the square root of the quantity (4x2 + 5)) is plotted. It has two horizontal asymptotes at y = ±3/2, and it crosses y = −3/2 before converging toward it from below.]Figure 18. This function has two horizontal asymptotes and it crosses one of the asymptotes.   
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 Determining End Behavior for Transcendental Functions
 Trigonometric functions
 The six basic trigonometric functions are periodic and do not approach a finite limit as [image: x\to \pm \infty].
 For example, [image: \sin x] oscillates between 1 and -1 (Figure 19). The tangent function [image: x] has an infinite number of vertical asymptotes as [image: x\to \pm \infty]; therefore, it does not approach a finite limit nor does it approach [image: \pm \infty] as [image: x\to \pm \infty] as shown in (Figure 20).
 [image: The function f(x) = sin x is graphed.]Figure 19. The function [image: f(x)= \sin x] oscillates between 1 and -1 as [image: x\to \pm \infty] [image: The function f(x) = tan x is graphed.]Figure 20. The function [image: f(x)= \tan x] does not approach a limit and does not approach [image: \pm \infty] as [image: x\to \pm \infty] Exponential functions
 Recall that for any base [image: b>0, \, b\ne 1], the function [image: y=b^x] is an exponential function with domain [image: (−\infty ,\infty )] and range [image: (0,\infty )]. If [image: b>1, \, y=b^x] is increasing over [image: (−\infty ,\infty )].If [image: 0<b<1], [image: y=b^x] is decreasing over [image: (−\infty ,\infty )].
 For the natural exponential function [image: f(x)=e^x], [image: e\approx 2.718>1]. Therefore, [image: f(x)=e^x] is increasing on [image: (−\infty ,\infty )] and the range is [image: (0,\infty)]. The exponential function [image: f(x)=e^x] approaches [image: \infty] as [image: x\to \infty] and approaches 0 as [image: x\to −\infty].
 End behavior of the natural exponential function 	[image: x] 	[image: -5] 	[image: -2] 	[image: 0] 	[image: 2] 	[image: 5] 
 	[image: e^x] 	[image: 0.00674] 	[image: 0.135] 	[image: 1] 	[image: 7.389] 	[image: 148.413] 
  
 [image: The function f(x) = ex is graphed.]Figure 21. The exponential function approaches zero as [image: x\to −\infty] and approaches [image: \infty] as [image: x\to \infty]. Recall that the natural logarithm function [image: f(x)=\ln (x)] is the inverse of the natural exponential function [image: y=e^x]. Therefore, the domain of [image: f(x)=\ln (x)] is [image: (0,\infty )] and the range is [image: (−\infty ,\infty )].
 The graph of [image: f(x)=\ln (x)] is the reflection of the graph of [image: y=e^x] about the line [image: y=x]. Therefore, [image: \ln (x)\to −\infty] as [image: x\to 0^+] and [image: \ln (x)\to \infty] as [image: x\to \infty].
 End behavior of the natural logarithm function 	[image: x] 	[image: 0.01] 	[image: 0.1] 	[image: 1] 	[image: 10] 	[image: 100] 
 	[image: \ln (x)] 	[image: -4.605] 	[image: -2.303] 	[image: 0] 	[image: 2.303] 	[image: 4.605] 
  
 [image: The function f(x) = ln(x) is graphed.]Figure 22. The natural logarithm function approaches [image: \infty] as [image: x\to \infty]. Find the limits as [image: x\to \infty] and [image: x\to −\infty] for [image: f(x)=\frac{(2+3e^x)}{(7-5e^x)}] and describe the end behavior of [image: f].
 Show Solution 
 To find the limit as [image: x\to \infty], divide the numerator and denominator by [image: e^x]:
 [image: \begin{array}{ll} \underset{x\to \infty }{\lim}f(x) & =\underset{x\to \infty }{\lim}\frac{2+3e^x}{7-5e^x} \\ & =\underset{x\to \infty }{\lim}\frac{(2/e^x)+3}{(7/e^x)-5}. \end{array}]
 As shown in Figure 21, [image: e^x\to \infty] as [image: x\to \infty]. Therefore,
 [image: \underset{x\to \infty }{\lim}\frac{2}{e^x}=0=\underset{x\to \infty }{\lim}\frac{7}{e^x}].
 We conclude that [image: \underset{x\to \infty }{\lim}f(x)=-\frac{3}{5}], and the graph of [image: f] approaches the horizontal asymptote [image: y=-\frac{3}{5}] as [image: x\to \infty].
 To find the limit as [image: x\to −\infty], use the fact that [image: e^x \to 0] as [image: x\to −\infty] to conclude that [image: \underset{x\to -\infty }{\lim}f(x)=\frac{2}{7}], and therefore the graph of approaches the horizontal asymptote [image: y=\frac{2}{7}] as [image: x\to −\infty].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=0OVSQCWCzqc%3Fcontrols%3D0%26start%3D1453%26end%3D1547%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes” here (opens in new window).
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		Limits at Infinity and Asymptotes: Learn It 6

								

	
				Drawing Graphs of Functions
 Guidelines for Graphing a Function
 We now have enough analytical tools to draw graphs of a wide variety of algebraic and transcendental functions. Before showing how to graph specific functions, let’s look at a general strategy to use when graphing any function.
 How To: Draw the Graph of a Function
 Given a function [image: f] use the following steps to sketch a graph of [image: f]:
 	Step 1: Determine the domain of the function.
 	Step 2: Locate the [image: x]– and [image: y]-intercepts.
 	Step 3: Evaluate [image: \underset{x\to \infty }{\lim}f(x)] and [image: \underset{x\to −\infty }{\lim}f(x)] to determine the end behavior.*
 	Step 4: Determine whether [image: f] has any vertical asymptotes.
 	Step 5: Calculate [image: f^{\prime}]. Find all critical points and determine the intervals where [image: f] is increasing and where [image: f] is decreasing. Determine whether [image: f] has any local extrema.
 	Step 6: Calculate [image: f^{\prime \prime}]. Determine the intervals where [image: f] is concave up and where [image: f] is concave down. Use this information to determine whether [image: f] has any inflection points. The second derivative can also be used as an alternate means to determine or verify that [image: f] has a local extremum at a critical point.
 
 *Note for Step 3: If either of these limits is a finite number [image: L], then [image: y=L] is a horizontal asymptote. If either of these limits is [image: \infty] or [image: −\infty], determine whether [image: f] has an oblique asymptote. If [image: f] is a rational function such that [image: f(x)=\frac{p(x)}{q(x)}], where the degree of the numerator is greater than the degree of the denominator, then [image: f] can be written as
 [image: f(x)=\dfrac{p(x)}{q(x)}=g(x)+\dfrac{r(x)}{q(x)}],
 where the degree of [image: r(x)] is less than the degree of [image: q(x)]. The values of [image: f(x)] approach the values of [image: g(x)] as [image: x\to \pm \infty]. If [image: g(x)] is a linear function, it is known as an oblique asymptote.
  Now let’s use this strategy to graph several different functions. We start by graphing a polynomial function.
 Sketch a graph of [image: f(x)=(x-1)^2 (x+2)]
 Show Solution 
 Step 1. Since [image: f] is a polynomial, the domain is the set of all real numbers.
 Step 2. When [image: x=0, \, f(x)=2]. Therefore, the [image: y]-intercept is [image: (0,2)]. To find the [image: x]-intercepts, we need to solve the equation [image: (x-1)^2 (x+2)=0], which gives us the [image: x]-intercepts [image: (1,0)] and [image: (-2,0)]
 Step 3. We need to evaluate the end behavior of [image: f]. As [image: x\to \infty], [image: (x-1)^2 \to \infty] and [image: (x+2)\to \infty]. Therefore, [image: \underset{x\to \infty }{\lim}f(x)=\infty]. As [image: x\to −\infty], [image: (x-1)^2 \to \infty] and [image: (x+2) \to −\infty]. Therefore, [image: \underset{x\to -\infty }{\lim}f(x)=−\infty]. To get even more information about the end behavior of [image: f], we can multiply the factors of [image: f]. When doing so, we see that,
 [image: f(x)=(x-1)^2 (x+2)=x^3-3x+2]
 Since the leading term of [image: f] is [image: x^3], we conclude that [image: f] behaves like [image: y=x^3] as [image: x\to \pm \infty].
 Step 4. Since [image: f] is a polynomial function, it does not have any vertical asymptotes.
 Step 5. The first derivative of [image: f] is,
 [image: f^{\prime}(x)=3x^2-3]
 Therefore, [image: f] has two critical points: [image: x=1,-1]. Divide the interval [image: (−\infty ,\infty)] into the three smaller intervals: [image: (−\infty ,-1)], [image: (-1,1)], and [image: (1,\infty )].
 Then, choose test points [image: x=-2], [image: x=0], and [image: x=2] from these intervals and evaluate the sign of [image: f^{\prime}(x)] at each of these test points, as shown in the following table.
 	Interval 	Test Point 	Sign of Derivative [image: f^{\prime}(x)=3x^2-3=3(x-1)(x+1)] 	Conclusion 
  	[image: (−\infty ,-1)] 	[image: x=-2] 	[image: (+)(−)(−)=+] 	[image: f] is increasing. 
 	[image: (-1,1)] 	[image: x=0] 	[image: (+)(−)(+)=−] 	[image: f] is decreasing. 
 	[image: (1,\infty )] 	[image: x=2] 	[image: (+)(+)(+)=+] 	[image: f] is increasing. 
  
 From the table, we see that [image: f] has a local maximum at [image: x=-1] and a local minimum at [image: x=1]. Evaluating [image: f(x)] at those two points, we find that the local maximum value is [image: f(-1)=4] and the local minimum value is [image: f(1)=0].
 Step 6. The second derivative of [image: f] is,
 [image: f^{\prime \prime}(x)=6x]
 The second derivative is zero at [image: x=0].
 Therefore, to determine the concavity of [image: f], divide the interval [image: (−\infty ,\infty)] into the smaller intervals [image: (−\infty ,0)] and [image: (0,\infty )], and choose test points [image: x=-1] and [image: x=1] to determine the concavity of [image: f] on each of these smaller intervals as shown in the following table.
 	Interval 	Test Point 	Sign of [image: f^{\prime \prime}(x)=6x] 	Conclusion 
  	[image: (−\infty ,0)] 	[image: x=-1] 	[image: -] 	[image: f] is concave down. 
 	[image: (0,\infty )] 	[image: x=1] 	[image: +] 	[image: f] is concave up. 
  
 We note that the information in the preceding table confirms the fact, found in step 5, that [image: f] has a local maximum at [image: x=-1] and a local minimum at [image: x=1]. In addition, the information found in step 5—namely, [image: f] has a local maximum at [image: x=-1] and a local minimum at [image: x=1], and [image: f^{\prime}(x)=0] at those points—combined with the fact that [image: f^{\prime \prime}] changes sign only at [image: x=0] confirms the results found in step 6 on the concavity of [image: f].
 Combining this information, we arrive at the graph of [image: f(x)=(x-1)^2 (x+2)] shown in the following graph.
 [image: The function f(x) = (x −1)2 (x + 2) is graphed. It crosses the x axis at x = −2 and touches the x axis at x = 1.]Figure 23. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=QhOY9VfIefo%3Fcontrols%3D0%26start%3D003%26end%3D317%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes (part 2 – curve sketching)” here (opens in new window).
  Sketch the graph of [image: f(x)=\dfrac{x^2}{1-x^2}]
 Show Solution 
 Step 1. The function [image: f] is defined as long as the denominator is not zero. Therefore, the domain is the set of all real numbers [image: x] except [image: x=\pm 1].
 Step 2. Find the intercepts. If [image: x=0], then [image: f(x)=0], so 0 is an intercept. If [image: y=0], then [image: \frac{x^2}{1-x^2}=0], which implies [image: x=0]. Therefore, [image: (0,0)] is the only intercept.
 Step 3. Evaluate the limits at infinity. Since [image: f] is a rational function, divide the numerator and denominator by the highest power in the denominator: [image: x^2]. We obtain,
 [image: \underset{x\to \pm \infty }{\lim}\frac{x^2}{1-x^2}=\underset{x\to \pm \infty }{\lim}\frac{1}{\frac{1}{x^2}-1}=-1].
  
 Therefore, [image: f] has a horizontal asymptote of [image: y=-1] as [image: x\to \infty] and [image: x\to −\infty].
 Step 4. To determine whether [image: f] has any vertical asymptotes, first check to see whether the denominator has any zeroes. We find the denominator is zero when [image: x=\pm 1].
 To determine whether the lines [image: x=1] or [image: x=-1] are vertical asymptotes of [image: f], evaluate [image: \underset{x\to 1}{\lim}f(x)] and [image: \underset{x\to −1}{\lim}f(x)].
 By looking at each one-sided limit as [image: x\to 1], we see that,
 [image: \underset{x\to 1^+}{\lim}\frac{x^2}{1-x^2}=−\infty] and [image: \underset{x\to 1^-}{\lim}\frac{x^2}{1-x^2}=\infty].
 In addition, by looking at each one-sided limit as [image: x\to −1], we find that,
 [image: \underset{x\to −1^+}{\lim}\frac{x^2}{1-x^2}=\infty] and [image: \underset{x\to −1^-}{\lim}\frac{x^2}{1-x^2}=−\infty].
 Step 5. Calculate the first derivative:
 [image: f^{\prime}(x)=\frac{(1-x^2)(2x)-x^2(-2x)}{(1-x^2)^2}=\frac{2x}{(1-x^2)^2}].
 Critical points occur at points [image: x] where [image: f^{\prime}(x)=0] or [image: f^{\prime}(x)] is undefined. We see that [image: f^{\prime}(x)=0] when [image: x=0]. The derivative [image: f^{\prime}] is not undefined at any point in the domain of [image: f]. However, [image: x=\pm 1] are not in the domain of [image: f].
 Therefore, to determine where [image: f] is increasing and where [image: f] is decreasing, divide the interval [image: (−\infty ,\infty )] into four smaller intervals: [image: (−\infty ,-1)], [image: (-1,0)], [image: (0,1)], and [image: (1,\infty )], and choose a test point in each interval to determine the sign of [image: f^{\prime}(x)] in each of these intervals. The values [image: x=-2], [image: x=-\frac{1}{2}], [image: x=\frac{1}{2}], and [image: x=2] are good choices for test points as shown in the following table.
 	Interval 	Test Point 	Sign of [image: f^{\prime}(x)=\frac{2x}{(1-x^2)^2}] 	Conclusion 
  	[image: (−\infty ,-1)] 	[image: x=-2] 	[image: −/+=−] 	[image: f] is decreasing. 
 	[image: (-1,0)] 	[image: x=-1/2] 	[image: −/+=−] 	[image: f] is decreasing. 
 	[image: (0,1)] 	[image: x=1/2] 	[image: +/+=+] 	[image: f] is increasing. 
 	[image: (1,\infty )] 	[image: x=2] 	[image: +/+=+] 	[image: f] is increasing. 
  
 From this analysis, we conclude that [image: f] has a local minimum at [image: x=0] but no local maximum.
 Step 6. Calculate the second derivative:
 [image: \begin{array}{ll} f^{\prime \prime}(x) & =\frac{(1-x^2)^2(2)-2x(2(1-x^2)(-2x))}{(1-x^2)^4} \\ & =\frac{(1-x^2)[2(1-x^2)+8x^2]}{(1-x^2)^4} \\ & =\frac{2(1-x^2)+8x^2}{(1-x^2)^3} \\ & =\frac{6x^2+2}{(1-x^2)^3} \end{array}]
 To determine the intervals where [image: f] is concave up and where [image: f] is concave down, we first need to find all points [image: x] where [image: f^{\prime \prime}(x)=0] or [image: f^{\prime \prime}(x)] is undefined. Since the numerator [image: 6x^2+2 \ne 0] for any [image: x], [image: f^{\prime \prime}(x)] is never zero.
 Furthermore, [image: f^{\prime \prime}] is not undefined for any [image: x] in the domain of [image: f]. However, as discussed earlier, [image: x=\pm 1] are not in the domain of [image: f].
 Therefore, to determine the concavity of [image: f], we divide the interval [image: (−\infty ,\infty )] into the three smaller intervals [image: (−\infty ,-1)], [image: (-1,-1)], and [image: (1,\infty )], and choose a test point in each of these intervals to evaluate the sign of [image: f^{\prime \prime}(x)] in each of these intervals. The values [image: x=-2], [image: x=0], and [image: x=2] are possible test points as shown in the following table.
 	Interval 	Test Point 	Sign of [image: f^{\prime \prime}(x)=\frac{6x^2+2}{(1-x^2)^3}] 	Conclusion 
  	[image: (−\infty ,-1)] 	[image: x=-2] 	[image: +/-=−] 	[image: f] is concave down. 
 	[image: (-1,-1)] 	[image: x=0] 	[image: +/+=+] 	[image: f] is concave up. 
 	[image: (1,\infty )] 	[image: x=2] 	[image: +/-=−] 	[image: f] is concave down. 
  
 Combining all this information, we arrive at the graph of [image: f] shown below. Note that, although [image: f] changes concavity at [image: x=-1] and [image: x=1], there are no inflection points at either of these places because [image: f] is not continuous at [image: x=-1] or [image: x=1].
 [image: The function f(x) = x2/(1 − x2) is graphed. It has asymptotes y = −1, x = −1, and x = 1.]Figure 25.   Sketch the graph of [image: f(x)=\dfrac{x^2}{x-1}]
 Show Solution 
 Step 1. The domain of [image: f] is the set of all real numbers [image: x] except [image: x=1].
 Step 2. Find the intercepts. We can see that when [image: x=0], [image: f(x)=0], so [image: (0,0)] is the only intercept.
 Step 3. Evaluate the limits at infinity. Since the degree of the numerator is one more than the degree of the denominator, [image: f] must have an oblique asymptote. To find the oblique asymptote, use long division of polynomials to write,
 [image: f(x)=\frac{x^2}{x-1}=x+1+\frac{1}{x-1}].
 Since [image: 1/(x-1)\to 0] as [image: x\to \pm \infty], [image: f(x)] approaches the line [image: y=x+1] as [image: x\to \pm \infty]. The line [image: y=x+1] is an oblique asymptote for [image: f].
 Step 4. To check for vertical asymptotes, look at where the denominator is zero. Here the denominator is zero at [image: x=1]. Looking at both one-sided limits as [image: x\to 1], we find,
 [image: \underset{x\to 1^+}{\lim}\frac{x^2}{x-1}=\infty] and [image: \underset{x\to 1^-}{\lim}\frac{x^2}{x-1}=−\infty].
 Therefore, [image: x=1] is a vertical asymptote, and we have determined the behavior of [image: f] as [image: x] approaches 1 from the right and the left.
 Step 5. Calculate the first derivative:
 [image: f^{\prime}(x)=\frac{(x-1)(2x)-x^2(1)}{(x-1)^2}=\frac{x^2-2x}{(x-1)^2}].
 We have [image: f^{\prime}(x)=0] when [image: x^2-2x=x(x-2)=0]. Therefore, [image: x=0] and [image: x=2] are critical points. Since [image: f] is undefined at [image: x=1], we need to divide the interval [image: (−\infty ,\infty )] into the smaller intervals [image: (−\infty ,0)], [image: (0,1)], [image: (1,2)], and [image: (2,\infty )], and choose a test point from each interval to evaluate the sign of [image: f^{\prime}(x)] in each of these smaller intervals.
 For example, let [image: x=-1], [image: x=\frac{1}{2}], [image: x=\frac{3}{2}], and [image: x=3] be the test points as shown in the following table.
 	Interval 	Test Point 	Sign of [image: f^{\prime}(x)=\frac{x^2-2x}{(x-1)^2}=\frac{x(x-2)}{(x-1)^2}] 	Conclusion 
  	[image: (−\infty ,0)] 	[image: x=-1] 	[image: (−)(−)/+=+] 	[image: f] is increasing. 
 	[image: (0,1)] 	[image: x=1/2] 	[image: (+)(−)/+=−] 	[image: f] is decreasing. 
 	[image: (1,2)] 	[image: x=3/2] 	[image: (+)(−)/+=−] 	[image: f] is decreasing. 
 	[image: (2,\infty )] 	[image: x=3] 	[image: (+)(+)/+=+] 	[image: f] is increasing. 
  
 From this table, we see that [image: f] has a local maximum at [image: x=0] and a local minimum at [image: x=2]. The value of [image: f] at the local maximum is [image: f(0)=0] and the value of [image: f] at the local minimum is [image: f(2)=4]. Therefore, [image: (0,0)] and [image: (2,4)] are important points on the graph.
 Step 6. Calculate the second derivative:
 [image: \begin{array}{ll} f^{\prime \prime}(x) & =\frac{(x-1)^2(2x-2)-(x^2-2x)(2(x-1))}{(x-1)^4} \\ & =\frac{(x-1)[(x-1)(2x-2)-2(x^2-2x)]}{(x-1)^4} \\ & =\frac{(x-1)(2x-2)-2(x^2-2x)}{(x-1)^3} \\ & =\frac{2x^2-4x+2-(2x^2-4x)}{(x-1)^3} \\ & =\frac{2}{(x-1)^3} \end{array}]
 We see that [image: f^{\prime \prime}(x)] is never zero or undefined for [image: x] in the domain of [image: f]. Since [image: f] is undefined at [image: x=1], to check concavity we just divide the interval [image: (−\infty ,\infty )] into the two smaller intervals [image: (−\infty ,1)] and [image: (1,\infty )], and choose a test point from each interval to evaluate the sign of [image: f^{\prime \prime}(x)] in each of these intervals. The values [image: x=0] and [image: x=2] are possible test points as shown in the following table.
 	Interval 	Test Point 	Sign of [image: f^{\prime \prime}(x)=\frac{2}{(x-1)^3}] 	Conclusion 
  	[image: (−\infty ,1)] 	[image: x=0] 	[image: +/-=−] 	[image: f] is concave down. 
 	[image: (1,\infty )] 	[image: x=2] 	[image: +/+=+] 	[image: f] is concave up. 
  
 From the information gathered, we arrive at the following graph for [image: f.]
 [image: The function f(x) = x2/(x − 1) is graphed. It has asymptotes y = x + 1 and x = 1.]Figure 27. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=QhOY9VfIefo%3Fcontrols%3D0%26start%3D552%26end%3D777%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes (part 2 – curve sketching)” here (opens in new window).
  Sketch a graph of [image: f(x)=(x-1)^{\frac{2}{3}}]
 Show Solution 
 Step 1. Since the cube-root function is defined for all real numbers [image: x] and [image: (x-1)^{2/3}=(\sqrt[3]{x-1})^2], the domain of [image: f] is all real numbers.
 Step 2: To find the [image: y]-intercept, evaluate [image: f(0)]. Since [image: f(0)=1], the [image: y]-intercept is [image: (0,1)]. To find the [image: x]-intercept, solve [image: (x-1)^{2/3}=0]. The solution of this equation is [image: x=1], so the [image: x]-intercept is [image: (1,0)].
 Step 3: Since [image: \underset{x\to \pm \infty }{\lim}(x-1)^{2/3}=\infty], the function continues to grow without bound as [image: x\to \infty] and [image: x\to −\infty].
 Step 4: The function has no vertical asymptotes.
 Step 5: To determine where [image: f] is increasing or decreasing, calculate [image: f^{\prime}]. We find,
 [image: f^{\prime}(x)=\frac{2}{3}(x-1)^{-1/3}=\frac{2}{3(x-1)^{1/3}}].
 This function is not zero anywhere, but it is undefined when [image: x=1]. Therefore, the only critical point is [image: x=1]. Divide the interval [image: (−\infty ,\infty )] into the smaller intervals [image: (−\infty ,1)] and [image: (1,\infty )], and choose test points in each of these intervals to determine the sign of [image: f^{\prime}(x)] in each of these smaller intervals.
 Let [image: x=0] and [image: x=2] be the test points as shown in the following table.
 	Interval 	Test Point 	Sign of [image: f^{\prime}(x)=\frac{2}{3(x-1)^{1/3}}] 	Conclusion 
  	[image: (−\infty ,1)] 	[image: x=0] 	[image: +/-=−] 	[image: f] is decreasing. 
 	[image: (1,\infty )] 	[image: x=2] 	[image: +/+=+] 	[image: f] is increasing. 
  
 We conclude that [image: f] has a local minimum at [image: x=1]. Evaluating [image: f] at [image: x=1], we find that the value of [image: f] at the local minimum is zero. Note that [image: f^{\prime}(1)] is undefined, so to determine the behavior of the function at this critical point, we need to examine [image: \underset{x\to 1}{\lim}f^{\prime}(x)].
 Looking at the one-sided limits, we have,
 [image: \underset{x\to 1^+}{\lim}\frac{2}{3(x-1)^{1/3}}=\infty] and [image: \underset{x\to 1^-}{\lim}\frac{2}{3(x-1)^{1/3}}=−\infty].
 Therefore, [image: f] has a cusp at [image: x=1].
 Step 6: To determine concavity, we calculate the second derivative of [image: f]:
 [image: f^{\prime \prime}(x)=-\frac{2}{9}(x-1)^{-4/3}=\frac{-2}{9(x-1)^{4/3}}].
 We find that [image: f^{\prime \prime}(x)] is defined for all [image: x], but is undefined when [image: x=1]. Therefore, divide the interval [image: (−\infty ,\infty )] into the smaller intervals [image: (−\infty ,1)] and [image: (1,\infty )], and choose test points to evaluate the sign of [image: f^{\prime \prime}(x)] in each of these intervals.
 As we did earlier, let [image: x=0] and [image: x=2] be test points as shown in the following table.
 	Interval 	Test Point 	Sign of [image: f^{\prime \prime}(x)=\frac{-2}{9(x-1)^{4/3}}] 	Conclusion 
  	[image: (−\infty ,1)] 	[image: x=0] 	[image: −/+=−] 	[image: f] is concave down. 
 	[image: (1,\infty )] 	[image: x=2] 	[image: −/+=−] 	[image: f] is concave down. 
  
 From this table, we conclude that [image: f] is concave down everywhere. Combining all of this information, we arrive at the following graph for [image: f].
 [image: The function f(x) = (x − 1)2/3 is graphed. It touches the x axis at x = 1, where it comes to something of a sharp point and then flairs out on either side.]Figure 28. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=QhOY9VfIefo%3Fcontrols%3D0%26start%3D781%26end%3D962%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.6 Limits at Infinity and Asymptotes (part 2 – curve sketching)” here (opens in new window).
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		Limits at Infinity and Asymptotes: Apply It

								

	
				 	Determine limits and predict how functions behave as x increases or decreases indefinitely
 	Identify and distinguish horizontal and slanting lines that a graph approaches but never touches
 	Use a function’s derivatives to accurately sketch its graph
 
  From Party Planning to Paper Design: Exploring Function Behavior
 In this apply-it task, we’ll dive into the practical applications of function analysis in a business context. We’ll explore two scenarios related to a company’s employee party: determining the optimal attendance fee and designing the perfect invitation. These problems will challenge you to apply various calculus concepts, including domain analysis, limit evaluation, asymptote identification, and derivative calculations.
 By working through these problems, you’ll gain insight into how calculus can be applied to make informed decisions in business planning and design. Let’s begin our exploration of these real-world applications of function analysis!
 https://ohm.lumenlearning.com/multiembedq2.php?id=288058&theme=lumen&iframe_resize_id=ohm288058&source=tnh
  https://ohm.lumenlearning.com/multiembedq2.php?id=288059&theme=lumen&iframe_resize_id=ohm288059&source=tnh
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		Applied Optimization Problems: Learn It 1

								

	
				 	Tackle business problems to find the best ways to increase profits, minimize costs, or maximize revenue
 	Use optimization methods to solve problems involving geometry
 
  Solving Optimization Problems
 A key application of calculus involves calculating a function’s minimum or maximum value to optimize certain outcomes, such as reducing costs or increasing revenue. This is crucial in areas like manufacturing, where minimizing material usage for a specific product volume can be vital.
 Solving Optimization Problems over a Closed, Bounded Interval
 Optimization often involves finding the maximum or minimum value of a function under certain constraints. For example, consider maximizing the area of a rectangular garden while adhering to a fixed amount of available fencing. This requires adjusting the garden’s dimensions within the set perimeter limits to find the optimal area.
 Here’s an example of how we might approach this.
 A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for the other three sides (Figure 1). Given [image: 100] ft of wire fencing, determine the dimensions that would create a garden of maximum area. What is the maximum area?
 [image: A drawing of a garden has x and y written on the vertical and horizontal sides, respectively. There is a rock wall running along the entire bottom horizontal length of the drawing.]Figure 1. We want to determine the measurements [image: x] and [image: y] that will create a garden with a maximum area using 100 ft of fencing. Let [image: x] denote the length of the side of the garden perpendicular to the rock wall and [image: y] denote the length of the side parallel to the rock wall. Then the area of the garden is:
 [image: A=x·y]
 We want to find the maximum possible area subject to the constraint that the total fencing is [image: 100] ft. From Figure 1, the total amount of fencing used will be [image: 2x+y].
 Therefore, the constraint equation is:
 [image: 2x+y=100]
 Solving this equation for [image: y], we have [image: y=100-2x].
 Thus, we can write the area as:
 [image: A(x)=x \cdot (100-2x)=100x-2x^2]
 Before trying to maximize the area function [image: A(x)=100x-2x^2], we need to determine the domain under consideration.
 To construct a rectangular garden, we certainly need the lengths of both sides to be positive. Therefore, we need [image: x>0] and [image: y>0]. Since [image: y=100-2x], if [image: y>0], then [image: x<50].
 Therefore, we are trying to determine the maximum value of [image: A(x)] for [image: x] over the open interval [image: (0,50)]. We do not know that a function necessarily has a maximum value over an open interval. However, we do know that a continuous function has an absolute maximum (and absolute minimum) over a closed interval.
 Therefore, let’s consider the function [image: A(x)=100x-2x^2] over the closed interval [image: [0,50]]. If the maximum value occurs at an interior point, then we have found the value [image: x] in the open interval [image: (0,50)] that maximizes the area of the garden.
 Therefore, we consider the following problem:
 Maximize [image: A(x)=100x-2x^2] over the interval [image: [0,50]]
 As mentioned earlier, since [image: A] is a continuous function on a closed, bounded interval, by the extreme value theorem, it has a maximum and a minimum. These extreme values occur either at endpoints or critical points. At the endpoints, [image: A(x)=0]. Since the area is positive for all [image: x] in the open interval [image: (0,50)], the maximum must occur at a critical point. Differentiating the function [image: A(x)], we obtain,
 [image: A^{\prime}(x)=100-4x]
 Therefore, the only critical point is [image: x=25] (Figure 2). We conclude that the maximum area must occur when [image: x=25]. Then we have [image: y=100-2x=100-2(25)=50].
 To maximize the area of the garden, let [image: x=25] ft and [image: y=50] ft. The area of this garden is [image: 1250 \, \text{ft}^2].
 [image: The function A(x) = 100x – 2x is graphed. At its maximum there is an intersection of two dashed lines and text that reads “Maximum area is 1250 square feet when x = 25 feet.”]Figure 2. To maximize the area of the garden, we need to find the maximum value of the function [image: A(x)=100x-2x^2].  Watch the following video to see the worked solution to the example above.
 https://youtube.com/watch?v=_lNDHOV2FlQ%3Fcontrols%3D0%26start%3D15%26end%3D180%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.7 Applied Optimization Problems” here (opens in new window).
  Determine the maximum area if we want to make the same rectangular garden as in the example above, but we have [image: 200] ft of fencing.
 Hint 
 We need to maximize the function [image: A(x)=200x-2x^2] over the interval [image: [0,100]].
  Show Solution 
 The maximum area is [image: 5000 \, \text{ft}^2].
   Here is a general strategy for solving optimization problems similar to these above.
 How To: Solve Optimization Problems
 	Identify All Variables: If applicable, sketch the problem scenario and label all variables.
 	Determine Objective: Identify which quantity needs to be maximized or minimized, and specify the range of values for any other relevant variables.
 	Develop a Formula: Write a formula for the objective quantity in terms of the variables, which may involve multiple variables.
 	Formulate Equations: Relate independent variables with any equations necessary to express the objective quantity as a function of one variable.
 	Set Domain: Determine the domain of consideration for the function based on the practical constraints of the problem.
 	Find Extremes: Calculate the maximum or minimum value of the function, typically by identifying critical points and evaluating the function at endpoints.
 
  Let’s apply this strategy to maximize the volume of an open-top box given a constraint on the amount of material to be used.
 An open-top box is to be made from a [image: 24] in. by [image: 36] in. piece of cardboard by removing a square from each corner of the box and folding up the flaps on each side. What size square should be cut out of each corner to get a box with the maximum volume?
 Show Solution 
 Step 1: Let [image: x] be the side length of the square to be removed from each corner (Figure 3). Then, the remaining four flaps can be folded up to form an open-top box. Let [image: V] be the volume of the resulting box.
 [image: There are two figures for this figure. The first one is a rectangle with sides 24 in and 36 in, with each corner having a square of side length x taken out of it. In the second picture, there is a box with side lengths x in, 24 – 2x in, and 36 – 2x in.]Figure 3. A square with side length [image: x] inches is removed from each corner of the piece of cardboard. The remaining flaps are folded to form an open-top box. Step 2: We are trying to maximize the volume of a box. Therefore, the problem is to maximize [image: V].
 Step 3: As mentioned in step 2, are trying to maximize the volume of a box. The volume of a box is [image: V=L \cdot W \cdot H], where [image: L, \, W], and [image: H] are the length, width, and height, respectively.
 Step 4: From Figure 3, we see that the height of the box is [image: x] inches, the length is [image: 36-2x] inches, and the width is [image: 24-2x] inches. Therefore, the volume of the box is,
 [image: V(x)=(36-2x)(24-2x)x=4x^3-120x^2+864x]
 Step 5: To determine the domain of consideration, let’s examine Figure 3. Certainly, we need [image: x>0]. Furthermore, the side length of the square cannot be greater than or equal to half the length of the shorter side, 24 in.; otherwise, one of the flaps would be completely cut off. Therefore, we are trying to determine whether there is a maximum volume of the box for [image: x] over the open interval [image: (0,12)]. Since [image: V] is a continuous function over the closed interval [image: [0,12]], we know [image: V] will have an absolute maximum over the closed interval. Therefore, we consider [image: V] over the closed interval [image: [0,12]] and check whether the absolute maximum occurs at an interior point.
 Step 6: Since [image: V(x)] is a continuous function over the closed, bounded interval [image: [0,12]], [image: V] must have an absolute maximum (and an absolute minimum). Since [image: V(x)=0] at the endpoints and [image: V(x)>0] for [image: 0<x<12], the maximum must occur at a critical point. The derivative is:
 [image: V^{\prime}(x)=12x^2-240x+864]
 To find the critical points, we need to solve the equation:
 [image: 12x^2-240x+864=0]
 Dividing both sides of this equation by [image: 12], the problem simplifies to solving the equation:
 [image: x^2-20x+72=0]
 Using the quadratic formula, we find that the critical points are,
 [image: x=\frac{20 \pm \sqrt{(-20)^2-4(1)(72)}}{2}=\frac{20 \pm \sqrt{112}}{2}=\frac{20 \pm 4\sqrt{7}}{2}=10 \pm 2\sqrt{7}]
 Since [image: 10+2\sqrt{7}] is not in the domain of consideration, the only critical point we need to consider is [image: 10-2\sqrt{7}]. Therefore, the volume is maximized if we let [image: x=10-2\sqrt{7}] in.
 The maximum volume is [image: V(10-2\sqrt{7})=640+448\sqrt{7}\approx 1825 \, \text{in}^3] as shown in the following graph.
 [image: The function V(x) = 4x3 – 120x2 + 864x is graphed. At its maximum there is an intersection of two dashed lines and text that reads “Maximum volume is approximately 1825 cubic inches when x ≈ 4.7 inches.”]Figure 4. Maximizing the volume of the box leads to finding the maximum value of a cubic polynomial.   Watch a video about optimizing the volume of a box.
  An island is [image: 2] mi due north of its closest point along a straight shoreline. A visitor is staying at a cabin on the shore that is [image: 6] mi west of that point. The visitor is planning to go from the cabin to the island. Suppose the visitor runs at a rate of [image: 8] mph and swims at a rate of [image: 3] mph. How far should the visitor run before swimming to minimize the time it takes to reach the island?
 Show Solution 
 Step 1: Let [image: x] be the distance running and let [image: y] be the distance swimming (Figure 5). Let [image: T] be the time it takes to get from the cabin to the island.
 [image: The cabin is x miles from the shore. From that point on the shore, the island is y miles away. If you were to continue the line from the cabin to the shore (the x miles one) and if you were to draw a line from the island parallel to the shore, then the lines would extend 2 miles from the island and 6 miles from the cabin before intersecting.]Figure 5. How can we choose [image: x] and [image: y] to minimize the travel time from the cabin to the island? Step 2: The problem is to minimize [image: T].
 Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the time spent swimming. Since Distance [image: =] Rate [image: \times] Time [image: (D=R \times T)], the time spent running is
 [image: T_{\text{running}}=\frac{D_{\text{running}}}{R_{\text{running}}}=\frac{x}{8}],
 and the time spent swimming is,
 [image: T_{\text{swimming}}=\frac{D_{\text{swimming}}}{R_{\text{swimming}}}=\frac{y}{3}]
 Therefore, the total time spent traveling is,
 [image: T=\frac{x}{8}+\frac{y}{3}]
 Step 4: From Figure 5, the line segment of [image: y] miles forms the hypotenuse of a right triangle with legs of length [image: 2] mi and [image: 6-x] mi. Therefore, by the Pythagorean theorem, [image: 2^2+(6-x)^2=y^2], and we obtain [image: y=\sqrt{(6-x)^2+4}]. Thus, the total time spent traveling is given by the function
 [image: T(x)=\frac{x}{8}+\frac{\sqrt{(6-x)^2+4}}{3}]
 Step 5: From Figure 5, we see that [image: 0\le x\le 6]. Therefore, [image: [0,6]] is the domain of consideration.
 Step 6: Since [image: T(x)] is a continuous function over a closed, bounded interval, it has a maximum and a minimum. Let’s begin by looking for any critical points of [image: T] over the interval [image: [0,6]]. The derivative is,
 [image: T^{\prime}(x)=\frac{1}{8}-\frac{1}{2}\frac{[(6-x)^2+4]^{-1/2}}{3} \cdot 2(6-x)=\frac{1}{8}-\frac{(6-x)}{3\sqrt{(6-x)^2+4}}]
 If [image: T^{\prime}(x)=0], then,
 [image: \frac{1}{8}=\frac{6-x}{3\sqrt{(6-x)^2+4}}]
 Therefore,
 [image: 3\sqrt{(6-x)^2+4}=8(6-x)]
 Squaring both sides of this equation, we see that if [image: x] satisfies this equation, then [image: x] must satisfy,
 [image: 9[(6-x)^2+4]=64(6-x)^2],
 which implies,
 [image: 55(6-x)^2=36]
 We conclude that if [image: x] is a critical point, then [image: x] satisfies,
 [image: (x-6)^2=\frac{36}{55}]
 Therefore, the possibilities for critical points are,
 [image: x=6 \pm \frac{6}{\sqrt{55}}]
 Since [image: x=6+\frac{6}{\sqrt{55}}] is not in the domain, it is not a possibility for a critical point. On the other hand, [image: x=6-\frac{6}{\sqrt{55}}] is in the domain.
 Since we squared both sides of the equation to arrive at the possible critical points, it remains to verify that it is satisfied by [image: x=6-\frac{6}{\sqrt{55}}]. Since [image: x=6-\frac{6}{\sqrt{55}}] does satisfy that equation, we conclude that [image: x=6-\frac{6}{\sqrt{55}}] is a critical point, and it is the only one.
 To justify that the time is minimized for this value of [image: x], we just need to check the values of [image: T(x)] at the endpoints [image: x=0] and [image: x=6], and compare them with the value of [image: T(x)] at the critical point [image: x=6-\frac{6}{\sqrt{55}}]. We find that [image: T(0)\approx 2.108] h and [image: T(6)\approx 1.417] h, whereas [image: T(6-\frac{6}{\sqrt{55}})\approx 1.368] h.
 Therefore, we conclude that [image: T] has a local minimum at [image: x\approx 5.19] mi.
   In business, companies are interested in maximizing revenue. In the following example, we consider a scenario in which a company has collected data on how many cars it is able to lease, depending on the price it charges its customers to rent a car. Let’s use these data to determine the price the company should charge to maximize the amount of money it brings in.
 Owners of a car rental company have determined that if they charge customers [image: p] dollars per day to rent a car, where [image: 50\le p\le 200], the number of cars [image: n] they rent per day can be modeled by the linear function [image: n(p)=1000-5p]. If they charge [image: $50] per day or less, they will rent all their cars. If they charge [image: $200] per day or more, they will not rent any cars. Assuming the owners plan to charge customers between [image: $50] per day and [image: $200] per day to rent a car, how much should they charge to maximize their revenue?
 Show Solution 
 Step 1: Let [image: p] be the price charged per car per day and let [image: n] be the number of cars rented per day. Let [image: R] be the revenue per day.
 Step 2: The problem is to maximize [image: R].
 Step 3: The revenue (per day) is equal to the number of cars rented per day times the price charged per car per day—that is, [image: R=n \times p].
 Step 4: Since the number of cars rented per day is modeled by the linear function [image: n(p)=1000-5p], the revenue [image: R] can be represented by the function:
 [image: R(p)=n \times p=(1000-5p)p=-5p^2+1000p]
 Step 5: Since the owners plan to charge between [image: $50] per car per day and [image: $200] per car per day, the problem is to find the maximum revenue [image: R(p)] for [image: p] in the closed interval [image: [50,200]].
 Step 6: Since [image: R] is a continuous function over the closed, bounded interval [image: [50,200]], it has an absolute maximum (and an absolute minimum) in that interval. To find the maximum value, look for critical points. The derivative is [image: R^{\prime}(p)=-10p+1000]. Therefore, the critical point is [image: p=100].
 When [image: p=100], [image: R(100)=$50,000]. When [image: p=50], [image: R(p)=$37,500]. When [image: p=200], [image: R(p)=$0]. Therefore, the absolute maximum occurs at [image: p=$100].
 The car rental company should charge [image: $100] per day per car to maximize revenue as shown in the following figure.
 [image: The function R(p) is graphed. At its maximum there is an intersection of two dashed lines and text that reads “Maximum revenue is 50,000 per day when the price charged per car is 100 per day.”]Figure 6. To maximize revenue, a car rental company has to balance the price of a rental against the number of cars people will rent at that price. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=_lNDHOV2FlQ%3Fcontrols%3D0%26start%3D913%26end%3D1024%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.7 Applied Optimization Problems” here (opens in new window).
  A rectangle is to be inscribed in the ellipse
 [image: \dfrac{x^2}{4}+y^2=1]
  
 What should the dimensions of the rectangle be to maximize its area? What is the maximum area?
 Show Solution 
 Step 1: For a rectangle to be inscribed in the ellipse, the sides of the rectangle must be parallel to the axes. Let [image: L] be the length of the rectangle and [image: W] be its width. Let [image: A] be the area of the rectangle.
 [image: The ellipse x2/4 + y2 = 1 is drawn with its x intercepts being ±2 and its y intercepts being ±1. There is a rectangle inscribed in the ellipse with length L (in the x-direction) and width W.]Figure 7. We want to maximize the area of a rectangle inscribed in an ellipse. Step 2: The problem is to maximize [image: A].
 Step 3: The area of the rectangle is [image: A=L \times W].
 Step 4: Let [image: (x,y)] be the corner of the rectangle that lies in the first quadrant, as shown in Figure 7. We can write length [image: L=2x] and width [image: W=2y]. Since [image: \frac{x^2}{4}+y^2=1] and [image: y>0], we have [image: y=\sqrt{1 - \frac{x^2}{4}}]. Therefore, the area is:
 [image: A=L \times W=(2x)(2y)=4x\sqrt{1 - \frac{x^2}{4}}=2x\sqrt{4-x^2}]
 Step 5: From Figure 7, we see that to inscribe a rectangle in the ellipse, the [image: x]-coordinate of the corner in the first quadrant must satisfy [image: 0<x<2]. Therefore, the problem reduces to looking for the maximum value of [image: A(x)] over the open interval [image: (0,2)].
 Since [image: A(x)] will have an absolute maximum (and absolute minimum) over the closed interval [image: [0,2]], we consider [image: A(x)=2x\sqrt{4-x^2}] over the interval [image: [0,2]]. If the absolute maximum occurs at an interior point, then we have found an absolute maximum in the open interval.
 Step 6: As mentioned earlier, [image: A(x)] is a continuous function over the closed, bounded interval [image: [0,2]]. Therefore, it has an absolute maximum (and absolute minimum). At the endpoints [image: x=0] and [image: x=2], [image: A(x)=0]. For [image: 0<x<2], [image: A(x)>0]. Therefore, the maximum must occur at a critical point. Taking the derivative of [image: A(x)], we obtain,
 [image: \begin{array}{ll} A^{\prime}(x) & =2\sqrt{4-x^2}+2x \cdot \frac{1}{2\sqrt{4-x^2}}(-2x) \\ & =2\sqrt{4-x^2}-\frac{2x^2}{\sqrt{4-x^2}} \\ & =\frac{8-4x^2}{\sqrt{4-x^2}} \end{array}]
 To find critical points, we need to find where [image: A^{\prime}(x)=0]. We can see that if [image: x] is a solution of
 [image: \frac{8-4x^2}{\sqrt{4-x^2}}=0],
 then [image: x] must satisfy
 [image: 8-4x^2=0]
 Therefore, [image: x^2=2]. Thus, [image: x=\pm \sqrt{2}] are the possible solutions of[image: A^{\prime}(x)].
 Since we are considering [image: x] over the interval [image: [0,2]], [image: x=\sqrt{2}] is a possibility for a critical point, but [image: x=−\sqrt{2}] is not. Therefore, we check whether [image: \sqrt{2}] is a solution of [image: A^{\prime}(x)]. Since [image: x=\sqrt{2}] is a solution of[image: A^{\prime}(x)], we conclude that [image: \sqrt{2}] is the only critical point of [image: A(x)] in the interval [image: [0,2]].
 Therefore, [image: A(x)] must have an absolute maximum at the critical point [image: x=\sqrt{2}]. To determine the dimensions of the rectangle, we need to find the length [image: L] and the width [image: W]. If [image: x=\sqrt{2}] then,
 [image: y=\sqrt{1-\frac{(\sqrt{2})^2}{4}}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}]
 Therefore, the dimensions of the rectangle are [image: L=2x=2\sqrt{2}] and [image: W=2y=\frac{2}{\sqrt{2}}=\sqrt{2}]. The area of this rectangle is [image: A=L \times W=(2\sqrt{2})(\sqrt{2})=4].
   [ohm_question hide_question_numbers=1]288427[/ohm_question]
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		Applied Optimization Problems: Learn It 2

								

	
				Solving Optimization Problems
 Solving Optimization Problems when the Interval Is Not Closed or Is Unbounded
 In the previous examples, we considered functions on closed, bounded domains. Consequently, by the extreme value theorem, we were guaranteed that the functions had absolute extrema. Let’s now consider functions for which the domain is neither closed nor bounded.
 Many functions still have at least one absolute extrema, even if the domain is not closed or the domain is unbounded. For example, the function [image: f(x)=x^2+4] over [image: (−\infty ,\infty )] has an absolute minimum of 4 at [image: x=0]. Therefore, we can still consider functions over unbounded domains or open intervals and determine whether they have any absolute extrema. 
 In the following example, we look at constructing a box of least surface area with a prescribed volume. It is not difficult to show that for a closed-top box, by symmetry, among all boxes with a specified volume, a cube will have the smallest surface area. Consequently, we consider the modified problem of determining which open-topped box with a specified volume has the smallest surface area.
 A rectangular box with a square base, an open top, and a volume of [image: 216 \, \text{in}^3] is to be constructed. What should the dimensions of the box be to minimize the surface area of the box? What is the minimum surface area?
 Step 1: Draw a rectangular box and introduce the variable [image: x] to represent the length of each side of the square base; let [image: y] represent the height of the box. Let [image: S] denote the surface area of the open-top box.
 [image: A box with square base is shown. The base has side length x, and the height is y.]Figure 8. We want to minimize the surface area of a square-based box with a given volume. Step 2: We need to minimize the surface area. Therefore, we need to minimize [image: S].
 Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the base. The area of each of the four vertical sides is [image: x \cdot y]. The area of the base is [image: x^2]. Therefore, the surface area of the box is
 [image: S=4xy+x^2].
 Step 4: Since the volume of this box is [image: x^2 y] and the volume is given as [image: 216 \, \text{in}^3], the constraint equation is
 [image: x^2 y=216].
 Solving the constraint equation for [image: y], we have [image: y=\frac{216}{x^2}]. Therefore, we can write the surface area as a function of [image: x] only:
 [image: S(x)=4x(\frac{216}{x^2})+x^2].
 Therefore, [image: S(x)=\frac{864}{x}+x^2].
 Step 5: Since we are requiring that [image: x^2 y=216], we cannot have [image: x=0]. Therefore, we need [image: x>0]. On the other hand, [image: x] is allowed to have any positive value.
 Note that as [image: x] becomes large, the height of the box [image: y] becomes correspondingly small so that [image: x^2 y=216]. Similarly, as [image: x] becomes small, the height of the box becomes correspondingly large.
 We conclude that the domain is the open, unbounded interval [image: (0,\infty )]. Note that, unlike the previous examples, we cannot reduce our problem to looking for an absolute maximum or absolute minimum over a closed, bounded interval.
 However, in the next step, we discover why this function must have an absolute minimum over the interval [image: (0,\infty )].
 Step 6: Note that as [image: x\to 0^+], [image: S(x)\to \infty]. Also, as [image: x\to \infty], [image: S(x)\to \infty]. Since [image: S] is a continuous function that approaches infinity at the ends, it must have an absolute minimum at some [image: x\in (0,\infty )]. This minimum must occur at a critical point of [image: S]. The derivative is
 [image: S^{\prime}(x)=-\frac{864}{x^2}+2x].
 Therefore, [image: S^{\prime}(x)=0] when [image: 2x=\frac{864}{x^2}].
 Solving this equation for [image: x], we obtain [image: x^3=432], so [image: x=\sqrt[3]{432}=6\sqrt[3]{2}].
 Since this is the only critical point of [image: S], the absolute minimum must occur at [image: x=6\sqrt[3]{2}] (see Figure 9). When [image: x=6\sqrt[3]{2}], [image: y=\frac{216}{(6\sqrt[3]{2})^2}=3\sqrt[3]{2}] in.
 Therefore, the dimensions of the box should be [image: x=6\sqrt[3]{2}] in and [image: y=3\sqrt[3]{2}] in. With these dimensions, the surface area is:
 [image: S(6\sqrt[3]{2})=\frac{864}{6\sqrt[3]{2}}+(6\sqrt[3]{2})^2=108\sqrt[3]{4} \, \text{in}^2]
 [image: The function S(x) = 864/x + x2 is graphed. At its minimum there is a dashed line and text that reads “Minimum surface area is 108 times the cube root of 4 square inches when x = 6 times the cube root of 2 inches.”]Figure 9. We can use a graph to determine the dimensions of a box of given the volume and the minimum surface area.  Watch the following video to see the worked solution to the example above.
 https://youtube.com/watch?v=_lNDHOV2FlQ%3Fcontrols%3D0%26start%3D1356%26end%3D1567%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.7 Applied Optimization Problems” here (opens in new window).
  Consider the same open-top box, which is to have volume [image: 216 \, \text{in}^3]. Suppose the cost of the material for the base is [image: $0.20 / \text{in}^2] and the cost of the material for the sides is [image: $0.30 / \text{in}^2] and we are trying to minimize the cost of this box. Write the cost as a function of the side lengths of the base. (Let [image: x] be the side length of the base and [image: y] be the height of the box.)
 Hint 
 If the cost of one of the sides is [image: $0.30 / \text{in}^2], the cost of that side is [image: 0.30xy].
  Show Solution 
 [image: c(x)=\frac{259.2}{x}+0.2x^2] dollars
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		Applied Optimization Problems: Apply It

								

	
				 	Tackle business problems to find the best ways to increase profits, minimize costs, or maximize revenue
 	Use optimization methods to solve problems involving geometry
 
  Maximizing Profits, Minimizing Materials: Calculus in the Beverage Industry
 In this apply-it task, we’ll explore how calculus can be applied to real-world business decisions in the beverage industry. We’ll focus on a Thai beverage company that’s aiming to optimize its operations through careful analysis of pricing, revenue, and packaging design.
 By working through these problems, you’ll gain insight into how calculus serves as a powerful tool for decision-making in business, affecting everything from pricing strategies to product design. Let’s dive in and discover how mathematics can drive efficiency and profitability in the beverage industry!
 [ohm_question hide_question_numbers=1]288068[/ohm_question]
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				 	Spot indeterminate forms like in calculations, and use L’Hôpital’s rule to find precise values
 	Explain how quickly different functions increase or decrease compared to each other
 
  L’Hôpital’s Rule
 L’Hôpital’s Rule is a powerful technique for evaluating limits of functions. It leverages derivatives to determine limits that are otherwise challenging to compute directly, providing a clear way to resolve indeterminate forms.
 Applying L’Hôpital’s Rule
 L’Hôpital’s Rule comes into play when you’re dealing with limits that result in indeterminate forms.
 Consider the quotient of two functions, represented as:
 [image: \underset{x\to a}{\lim}\dfrac{f(x)}{g(x)}].
 If [image: \underset{x\to a}{\lim}f(x)=L_1] and [image: \underset{x\to a}{\lim}g(x)=L_2 \ne 0], then
 [image: \underset{x\to a}{\lim}\dfrac{f(x)}{g(x)}=\dfrac{L_1}{L_2}]
 However, what happens if [image: \underset{x\to a}{\lim}f(x)=0] and [image: \underset{x\to a}{\lim}g(x)=0]?
 We call this one of the indeterminate forms, of type [image: \frac{0}{0}]. This is considered an indeterminate form because we cannot determine the exact behavior of [image: \frac{f(x)}{g(x)}] as [image: x\to a] without further analysis. We have seen examples of this earlier in the text.
 	[image: \underset{x\to 2}{\lim}\dfrac{x^2-4}{x-2}] can be solved by factoring the numerator and simplifying.[image: \underset{x\to 2}{\lim}\dfrac{x^2-4}{x-2}=\underset{x\to 2}{\lim}\dfrac{(x+2)(x-2)}{x-2}=\underset{x\to 2}{\lim}(x+2)=2+2=4]
 	[image: \underset{x\to 0}{\lim}\frac{\sin x}{x}] has been proven geometrically to equal [image: 1]. Using L’Hôpital’s Rule, differentiating both numerator and denominator yields:[image: \underset{x\to 0}{\lim}\dfrac{\sin x}{x}=1]
 
  L’Hôpital’s Rule not only simplifies the calculation of certain limits but also provides insights into evaluating complex limits that would be difficult to handle by other methods. This rule is particularly useful in analyzing the behavior of functions as they approach critical points.
 L’Hôpital’s Rule (0/0 Case)
 The idea behind L’Hôpital’s rule can be explained using local linear approximations.
 Consider two differentiable functions [image: f] and [image: g] such that [image: \underset{x\to a}{\lim}f(x)=0=\underset{x\to a}{\lim}g(x)] and such that [image: g^{\prime}(a)\ne 0] For [image: x] near [image: a], we can write
 [image: f(x)\approx f(a)+f^{\prime}(a)(x-a)]
 and
 [image: g(x)\approx g(a)+g^{\prime}(a)(x-a)].
 Therefore,
 [image: \dfrac{f(x)}{g(x)}\approx \dfrac{f(a)+f^{\prime}(a)(x-a)}{g(a)+g^{\prime}(a)(x-a)}]
 [image: Two functions y = f(x) and y = g(x) are drawn such that they cross at a point above x = a. The linear approximations of these two functions y = f(a) + f’(a)(x – a) and y = g(a) + g’(a)(x – a) are also drawn.]Figure 1. If [image: \underset{x\to a}{\lim}f(x)=\underset{x\to a}{\lim}g(x)], then the ratio [image: f(x)/g(x)] is approximately equal to the ratio of their linear approximations near [image: a]. Since [image: f] is differentiable at [image: a], then [image: f] is continuous at [image: a], and therefore [image: f(a)=\underset{x\to a}{\lim}f(x)=0]. Similarly, [image: g(a)=\underset{x\to a}{\lim}g(x)=0].  If we also assume that [image: f^{\prime}] and [image: g^{\prime}] are continuous at [image: x=a], then [image: f^{\prime}(a)=\underset{x\to a}{\lim}f^{\prime}(x)] and [image: g^{\prime}(a)=\underset{x\to a}{\lim}g^{\prime}(x)].
 Using these ideas, we conclude that:
 [image: \underset{x\to a}{\lim}\dfrac{f(x)}{g(x)}=\underset{x\to a}{\lim}\dfrac{f^{\prime}(x)(x-a)}{g^{\prime}(x)(x-a)}=\underset{x\to a}{\lim}\dfrac{f^{\prime}(x)}{g^{\prime}(x)}] 
 Note that the assumption that [image: f^{\prime}] and [image: g^{\prime}] are continuous at [image: a] and [image: g^{\prime}(a)\ne 0] can be loosened.
 The notation [image: \frac{0}{0}] does not mean we are actually dividing zero by zero. Rather, we are using the notation [image: \frac{0}{0}] to represent a quotient of limits, each of which is zero.
  We state L’Hôpital’s rule formally for the indeterminate form [image: \frac{0}{0}]. 
 L’Hôpital’s rule (0/0 case)
 Suppose [image: f] and [image: g] are differentiable functions over an open interval containing [image: a], except possibly at [image: a]. If [image: \underset{x\to a}{\lim}f(x)=0] and [image: \underset{x\to a}{\lim}g(x)=0], then
 [image: \underset{x\to a}{\lim}\dfrac{f(x)}{g(x)}=\underset{x\to a}{\lim}\dfrac{f^{\prime}(x)}{g^{\prime}(x)}],
 assuming the limit on the right exists or is [image: \infty] or [image: −\infty]. This result also holds if we are considering one-sided limits, or if [image: a=\infty] or [image: -\infty].
  Proof
 
 We provide a proof of this theorem in the special case when [image: f, \, g, \, f^{\prime}], and [image: g^{\prime}] are all continuous over an open interval containing [image: a]. In that case, since [image: \underset{x\to a}{\lim}f(x)=0=\underset{x\to a}{\lim}g(x)] and [image: f] and [image: g] are continuous at [image: a], it follows that [image: f(a)=0=g(a)]. Therefore,
 [image: \begin{array}{lllll} \underset{x\to a}{\lim}\frac{f(x)}{g(x)} & =\underset{x\to a}{\lim}\frac{f(x)-f(a)}{g(x)-g(a)} & & & \text{since} \, f(a)=0=g(a) \\ & =\underset{x\to a}{\lim}\frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}} & & & \text{multiplying numerator and denominator by} \, \frac{1}{x-a} \\ & =\frac{\underset{x\to a}{\lim}\frac{f(x)-f(a)}{x-a}}{\underset{x\to a}{\lim}\frac{g(x)-g(a)}{x-a}} & & & \text{limit of a quotient} \\ & =\frac{f^{\prime}(a)}{g^{\prime}(a)} & & & \text{definition of the derivative} \\ & =\frac{\underset{x\to a}{\lim}f^{\prime}(x)}{\underset{x\to a}{\lim}g^{\prime}(x)} & & & \text{continuity of} \, f^{\prime} \, \text{and} \, g^{\prime} \\ & =\underset{x\to a}{\lim}\frac{f^{\prime}(x)}{g^{\prime}(x)} & & & \text{limit of a quotient} \end{array}]
  
 Note that L’Hôpital’s rule states we can calculate the limit of a quotient [image: \frac{f}{g}] by considering the limit of the quotient of the derivatives [image: \frac{f^{\prime}}{g^{\prime}}]. It is important to realize that we are not calculating the derivative of the quotient [image: \frac{f}{g}].
 [image: _\blacksquare]
  Evaluate each of the following limits by applying L’Hôpital’s rule.
 	[image: \underset{x\to 0}{\lim}\dfrac{1- \cos x}{x}]
 	[image: \underset{x\to 1}{\lim}\dfrac{\sin (\pi x)}{\ln x}]
 	[image: \underset{x\to \infty }{\lim}\dfrac{e^{\frac{1}{x}}-1}{\frac{1}{x}}]
 	[image: \underset{x\to 0}{\lim}\dfrac{\sin x-x}{x^2}]
 
 Show Solution 
 	Since the numerator [image: 1- \cos x\to 0] and the denominator [image: x\to 0], we can apply L’Hôpital’s rule to evaluate this limit. We have [image: \begin{array}{ll} \underset{x\to 0}{\lim}\frac{1- \cos x}{x} & =\underset{x\to 0}{\lim}\frac{\frac{d}{dx}(1- \cos x)}{\frac{d}{dx}(x)} \\ & =\underset{x\to 0}{\lim}\frac{\sin x}{1} \\ & =\frac{\underset{x\to 0}{\lim}(\sin x)}{\underset{x\to 0}{\lim}(1)} \\ & =\frac{0}{1}=0 \end{array}]
 
 	As [image: x\to 1], the numerator [image: \sin (\pi x)\to 0] and the denominator [image: \ln x \to 0]. Therefore, we can apply L’Hôpital’s rule. We obtain [image: \begin{array}{ll} \underset{x\to 1}{\lim}\frac{\sin (\pi x)}{\ln x} & =\underset{x\to 1}{\lim}\frac{\pi \cos (\pi x)}{1/x} \\ & =\underset{x\to 1}{\lim}(\pi x) \cos (\pi x) \\ & =(\pi \cdot 1)(-1)=−\pi \end{array}]
 
 	As [image: x\to \infty], the numerator [image: e^{1/x}-1\to 0] and the denominator [image: (\frac{1}{x})\to 0]. Therefore, we can apply L’Hôpital’s rule. We obtain [image: \underset{x\to \infty }{\lim}\frac{e^{1/x}-1}{\frac{1}{x}}=\underset{x\to \infty }{\lim}\frac{e^{1/x}(\frac{-1}{x^2})}{(\frac{-1}{x^2})}=\underset{x\to \infty}{\lim} e^{1/x}=e^0=1]
 
 	As [image: x\to 0], both the numerator and denominator approach zero. Therefore, we can apply L’Hôpital’s rule. We obtain [image: \underset{x\to 0}{\lim}\frac{\sin x-x}{x^2}=\underset{x\to 0}{\lim}\frac{\cos x-1}{2x}].
 Since the numerator and denominator of this new quotient both approach zero as [image: x\to 0], we apply L’Hôpital’s rule again. In doing so, we see that
 [image: \underset{x\to 0}{\lim}\frac{\cos x-1}{2x}=\underset{x\to 0}{\lim}\frac{−\sin x}{2}=0].
 Therefore, we conclude that
 [image: \underset{x\to 0}{\lim}\frac{\sin x-x}{x^2}=0].
 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=e58sGIZe1wU%3Fcontrols%3D0%26start%3D535%26end%3D587%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.8 L’Hopital’s Rule” here (opens in new window).
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				L’Hôpital’s Rule
 Applying L’Hôpital’s Rule Cont.
 L’Hôpital’s Rule ([image: \infty / \infty] Case)
 L’Hôpital’s Rule provides a method to resolve indeterminate forms in calculus, specifically those that result in [image: \infty / \infty] when calculating limits.
 L’Hôpital’s rule ([image: \infty / \infty] case)
 Suppose [image: f] and [image: g] are differentiable functions over an open interval containing [image: a], except possibly at [image: a]. Suppose [image: \underset{x\to a}{\lim}f(x)=\infty] (or [image: −\infty]) and [image: \underset{x\to a}{\lim}g(x)=\infty] (or [image: −\infty]). Then,
 [image: \underset{x\to a}{\lim}\dfrac{f(x)}{g(x)}=\underset{x\to a}{\lim}\dfrac{f^{\prime}(x)}{g^{\prime}(x)}],
 assuming the limit on the right exists or is [image: \infty] or [image: −\infty]. This result also holds if the limit is infinite, if [image: a=\infty] or [image: −\infty], or the limit is one-sided.
  Evaluate each of the following limits by applying L’Hôpital’s rule.
 	[image: \underset{x\to \infty }{\lim}\dfrac{3x+5}{2x+1}]
 	[image: \underset{x\to 0^+}{\lim}\dfrac{\ln x}{\cot x}]
 
 Show Solution 
 	Since [image: 3x+5] and [image: 2x+1] are first-degree polynomials with positive leading coefficients, [image: \underset{x\to \infty }{\lim}(3x+5)=\infty] and [image: \underset{x\to \infty }{\lim}(2x+1)=\infty]. Therefore, we apply L’Hôpital’s rule and obtain [image: \underset{x\to \infty}{\lim}\dfrac{3x+5}{2x+\frac{1}{x}}=\underset{x\to \infty }{\lim}\dfrac{3}{2}=\dfrac{3}{2}].
 Note that this limit can also be calculated without invoking L’Hôpital’s rule. Earlier in the module we showed how to evaluate such a limit by dividing the numerator and denominator by the highest power of [image: x] in the denominator. In doing so, we saw that
 [image: \underset{x\to \infty }{\lim}\dfrac{3x+5}{2x+1}=\underset{x\to \infty }{\lim}\dfrac{3+\frac{5}{x}}{2+\frac{1}{x}}=\dfrac{3}{2}].
 L’Hôpital’s rule provides us with an alternative means of evaluating this type of limit.
 
 	Here, [image: \underset{x\to 0^+}{\lim} \ln x=−\infty] and [image: \underset{x\to 0^+}{\lim} \cot x=\infty]. Therefore, we can apply L’Hôpital’s rule and obtain [image: \underset{x\to 0^+}{\lim}\dfrac{\ln x}{\cot x}=\underset{x\to 0^+}{\lim}\dfrac{\frac{1}{x}}{−\csc^2 x}=\underset{x\to 0^+}{\lim}\dfrac{1}{−x \csc^2 x}].
 Now as [image: x\to 0^+], [image: \csc^2 x\to \infty]. Therefore, the first term in the denominator is approaching zero and the second term is getting really large. In such a case, anything can happen with the product. Therefore, we cannot make any conclusion yet. To evaluate the limit, we use the definition of [image: \csc x] to write
 [image: \underset{x\to 0^+}{\lim}\dfrac{1}{−x \csc^2 x}=\underset{x\to 0^+}{\lim}\dfrac{\sin^2 x}{−x}].
 Now [image: \underset{x\to 0^+}{\lim} \sin^2 x=0] and [image: \underset{x\to 0^+}{\lim} x=0], so we apply L’Hôpital’s rule again. We find
 [image: \underset{x\to 0^+}{\lim}\dfrac{\sin^2 x}{−x}=\underset{x\to 0^+}{\lim}\dfrac{2 \sin x \cos x}{-1}=\dfrac{0}{-1}=0].
 We conclude that
 [image: \underset{x\to 0^+}{\lim}\dfrac{\ln x}{\cot x}=0].
 
 
   To correctly apply L’Hôpital’s Rule to a quotient [image: \frac{f(x)}{g(x)}], it is essential that the original limit of the quotient is an indeterminate form, either [image: 0/0] or [image: \infty / \infty]. This is crucial because applying the rule outside these conditions does not yield valid results.
  While L’Hôpital’s Rule is an invaluable tool for calculus, its application should be carefully considered. Not all limits of the form [image: \infty / \infty] are suitable for L’Hôpital’s Rule without additional analysis or transformation of the function.
 Consider the following non-applicable example to better understand the limitations:
 Consider [image: \underset{x\to 1}{\lim}\dfrac{x^2+5}{3x+4}]. Show that the limit cannot be evaluated by applying L’Hôpital’s rule.
 Because the limits of the numerator and denominator are not both zero and are not both infinite, we cannot apply L’Hôpital’s rule. If we try to do so, we get
 [image: \frac{d}{dx}(x^2+5)=2x]
 and,
 [image: \frac{d}{dx}(3x+4)=3]
 At which point we would conclude erroneously that
 [image: \underset{x\to 1}{\lim}\frac{x^2+5}{3x+4}=\underset{x\to 1}{\lim}\frac{2x}{3}=\frac{2}{3}].
 However, since [image: \underset{x\to 1}{\lim}(x^2+5)=6] and [image: \underset{x\to 1}{\lim}(3x+4)=7], we actually have:
 [image: \underset{x\to 1}{\lim}\frac{x^2+5}{3x+4}=\frac{6}{7}]
 We can conclude that
 [image: \underset{x\to 1}{\lim}\frac{x^2+5}{3x+4}\ne \underset{x\to 1}{\lim}\frac{\frac{d}{dx}(x^2+5)}{\frac{d}{dx}(3x+4)}].[/hidden-answer]
  Explain why we cannot apply L’Hôpital’s rule to evaluate [image: \underset{x\to 0^+}{\lim}\dfrac{\cos x}{x}]. Evaluate [image: \underset{x\to 0^+}{\lim}\dfrac{\cos x}{x}] by other means.
 Hint 
 Determine the limits of the numerator and denominator separately.
  Show Solution 
 [image: \underset{x\to 0^+}{\lim} \cos x=1]. Therefore, we cannot apply L’Hôpital’s rule. The limit of the quotient is [image: \infty]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=e58sGIZe1wU%3Fcontrols%3D0%26start%3D535%26end%3D587%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.8 L’Hopital’s Rule” here (opens in new window).
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				Other Indeterminate Forms
 L’Hôpital’s rule is very useful for evaluating limits involving the indeterminate forms [image: \frac{0}{0}] and [image: \frac{\infty}{\infty}]. However, we can also use L’Hôpital’s rule to help evaluate limits involving other indeterminate forms that arise when evaluating limits.
 The expressions [image: 0 \cdot \infty], [image: \infty - \infty], [image: 1^{\infty}], [image: \infty^0], and [image: 0^0] are all considered indeterminate forms. These expressions are not real numbers. Rather, they represent forms that arise when trying to evaluate certain limits.
 Next we realize why these are indeterminate forms and then understand how to use L’Hôpital’s rule in these cases. The key idea is that we must rewrite the indeterminate forms in such a way that we arrive at the indeterminate form [image: \frac{0}{0}] or [image: \frac{\infty}{\infty}].
 Indeterminate Form of Type [image: 0 \cdot \infty]
 Suppose we want to evaluate [image: \underset{x\to a}{\lim}(f(x) \cdot g(x))], where [image: f(x)\to 0] and [image: g(x)\to \infty] (or [image: −\infty]) as [image: x\to a].
 Since one term in the product is approaching zero but the other term is becoming arbitrarily large (in magnitude), anything can happen to the product. We use the notation [image: 0 \cdot \infty] to denote the form that arises in this situation.
 The expression [image: 0 \cdot \infty] is considered indeterminate because we cannot determine without further analysis the exact behavior of the product [image: f(x)g(x)] as [image: x\to {a}]. For example, let [image: n] be a positive integer and consider
 [image: f(x)=\dfrac{1}{(x^n+1)}] and [image: g(x)=3x^2].
 As [image: x\to \infty], [image: f(x)\to 0] and [image: g(x)\to \infty].
 However, the limit as [image: x\to \infty] of [image: f(x)g(x)=\frac{3x^2}{(x^n+1)}] varies, depending on [image: n]. If [image: n=2], then [image: \underset{x\to \infty }{\lim}f(x)g(x)=3]. If [image: n=1], then [image: \underset{x\to \infty }{\lim}f(x)g(x)=\infty]. If [image: n=3], then [image: \underset{x\to \infty }{\lim}f(x)g(x)=0].
 Here we consider another limit involving the indeterminate form [image: 0 \cdot \infty] and show how to rewrite the function as a quotient to use L’Hôpital’s rule.
 Evaluate [image: \underset{x\to 0^+}{\lim}x \ln x].
 First, rewrite the function [image: x \ln x] as a quotient to apply L’Hôpital’s rule. If we write
 [image: x \ln x=\frac{\ln x}{1/x}],
 we see that [image: \ln x\to −\infty] as [image: x\to 0^+] and [image: \frac{1}{x}\to \infty] as [image: x\to 0^+]. Therefore, we can apply L’Hôpital’s rule and obtain
 [image: \underset{x\to 0^+}{\lim}\frac{\ln x}{1/x}=\underset{x\to 0^+}{\lim}\frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(1/x)}=\underset{x\to 0^+}{\lim}\frac{1/x}{-1/x^2}=\underset{x\to 0^+}{\lim}(−x)=0].
 We conclude that
 [image: \underset{x\to 0^+}{\lim}x \ln x=0].
 [image: The function y = x ln(x) is graphed for values x ≥ 0. At x = 0, the value of the function is 0.]Figure 2. Finding the limit at [image: x=0] of the function [image: f(x)=x \ln x].  Evaluate [image: \underset{x\to 0}{\lim}x \cot x].
 Hint 
 Write [image: x \cot x=\frac{x \cos x}{\sin x}]
  Show Solution 
 [image: 1]
   Indeterminate Form of Type [image: \infty -\infty]
 Another type of indeterminate form is [image: \infty -\infty]. Consider the following example:
 Let [image: n] be a positive integer and let [image: f(x)=3x^n] and [image: g(x)=3x^2+5].
 As [image: x\to \infty], [image: f(x)\to \infty] and [image: g(x)\to \infty]. We are interested in [image: \underset{x\to \infty}{\lim}(f(x)-g(x))].
 Depending on whether [image: f(x)] grows faster, [image: g(x)] grows faster, or they grow at the same rate, as we see next, anything can happen in this limit. Since [image: f(x)\to \infty] and [image: g(x)\to \infty], we write [image: \infty -\infty] to denote the form of this limit.
  As with our other indeterminate forms, [image: \infty -\infty] has no meaning on its own and we must do more analysis to determine the value of the limit.
 Suppose the exponent [image: n] in the function [image: f(x)=3x^n] is [image: n=3], then
 [image: \underset{x\to \infty }{\lim}(f(x)-g(x))=\underset{x\to \infty }{\lim}(3x^3-3x^2-5)=\infty].
 On the other hand, if [image: n=2], then
 [image: \underset{x\to \infty }{\lim}(f(x)-g(x))=\underset{x\to \infty }{\lim}(3x^2-3x^2-5)=-5].
 However, if [image: n=1], then
 [image: \underset{x\to \infty }{\lim}(f(x)-g(x))=\underset{x\to \infty }{\lim}(3x-3x^2-5)=−\infty].
 Therefore, the limit cannot be determined by considering only [image: \infty -\infty]. 
  Next we see how to rewrite an expression involving the indeterminate form [image: \infty -\infty] as a fraction to apply L’Hôpital’s rule.
 Evaluate [image: \underset{x\to 0^+}{\lim}\left(\dfrac{1}{x^2}-\dfrac{1}{\tan x}\right)].
 By combining the fractions, we can write the function as a quotient. Since the least common denominator is [image: x^2 \tan x], we have
 [image: \frac{1}{x^2}-\frac{1}{\tan x}=\frac{(\tan x)-x^2}{x^2 \tan x}]
 As [image: x\to 0^+], the numerator [image: \tan x-x^2 \to 0] and the denominator [image: x^2 \tan x \to 0]. Therefore, we can apply L’Hôpital’s rule. Taking the derivatives of the numerator and the denominator, we have
 [image: \underset{x\to 0^+}{\lim}\frac{(\tan x)-x^2}{x^2 \tan x}=\underset{x\to 0^+}{\lim}\frac{(\sec^2 x)-2x}{x^2 \sec^2 x+2x \tan x}]
 As [image: x\to 0^+], [image: (\sec^2 x)-2x \to 1] and [image: x^2 \sec^2 x+2x \tan x \to 0]. Since the denominator is positive as [image: x] approaches zero from the right, we conclude that
 [image: \underset{x\to 0^+}{\lim}\frac{(\sec^2 x)-2x}{x^2 \sec^2 x+2x \tan x}=\infty]
 Therefore,
 [image: \underset{x\to 0^+}{\lim}(\frac{1}{x^2}-\frac{1}{ tan x})=\infty] 
  Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=e58sGIZe1wU%3Fcontrols%3D0%26start%3D671%26end%3D790%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.8 L’Hopital’s Rule” here (opens in new window).
  Evaluate [image: \underset{x\to 0^+}{\lim}\left(\dfrac{1}{x}-\dfrac{1}{\sin x}\right)].
 Hint 
 Rewrite the difference of fractions as a single fraction.
  Show Solution 
 [image: 0]
   Indeterminate Form of Limits Involving Exponents
 Another type of indeterminate form that arises when evaluating limits involves exponents. The expressions [image: 0^0], [image: \infty^0], and [image: 1^{\infty}] are all indeterminate forms.
 On their own, these expressions are meaningless because we cannot actually evaluate these expressions as we would evaluate an expression involving real numbers. Rather, these expressions represent forms that arise when finding limits.
 Since L’Hôpital’s rule applies to quotients, we use the natural logarithm function and its properties to reduce a problem evaluating a limit involving exponents to a related problem involving a limit of a quotient.
 Suppose we want to evaluate [image: \underset{x\to a}{\lim}f(x)^{g(x)}] and we arrive at the indeterminate form [image: \infty^0]. (The indeterminate forms [image: 0^0] and [image: 1^{\infty}] can be handled similarly.) 
 Let
 [image: y=f(x)^{g(x)}]
 Then,
 [image: \ln y=\ln (f(x)^{g(x)})=g(x) \ln (f(x))]
 Therefore,
 [image: \underset{x\to a}{\lim}[\ln y]=\underset{x\to a}{\lim}[g(x) \ln (f(x))]]
 Since [image: \underset{x\to a}{\lim}f(x)=\infty], we know that [image: \underset{x\to a}{\lim}\ln (f(x))=\infty]. Therefore, [image: \underset{x\to a}{\lim}g(x) \ln (f(x))] is of the indeterminate form [image: 0 \cdot \infty], and we can use the techniques discussed earlier to rewrite the expression [image: g(x) \ln (f(x))] in a form so that we can apply L’Hôpital’s rule.
 Suppose [image: \underset{x\to a}{\lim}g(x) \ln (f(x))=L], where [image: L] may be [image: \infty] or [image: −\infty]. Then
 [image: \underset{x\to a}{\lim}\ln y=L]
 Since the natural logarithm function is continuous, we conclude that
 [image: \ln (\underset{x\to a}{\lim} y)=L]
 which gives us
 [image: \underset{x\to a}{\lim} y=\underset{x\to a}{\lim}f(x)^{g(x)}=e^L]
  Evaluate [image: \underset{x\to \infty }{\lim} x^{\frac{1}{x}}]
 Show Solution 
 Let [image: y=x^{1/x}]. Then,
 [image: \ln (x^{1/x})=\frac{1}{x} \ln x=\frac{\ln x}{x}]
  
 We need to evaluate [image: \underset{x\to \infty }{\lim}\frac{\ln x}{x}]. Applying L’Hôpital’s rule, we obtain
 [image: \underset{x\to \infty }{\lim} \ln y=\underset{x\to \infty}{\lim}\frac{\ln x}{x}=\underset{x\to \infty}{\lim}\frac{1/x}{1}=0]
  
 Therefore, [image: \underset{x\to \infty }{\lim}\ln y=0]. Since the natural logarithm function is continuous, we conclude that
 [image: \ln (\underset{x\to \infty}{\lim} y)=0],
  
 which leads to
 [image: \underset{x\to \infty }{\lim} y=\underset{x\to \infty}{\lim}\frac{\ln x}{x}=e^0=1]
  
 Hence,
 [image: \underset{x\to \infty}{\lim} x^{1/x}=1]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=e58sGIZe1wU%3Fcontrols%3D0%26start%3D797%26end%3D919%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.8 L’Hopital’s Rule” here (opens in new window).
  Evaluate [image: \underset{x\to 0^+}{\lim} x^{\sin x}]
 Show Solution 
 Let
 [image: y=x^{\sin x}]
 Therefore,
 [image: \ln y=\ln (x^{\sin x})= \sin x \ln x]
 We now evaluate [image: \underset{x\to 0^+}{\lim} \sin x \ln x]. Since [image: \underset{x\to 0^+}{\lim} \sin x=0] and [image: \underset{x\to 0^+}{\lim} \ln x=−\infty], we have the indeterminate form [image: 0 \cdot \infty]. To apply L’Hôpital’s rule, we need to rewrite [image: \sin x \ln x] as a fraction. We could write
 [image: \sin x \ln x=\frac{\sin x}{1/ \ln x}]
 or
 [image: \sin x \ln x=\frac{\ln x}{1/ \sin x}=\frac{\ln x}{\csc x}]
 Let’s consider the first option. In this case, applying L’Hôpital’s rule, we would obtain
 [image: \underset{x\to 0^+}{\lim} \sin x \ln x=\underset{x\to 0^+}{\lim}\frac{\sin x}{1/ \ln x}=\underset{x\to 0^+}{\lim}\frac{\cos x}{-1/(x(\ln x)^2)}=\underset{x\to 0^+}{\lim}(−x(\ln x)^2 \cos x)]
 Unfortunately, we not only have another expression involving the indeterminate form [image: 0 \cdot \infty], but the new limit is even more complicated to evaluate than the one with which we started. Instead, we try the second option. By writing
 [image: \sin x \ln x=\frac{\ln x}{1/ \sin x}=\frac{\ln x}{\csc x}]
 and applying L’Hôpital’s rule, we obtain
 [image: \underset{x\to 0^+}{\lim} \sin x \ln x=\underset{x\to 0^+}{\lim}\frac{\ln x}{\csc x}=\underset{x\to 0^+}{\lim}\frac{1/x}{− \csc x \cot x}=\underset{x\to 0^+}{\lim}\frac{-1}{x \csc x \cot x}]
 Using the fact that [image: \csc x=\frac{1}{\sin x}] and [image: \cot x=\frac{\cos x}{\sin x}], we can rewrite the expression on the right-hand side as
 [image: \underset{x\to 0^+}{\lim}\frac{−\sin^2 x}{x \cos x}=\underset{x\to 0^+}{\lim}[\frac{\sin x}{x} \cdot (−\tan x)]=(\underset{x\to 0^+}{\lim}\frac{\sin x}{x}) \cdot (\underset{x\to 0^+}{\lim}(−\tan x))=1 \cdot 0=0]
 We conclude that [image: \underset{x\to 0^+}{\lim} \ln y=0]. Therefore, [image: \ln (\underset{x\to 0^+}{\lim} y)=0] and we have
 [image: \underset{x\to 0^+}{\lim} y=\underset{x\to 0^+}{\lim} x^{\sin x}=e^0=1]
 Hence,
 [image: \underset{x\to 0^+}{\lim} x^{\sin x}=1]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=e58sGIZe1wU%3Fcontrols%3D0%26start%3D932%26end%3D1073%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.8 L’Hopital’s Rule” here (opens in new window).
  [ohm_question hide_question_numbers=1]288429[/ohm_question]
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		L’Hôpital’s Rule: Learn It 4

								

	
				Growth Rates of Functions
 Suppose the functions [image: f] and [image: g] both approach infinity as [image: x\to \infty]. Although the values of both functions become arbitrarily large as the values of [image: x] become sufficiently large, sometimes one function is growing more quickly than the other.
 For example, [image: f(x)=x^2] and [image: g(x)=x^3] both approach infinity as [image: x\to \infty]. However, as shown in the following table, the values of [image: x^3] are growing much faster than the values of [image: x^2].
 Comparing the Growth Rates of [image: x^2] and [image: x^3] 	[image: x] 	[image: 10] 	[image: 100] 	[image: 1000] 	[image: 10,000] 
 	[image: f(x)=x^2] 	[image: 100] 	[image: 10,000] 	[image: 1,000,000] 	[image: 100,000,000] 
 	[image: g(x)=x^3] 	[image: 1000] 	[image: 1,000,000] 	[image: 1,000,000,000] 	[image: 1,000,000,000,000] 
  
 In fact,
 [image: \underset{x\to \infty }{\lim}\dfrac{x^3}{x^2}=\underset{x\to \infty}{\lim} x=\infty]  or, equivalently, [image: \underset{x\to \infty}{\lim}\dfrac{x^2}{x^3}=\underset{x\to \infty }{\lim}\dfrac{1}{x}=0]
 As a result, we say [image: x^3] is growing more rapidly than [image: x^2] as [image: x\to \infty].
 On the other hand, for [image: f(x)=x^2] and [image: g(x)=3x^2+4x+1], although the values of [image: g(x)] are always greater than the values of [image: f(x)] for [image: x>0], each value of [image: g(x)] is roughly three times the corresponding value of [image: f(x)] as [image: x\to \infty], as shown in the following table. In fact,
 [image: \underset{x\to \infty }{\lim}\dfrac{x^2}{3x^2+4x+1}=\dfrac{1}{3}]
 Comparing the Growth Rates of [image: x^2] and [image: 3x^2+4x+1] 	[image: x] 	[image: 10] 	[image: 100] 	[image: 1000] 	[image: 10,000] 
 	[image: f(x)=x^2] 	[image: 100] 	[image: 10,000] 	[image: 1,000,000] 	[image: 100,000,000] 
 	[image: g(x)=3x^2+4x+1] 	[image: 341] 	[image: 30,401] 	[image: 3,004,001] 	[image: 300,040,001] 
  
 In this case, we say that [image: x^2] and [image: 3x^2+4x+1] are growing at the same rate as [image: x\to \infty].
 More generally, suppose [image: f] and [image: g] are two functions that approach infinity as [image: x\to \infty]. We say [image: g] grows more rapidly than [image: f] as [image: x\to \infty] if
 [image: \underset{x\to \infty }{\lim}\dfrac{g(x)}{f(x)}=\infty]  or, equivalently, [image: \underset{x\to \infty }{\lim}\dfrac{f(x)}{g(x)}=0]
 On the other hand, if there exists a constant [image: M \ne 0] such that
 [image: \underset{x\to \infty }{\lim}\dfrac{f(x)}{g(x)}=M],
 we say [image: f] and [image: g] grow at the same rate as [image: x\to \infty].
 Next we see how to use L’Hôpital’s rule to compare the growth rates of power, exponential, and logarithmic functions.
 For each of the following pairs of functions, use L’Hôpital’s rule to evaluate [image: \underset{x\to \infty }{\lim}\left(\dfrac{f(x)}{g(x)}\right)].
 	[image: f(x)=x^2] and [image: g(x)=e^x]
 	[image: f(x)=\ln x] and [image: g(x)=x^2]
 
 Show Solution 
 	Since [image: \underset{x\to \infty }{\lim} x^2=\infty] and [image: \underset{x\to \infty }{\lim} e^x= \infty], we can use L’Hôpital’s rule to evaluate [image: \underset{x\to \infty }{\lim}\left[\frac{x^2}{e^x}\right]]. We obtain [image: \underset{x\to \infty }{\lim}\frac{x^2}{e^x}=\underset{x\to \infty }{\lim}\frac{2x}{e^x}]
 Since [image: \underset{x\to \infty }{\lim}2x=\infty] and [image: \underset{x\to \infty }{\lim}e^x=\infty], we can apply L’Hôpital’s rule again. Since
 [image: \underset{x\to \infty }{\lim}\frac{2x}{e^x}=\underset{x\to \infty }{\lim}\frac{2}{e^x}=0],
 we conclude that
 [image: \underset{x\to \infty }{\lim}\frac{x^2}{e^x}=0]
 Therefore, [image: e^x] grows more rapidly than [image: x^2] as [image: x\to \infty] (See Figure 3 and the table below).
 [image: The functions g(x) = ex and f(x) = x2 are graphed. It is obvious that g(x) increases much more quickly than f(x).]Figure 3. An exponential function grows at a faster rate than a power function. Growth rates of a power function and an exponential function. 	[image: x] 	[image: 5] 	[image: 10] 	[image: 15] 	[image: 20] 
 	[image: x^2] 	[image: 25] 	[image: 100] 	[image: 225] 	[image: 400] 
 	[image: e^x] 	[image: 148] 	[image: 22,026] 	[image: 3,269,017] 	[image: 485,165,195] 
  
 
 	Since [image: \underset{x\to \infty }{\lim} \ln x=\infty] and [image: \underset{x\to \infty }{\lim} x^2=\infty], we can use L’Hôpital’s rule to evaluate [image: \underset{x\to \infty }{\lim}\frac{\ln x}{x^2}]. We obtain [image: \underset{x\to \infty }{\lim}\frac{\ln x}{x^2}=\underset{x\to \infty }{\lim}\frac{1/x}{2x}=\underset{x\to \infty }{\lim}\frac{1}{2x^2}=0]
 Thus, [image: x^2] grows more rapidly than [image: \ln x] as [image: x\to \infty] (see Figure 4 and the table below).
 [image: The functions g(x) = x2 and f(x) = ln(x) are graphed. It is obvious that g(x) increases much more quickly than f(x).]Figure 4. A power function grows at a faster rate than a logarithmic function. Growth rates of a power function and a logarithmic function 	[image: x] 	[image: 10] 	[image: 100] 	[image: 1000] 	[image: 10,000] 
 	[image: \ln x] 	[image: 2.303] 	[image: 4.605] 	[image: 6.908] 	[image: 9.210] 
 	[image: x^2] 	[image: 100] 	[image: 10,000] 	[image: 1,000,000] 	[image: 100,000,000] 
  
 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=e58sGIZe1wU%3Fcontrols%3D0%26start%3D1081%26end%3D1246%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.8 L’Hopital’s Rule” here (opens in new window).
  Using the same ideas as in the last example. it is not difficult to show that [image: e^x] grows more rapidly than [image: x^p] for any [image: p>0]. In Figure 5 and the table below it, we compare [image: e^x] with [image: x^3] and [image: x^4] as [image: x\to \infty].
 [image: This figure has two figures marked a and b. In figure a, the functions y = ex and y = x3 are graphed. It is obvious that ex increases more quickly than x3. In figure b, the functions y = ex and y = x4 are graphed. It is obvious that ex increases much more quickly than x4, but the point at which that happens is further to the right than it was for x3.]Figure 5. The exponential function [image: e^x] grows faster than [image: x^p] for any [image: p>0]. (a) A comparison of [image: e^x] with [image: x^3]. (b) A comparison of [image: e^x] with [image: x^4]. An exponential function grows at a faster rate than any power function 	[image: x] 	[image: 5] 	[image: 10] 	[image: 15] 	[image: 20] 
 	[image: x^3] 	[image: 125] 	[image: 1000] 	[image: 3375] 	[image: 8000] 
 	[image: x^4] 	[image: 625] 	[image: 10,000] 	[image: 50,625] 	[image: 160,000] 
 	[image: e^x] 	[image: 148] 	[image: 22,026] 	[image: 3,269,017] 	[image: 485,165,195] 
  
 Similarly, it is not difficult to show that [image: x^p] grows more rapidly than [image: \ln x] for any [image: p>0]. In Figure 6 and the table below it, we compare [image: \ln x] with [image: \sqrt[3]{x}] and [image: \sqrt{x}].
 [image: This figure shows y = the square root of x, y = the cube root of x, and y = ln(x). It is apparent that y = ln(x) grows more slowly than either of these functions.]Figure 6. The function [image: y=\ln x] grows more slowly than [image: x^p] for any [image: p>0] as [image: x\to \infty]. A logarithmic function grows at a slower rate than any root function 	[image: x] 	[image: 10] 	[image: 100] 	[image: 1000] 	[image: 10,000] 
 	[image: \ln x] 	[image: 2.303] 	[image: 4.605] 	[image: 6.908] 	[image: 9.210] 
 	[image: \sqrt[3]{x}] 	[image: 2.154] 	[image: 4.642] 	[image: 10] 	[image: 21.544] 
 	[image: \sqrt{x}] 	[image: 3.162] 	[image: 10] 	[image: 31.623] 	[image: 100] 
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		L’Hôpital’s Rule: Apply It

								

	
				 	Spot indeterminate forms like 0/0 in calculations, and use L’Hôpital’s rule to find precise values
 	Explain how quickly different functions increase or decrease compared to each other
 
  Exploring L’Hôpital’s Rule: Navigating Indeterminate Forms
 L’Hôpital’s Rule is a powerful tool in calculus for evaluating limits that result in indeterminate forms. This apply-it task will guide you through various scenarios where L’Hôpital’s Rule can be applied, as well as situations where it cannot. You’ll practice identifying indeterminate forms, applying the rule correctly, and recognizing its limitations. By working through these problems, you’ll develop a deeper understanding of how to approach complex limits and when to use alternative methods.
 [ohm_question hide_question_numbers=1]288311[/ohm_question]
  [ohm_question hide_question_numbers=1]288317[/ohm_question]
  [ohm_question hide_question_numbers=1]288318[/ohm_question]
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		Newton’s Method: Learn It 1

								

	
				 	Explain how Newton’s method uses repetition to find roots of equations
 	Recognize when Newton’s method does not work
 	Apply methods that repeat steps to solve different types of mathematical problems
 
  Approximating with Newton’s Method
 In many areas of pure and applied mathematics, we are interested in finding solutions to an equation of the form [image: f(x)=0]. For most functions, however, it is difficult—if not impossible—to calculate their zeroes explicitly. In this section, we take a look at a technique that provides a very efficient way of approximating the zeroes of functions. This technique makes use of tangent line approximations and is behind the method used often by calculators and computers to find zeroes.
 Describing Newton’s Method
 Consider the task of finding the solutions of [image: f(x)=0].
 If [image: f] is the first-degree polynomial [image: f(x)=ax+b], then the solution of [image: f(x)=0] is given by the formula [image: x=-\frac{b}{a}].
 If [image: f] is the second-degree polynomial [image: f(x)=ax^2+bx+c], the solutions of [image: f(x)=0] can be found by using the quadratic formula.
 However, for polynomials of degree [image: 3] or more, finding roots of [image: f] becomes more complicated. Although formulas exist for third- and fourth-degree polynomials, they are quite complicated. Also, if [image: f] is a polynomial of degree [image: 5] or greater, it is known that no such formulas exist.
 Consider the function [image: f(x)=x^5+8x^4+4x^3-2x-7]. No formula exists that allows us to find the solutions of [image: f(x)=0].
 Similar difficulties exist for nonpolynomial functions. Consider the task of finding solutions of [image: \tan (x)-x=0]. No simple formula exists for the solutions of this equation.
 In cases such as these, we can use Newton’s method to approximate the roots.
 Newton’s method
 Newton’s Method is an efficient numerical technique used to find approximately accurate roots of a real-valued function. By starting from an initial guess, the method iteratively refines this guess using the function and its derivative, quickly converging to a root where the function value is zero.
  Newton’s method makes use of the following idea to approximate the solutions of [image: f(x)=0].
 By sketching a graph of [image: f], we can estimate a root of [image: f(x)=0]. Let’s call this estimate [image: x_0]. We then draw the tangent line to [image: f] at [image: x_0]. If [image: f^{\prime}(x_0)\ne 0], this tangent line intersects the [image: x]-axis at some point [image: (x_1,0)].
 Now let [image: x_1] be the next approximation to the actual root. Typically, [image: x_1] is closer than [image: x_0] to an actual root. Next we draw the tangent line to [image: f] at [image: x_1]. If [image: f^{\prime}(x_1)\ne 0], this tangent line also intersects the [image: x]-axis, producing another approximation, [image: x_2].
 We continue in this way, deriving a list of approximations: [image: x_0, x_1, x_2, \cdots]. Typically, the numbers [image: x_0,x_1,x_2, \cdots] quickly approach an actual root [image: x*], as shown in the following figure.
 [image: This function f(x) is drawn with points (x0, f(x0)), (x1, f(x1)), and (x2, f(x2)) marked on the function. From (x0, f(x0)), a tangent line is drawn, and it strikes the x axis at x1. From (x0, f(x0)), a tangent line is drawn, and it strikes the x axis at x2. If a tangent line were drawn from (x2, f(x2)), it appears that it would come very close to x*, which is the actual root. Each tangent line drawn in this order appears to get closer and closer to x*.]Figure 1. The approximations [image: x_0,x_1,x_2, \cdots] approach the actual root [image: x*]. The approximations are derived by looking at tangent lines to the graph of [image: f]. Now let’s look at how to calculate the approximations [image: x_0,x_1,x_2, \cdots]. If [image: x_0] is our first approximation, the approximation [image: x_1] is defined by letting [image: (x_1,0)] be the [image: x]-intercept of the tangent line to [image: f] at [image: x_0]. The equation of this tangent line is given by
 [image: y=f(x_0)+f^{\prime}(x_0)(x-x_0)]
 Therefore, [image: x_1] must satisfy
 [image: f(x_0)+f^{\prime}(x_0)(x_1-x_0)=0]
 Solving this equation for [image: x_1], we conclude that
 [image: x_1=x_0-\dfrac{f(x_0)}{f^{\prime}(x_0)}]
 Similarly, the point [image: (x_2,0)] is the [image: x]-intercept of the tangent line to [image: f] at [image: x_1]. Therefore, [image: x_2] satisfies the equation
 [image: x_2=x_1-\dfrac{f(x_1)}{f^{\prime}(x_1)}]
 In general, for [image: n>0, \, x_n] satisfies
 [image: x_n=x_{n-1}-\dfrac{f(x_{n-1})}{f^{\prime}(x_{n-1})}]
 Next we see how to make use of this technique to approximate the root of the polynomial [image: f(x)=x^3-3x+1].
 Use Newton’s method to approximate a root of [image: f(x)=x^3-3x+1] in the interval [image: [1,2]]. Let [image: x_0=2] and find [image: x_1,x_2,x_3,x_4], and [image: x_5].
 From Figure 2, we see that [image: f] has one root over the interval [image: (1,2)]. Therefore [image: x_0=2] seems like a reasonable first approximation.
 To find the next approximation, we use the equation we found for [image: x_n]. Since [image: f(x)=x^3-3x+1], the derivative is [image: f^{\prime}(x)=3x^2-3]. Using the equation for [image: x_n] with [image: n=1] (and a calculator that displays 10 digits), we obtain
 [image: x_1=x_0-\dfrac{f(x_0)}{f^{\prime}(x_0)}=2-\dfrac{f(2)}{f^{\prime}(2)}=2-\dfrac{3}{9} \approx 1.666666667]
 To find the next approximation, [image: x_2], we use (Figure) with [image: n=2] and the value of [image: x_1] stored on the calculator. We find that
 [image: x_2=x_1-\dfrac{f(x_1)}{f^{\prime}(x_1)} \approx 1.548611111]
 Continuing in this way, we obtain the following results:
 [image: \begin{array}{l} x_1 \approx 1.666666667 \\ x_2 \approx 1.548611111 \\ x_3 \approx 1.532390162 \\ x_4 \approx 1.532088989 \\ x_5 \approx 1.532088886 \\ x_6 \approx 1.532088886 \end{array}]
 We note that we obtained the same value for [image: x_5] and [image: x_6]. Therefore, any subsequent application of Newton’s method will most likely give the same value for [image: x_n].
 [image: The function f(x) = x3 – 3x + 1 is drawn. It has roots between −2 and −1, 0 and 1, and 1 and 2.]Figure 2. The function [image: f(x)=x^3-3x+1] has one root over the interval [image: [1,2]].  Watch the following video to see the worked solution to the example above.
 https://youtube.com/watch?v=6f9WGeq3oj0%3Fcontrols%3D0%26start%3D115%26end%3D485%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.9 Newton’s Method” here (opens in new window).
  Letting [image: x_0=0], use Newton’s method to approximate the root of [image: f(x)=x^3-3x+1] over the interval [image: [0,1]] by calculating [image: x_1] and [image: x_2].
 Hint 
 Use the equation for [image: x_n].
  Show Solution 
 [image: x_1 \approx 0.33333333, \, x_2 \approx 0.347222222]
   Newton’s method can also be used to approximate square roots. Here we show how to approximate [image: \sqrt{2}]. This method can be modified to approximate the square root of any positive number.
 Use Newton’s method to approximate [image: \sqrt{2}]. Let [image: f(x)=x^2-2], let [image: x_0=2], and calculate [image: x_1,x_2,x_3,x_4,x_5].
 
 Hint Since [image: f(x)=x^2-2] has a zero at [image: \sqrt{2}], the initial value [image: x_0=2] is a reasonable choice to approximate [image: \sqrt{2}].
 Show Solution 
 For [image: f(x)=x^2-2, \, f^{\prime}(x)=2x]. From the equation for [image: x_n], we know that
 [image: \begin{array}{ll} x_n & = x_{n-1}-\frac{f(x_{n-1})}{f^{\prime}(x_{n-1})} \\ & = x_{n-1}-\frac{(x_{n-1})^2-2}{2x_{n-1}} \\ & = \frac{1}{2}x_{n-1}+\frac{1}{x_{n-1}} \\ & = \frac{1}{2}(x_{n-1}+\frac{2}{x_{n-1}}) \end{array}]
 Therefore,
 [image: \begin{array}{l} x_1 = \frac{1}{2}(x_0+\frac{2}{x_0})=\frac{1}{2}(2+\frac{2}{2})=1.5 \\ x_2 = \frac{1}{2}(x_1+\frac{2}{x_1})=\frac{1}{2}(1.5+\frac{2}{1.5})\approx 1.416666667 \end{array}]
 Continuing in this way, we find that
 [image: \begin{array}{l} x_1=1.5 \\ x_2 \approx 1.416666667 \\ x_3 \approx 1.414215686 \\ x_4 \approx 1.414213562 \\ x_5 \approx 1.414213562 \end{array}]
 Since we obtained the same value for [image: x_4] and [image: x_5], it is unlikely that the value [image: x_n] will change on any subsequent application of Newton’s method. We conclude that [image: \sqrt{2} \approx 1.414213562].
 [image: The function y = x2 – 2 is drawn. A dashed line comes up from x0 = 2, and a tangent line is drawn down from there. It touches x1 = 1.5, which is near x* = the square root of 2.]Figure 3. We can use Newton’s method to find [image: \sqrt{2}].   [ohm_question hide_question_numbers=1]223631[/ohm_question]
  When using Newton’s method, each approximation after the initial guess is defined in terms of the previous approximation by using the same formula. In particular, by defining the function [image: F(x)=x-\left[\frac{f(x)}{f^{\prime}(x)}\right]], we can rewrite the equation for[image: x_n] as [image: x_n=F(x_{n-1})]. This type of process, where each [image: x_n] is defined in terms of [image: x_{n-1}] by repeating the same function, is an example of an iterative process. Shortly, we examine other iterative processes. First, let’s look at the reasons why Newton’s method could fail to find a root.
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				Approximating with Newton’s Method Cont.
 Failures of Newton’s Method
 Typically, Newton’s method is used to find roots fairly quickly. However, things can go wrong. Some reasons why Newton’s method might fail include the following:
 	At one of the approximations [image: x_n], the derivative [image: f^{\prime}] is zero at [image: x_n], but [image: f(x_n) \ne 0]. As a result, the tangent line of [image: f] at [image: x_n] does not intersect the [image: x]-axis. Therefore, we cannot continue the iterative process.
 	The approximations [image: x_0,x_1,x_2, \cdots] may approach a different root. If the function [image: f] has more than one root, it is possible that our approximations do not approach the one for which we are looking, but approach a different root (see Figure 4). This event most often occurs when we do not choose the approximation [image: x_0] close enough to the desired root.
 	The approximations may fail to approach a root entirely. In the example below, we provide an example of a function and an initial guess [image: x_0] such that the successive approximations never approach a root because the successive approximations continue to alternate back and forth between two values.
 
 [image: A function is drawn with two roots, labeled root sought and root found. A point x0 is chosen such that when the tangent of x0 is taken, even though it is nearer to the root sought, the tangent points to the root found.]Figure 4. If the initial guess [image: x_0] is too far from the root sought, it may lead to approximations that approach a different root. Consider the function [image: f(x)=x^3-2x+2]. Let [image: x_0=0]. Show that the sequence [image: x_1,x_2, \cdots] fails to approach a root of [image: f].
 Show Solution 
 For [image: f(x)=x^3-2x+2], the derivative is [image: f^{\prime}(x)=3x^2-2]. Therefore,
 [image: x_1=x_0-\frac{f(x_0)}{f^{\prime}(x_0)}=0-\frac{f(0)}{f^{\prime}(0)}=-\frac{2}{-2}=1].
 In the next step,
 [image: x_2=x_1-\frac{f(x_1)}{f^{\prime}(x_1)}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{1}{1}=0].
 Consequently, the numbers [image: x_0,x_1,x_2, \cdots] continue to bounce back and forth between 0 and 1 and never get closer to the root of [image: f] which is over the interval [image: [-2,-1]] (see Figure 5). Fortunately, if we choose an initial approximation [image: x_0] closer to the actual root, we can avoid this situation.
 [image: The function f(x) = x3 – 2x + 2 is drawn, which has a root between −2 and −1. The tangent from x = 0 goes to x = 1, and the tangent from x = 1 goes to x = 0.]Figure 5. The approximations continue to alternate between 0 and 1 and never approach the root of [image: f]. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=6f9WGeq3oj0%3Fcontrols%3D0%26start%3D775%26end%3D911%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.9 Newton’s Method” here (opens in new window).
  For [image: f(x)=x^3-2x+2], let [image: x_0=-1.5] and find [image: x_1] and [image: x_2].
 Hint 
 Use the equation for [image: x_n].
  Show Solution 
 [image: x_1 \approx -1.842105263, \, x_2 \approx -1.772826920]
   From the example above, we see that Newton’s method does not always work. However, when it does work, the sequence of approximations approaches the root very quickly. Discussions of how quickly the sequence of approximations approach a root found using Newton’s method are included in texts on numerical analysis.
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				Other Iterative Processes
 As mentioned earlier, Newton’s method is a type of iterative process. We now look at an example of a different type of iterative process.
 Consider a function [image: F] and an initial number [image: x_0]. Define the subsequent numbers [image: x_n] by the formula [image: x_n=F(x_{n-1})].
 This process is an iterative process that creates a list of numbers [image: x_0,x_1,x_2, \cdots ,x_n, \cdots]. This list of numbers may approach a finite number [image: x^{*}] as [image: n] gets larger, or it may not.
   In the next example, we see an example of a function [image: F] and an initial guess [image: x_0] such that the resulting list of numbers approaches a finite value.
 Let [image: F(x)=\frac{1}{2}x+4] and let [image: x_0=0]. For all [image: n \ge 1], let [image: x_n=F(x_{n-1})]. Find the values [image: x_1,x_2,x_3,x_4,x_5]. Make a conjecture about what happens to this list of numbers [image: x_1,x_2,x_3, \cdots,x_n, \cdots] as [image: n\to \infty]. If the list of numbers [image: x_1,x_2,x_3, \cdots] approaches a finite number [image: x^*], then [image: x^*] satisfies [image: x^*=F(x^*)], and [image: x^*] is called a fixed point of [image: F].
 Show Solution 
 If [image: x_0=0], then
 [image: \begin{array}{l} x_1=\frac{1}{2}(0)+4=4 \\ x_2=\frac{1}{2}(4)+4=6 \\ x_3=\frac{1}{2}(6)+4=7 \\ x_4=\frac{1}{2}(7)+4=7.5 \\ x_5=\frac{1}{2}(7.5)+4=7.75 \\ x_6=\frac{1}{2}(7.75)+4=7.875 \\ x_7=\frac{1}{2}(7.875)+4=7.9375 \\ x_8=\frac{1}{2}(7.9375)+4=7.96875 \\ x_9=\frac{1}{2}(7.96875)+4=7.984375 \end{array}]
 From this list, we conjecture that the values [image: x_n] approach 8.
 Figure 6 provides a graphical argument that the values approach 8 as [image: n\to \infty].
 [image: The function F(x) = (1/2)x + 4 is graphed along with y = x. From x0, which appears to be at the origin, a line is drawn to the function F(x) at x1 = F(x0). Then a line is drawn to the right from here to the line y = x, at which point a line is drawn up to x2 = F(x1). Then a line is drawn to the right from here to the line y = x, at which point a line is drawn up to x3 = F(x2). Continuing this process would converge on the two lines’ intersection point at x* = 8.]Figure 6. This iterative process approaches the value [image: x^*=8]. Starting at the point [image: (x_0,x_0)], we draw a vertical line to the point [image: (x_0,F(x_0))]. The next number in our list is [image: x_1=F(x_0)]. We use [image: x_1] to calculate [image: x_2]. Therefore, we draw a horizontal line connecting [image: (x_0,x_1)] to the point [image: (x_1,x_1)] on the line [image: y=x], and then draw a vertical line connecting [image: (x_1,x_1)] to the point [image: (x_1,F(x_1))]. The output [image: F(x_1)] becomes [image: x_2].
 Continuing in this way, we could create an infinite number of line segments. These line segments are trapped between the lines [image: F(x)=\frac{x}{2}+4] and [image: y=x]. The line segments get closer to the intersection point of these two lines, which occurs when [image: x=F(x)].
 Solving the equation [image: x=\frac{x}{2}+4], we conclude they intersect at [image: x=8]. Therefore, our graphical evidence agrees with our numerical evidence that the list of numbers [image: x_0,x_1,x_2, \cdots] approaches [image: x^*=8] as [image: n\to \infty].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=6f9WGeq3oj0%3Fcontrols%3D0%26start%3D926%26end%3D1123%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.9 Newton’s Method” here (opens in new window).
  Consider the function [image: F(x)=\frac{1}{3}x+6]. Let [image: x_0=0] and let [image: x_n=F(x_{n-1})] for [image: n \ge 2]. Find [image: x_1,x_2,x_3,x_4,x_5]. Make a conjecture about what happens to the list of numbers [image: x_1,x_2,x_3, \cdots, x_n, \cdots] as [image: n\to \infty].
 Hint 
 Consider the point where the lines [image: y=x] and [image: y=F(x)] intersect.
  Show Solution 
 [image: x_1=6, \, x_2=8, \, x_3=\frac{26}{3}, \, x_4=\frac{80}{9}, \, x_5=\frac{242}{27}; \, x^*=9]
   [ohm_question hide_question_numbers=1]223596[/ohm_question]
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				 	Explain how Newton’s method uses repetition to find roots of equations
 	Recognize when Newton’s method does not work
 	Apply methods that repeat steps to solve different types of mathematical problems
 
  Iterative Processes and Chaos
 Iterative processes can yield some very interesting behavior. In this section, we have seen several examples of iterative processes that converge to a fixed point. We also saw in the example where Newton’s method fails that the iterative process bounced back and forth between two values. We call this kind of behavior a 2-cycle. Iterative processes can converge to cycles with various periodicities, such as 2-cycles, 4-cycles (where the iterative process repeats a sequence of four values), 8-cycles, and so on.
 Some iterative processes yield what mathematicians call chaos. In this case, the iterative process jumps from value to value in a seemingly random fashion and never converges or settles into a cycle. Although a complete exploration of chaos is beyond the scope of this text, in this project we look at one of the key properties of a chaotic iterative process: sensitive dependence on initial conditions. This property refers to the concept that small changes in initial conditions can generate drastically different behavior in the iterative process.
 Probably the best-known example of chaos is the Mandelbrot set (see Figure 7), named after Benoit Mandelbrot (1924–2010), who investigated its properties and helped popularize the field of chaos theory. The Mandelbrot set is usually generated by computer and shows fascinating details on enlargement, including self-replication of the set. Several colorized versions of the set have been shown in museums and can be found online and in popular books on the subject.
 [image: A very complicated and organic looking fractal.]Figure 7. The Mandelbrot set is a well-known example of a set of points generated by the iterative chaotic behavior of a relatively simple function. 
 In this project we use the logistic map
 [image: f(x)=rx(1-x)], where [image: x\in [0,1]] and [image: r>0]
  
 as the function in our iterative process. The logistic map is a deceptively simple function; but, depending on the value of [image: r], the resulting iterative process displays some very interesting behavior. It can lead to fixed points, cycles, and even chaos.
 To visualize the long-term behavior of the iterative process associated with the logistic map, we will use a tool called a cobweb diagram. As we did with the iterative process we examined earlier in this section, we first draw a vertical line from the point [image: (x_0,0)] to the point [image: (x_0,f(x_0))=(x_0,x_1)]. We then draw a horizontal line from that point to the point [image: (x_1,x_1)], then draw a vertical line to [image: (x_1,f(x_1))=(x_1,x_2)], and continue the process until the long-term behavior of the system becomes apparent. Figure 8 shows the long-term behavior of the logistic map when [image: r=3.55] and [image: x_0=0.2]. (The first 100 iterations are not plotted.) The long-term behavior of this iterative process is an 8-cycle.
 [image: In the first quadrant, f(x) = 3.55x(1 – x) is graphed as is y = x. From some point on the x axis, a line is drawn up to the line y = x, at which point it turns to be horizontal and continues until it touches the outside edge of f(x), at which point it turns again to be vertical until it each the line y = x. This process continues a number of times and creates an interesting series of boxes.]Figure 8. A cobweb diagram for [image: f(x)=3.55x(1-x)] is presented here. The sequence of values results in an 8-cycle. 	Let [image: r=0.5] and choose [image: x_0=0.2]. Either by hand or by using a computer, calculate the first 10 values in the sequence. Does the sequence appear to converge? If so, to what value? Does it result in a cycle? If so, what kind of cycle (for example, 2-cycle, 4-cycle)?
 Show Answer For [image: r = 0.5] and [image: x₀ = 0.2]:
 [image: \begin{array}{rcl}<br> x_1 & = & 0.5 \times 0.2 \times (1 - 0.2) = 0.08 \\<br> x_2 & = & 0.5 \times 0.08 \times (1 - 0.08) = 0.0368 \\<br> x_3 & = & 0.5 \times 0.0368 \times (1 - 0.0368) \approx 0.0177 \\<br> x_4 & \approx & 0.0087 \\<br> x_5 & \approx & 0.0043 \\<br> x_6 & \approx & 0.0021 \\<br> x_7 & \approx & 0.0011 \\<br> x_8 & \approx & 0.0005 \\<br> x_9 & \approx & 0.0003 \\<br> x_{10} & \approx & 0.0001 \\<br> \end{array}]
 The sequence appears to converge to [image: 0].
 It does not result in a cycle. Instead, it exhibits monotonic convergence to a fixed point ([image: 0] in this case).
  
 	What happens when [image: r=2]?
 Show Answer For [image: r = 2]:
 The sequence converges to [image: 0.5]. 
  
 	For [image: r=3.2] and [image: r=3.5], calculate the first [image: 100] sequence values.  What is the long-term behavior in each of these cases?
 Show Answer For [image: r = 3.2]:
 The sequence converges to a single value approximately [image: 0.7994].
 For [image: r = 3.5]:
 The sequence settles into a 4-cycle, alternating between approximately [image: 0.8270, 0.5009, 0.8746], and [image: 0.3827].
 
 
 	Now let [image: r=4]. Calculate the first [image: 100] sequence values. What is the long-term behavior in this case? 
 Show Answer For [image: r = 4] and [image: x₀ = 0.2]:
 The sequence exhibits chaotic behavior. It doesn’t settle into any discernible pattern and appears to jump around unpredictably within the interval [image: [0,1]].
  
 	Repeat the process for [image: r=4], but let [image: x_0=0.201]. How does this behavior compare with the behavior for [image: x_0=0.2]? 
 Show Answer For [image: r = 4] and [image: x₀ = 0.201]:
 The sequence also exhibits chaotic behavior, but the specific sequence of values is very different from the one with [image: x₀ = 0.2]. This demonstrates sensitive dependence on initial conditions, a key characteristic of chaos.
 After a few iterations, the sequences for [image: x₀ = 0.2] and [image: x₀ = 0.201] diverge significantly, despite starting very close to each other. This illustrates how small changes in initial conditions can lead to drastically different outcomes in chaotic systems.
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				 	Understand indefinite integrals and learn how to find basic antiderivatives for functions
 	Use the rule for integrating functions raised to a power
 	Use antidifferentiation to solve simple initial-value problems
 
  Finding the Antiderivative
 At this point, we have seen how to calculate derivatives of many functions and have been introduced to a variety of their applications. We now ask a question that turns this process around: Given a function [image: f], how do we find a function with the derivative [image: f] and why would we be interested in such a function?
 We answer the first part of this question by defining antiderivatives. The antiderivative of a function [image: f] is simply a function whose derivative is [image: f]. But why is this concept important?
 Antiderivatives are essential for solving problems where you need to reverse the process of differentiation. For instance, consider rectilinear motion: If you know an object’s position function [image: s(t)], then its velocity [image: v(t)] is the derivative [image: s′(t)]. If you have the acceleration [image: a(t)] which is [image: v′(t)], and need to find the velocity, you would look for an antiderivative of [image: a(t)].
 This need to find antiderivatives is not limited to physics; it arises in various fields and applications, prompting the development of methods to find antiderivatives for complex functions. These methods and more are covered in detail under the topic ‘Techniques of Integration’ in the second volume of this text.
 The Reverse of Differentiation
 At this point, we know how to find derivatives of various functions. We now ask the opposite question. Given a function [image: f], how can we find a function with derivative [image: f]? If we can find a function [image: F] with derivative [image: f], we call [image: F] an antiderivative of [image: f].
 antiderivative
 
 A function [image: F] is an antiderivative of the function [image: f] if
 [image: F^{\prime}(x)=f(x)]
  
 for all [image: x] in the domain of [image: f].
  Consider the function [image: f(x)=2x].
 Knowing the power rule of differentiation, we conclude that [image: F(x)=x^2] is an antiderivative of [image: f] since [image: F^{\prime}(x)=2x].
 Are there any other antiderivatives of [image: f]?
 Yes; since the derivative of any constant [image: C] is zero, [image: x^2+C] is also an antiderivative of [image: 2x]. Therefore, [image: x^2+5] and [image: x^{2}-\sqrt{2}] are also antiderivatives.
 Are there any others that are not of the form [image: x^2+C] for some constant [image: C]?
 The answer is no.
  From Corollary 2 of the Mean Value Theorem, we know that if [image: F] and [image: G] are differentiable functions such that [image: F^{\prime}(x)=G^{\prime}(x)], then [image: F(x)-G(x)=C] for some constant [image: C]. This fact leads to the following important theorem.
 General Form of an Antiderivative
 Let [image: F] be an antiderivative of [image: f] over an interval [image: I]. Then,
 	for each constant [image: C], the function [image: F(x)+C] is also an antiderivative of [image: f] over [image: I];
 	if [image: G] is an antiderivative of [image: f] over [image: I], there is a constant [image: C] for which [image: G(x)=F(x)+C] over [image: I].
 
 In other words, the most general form of the antiderivative of [image: f] over [image: I] is [image: F(x)+C].
  We use this fact and our knowledge of derivatives to find all the antiderivatives for several functions.
 For each of the following functions, find all antiderivatives.
 	[image: f(x)=3x^2]
 	[image: f(x)=\dfrac{1}{x}]
 	[image: f(x)= \cos x]
 	[image: f(x)=e^x]
 
 Show Solution 
 a. Because
 [image: \frac{d}{dx}(x^3)=3x^2]
 then [image: F(x)=x^3] is an antiderivative of [image: 3x^2]. Therefore, every antiderivative of [image: 3x^2] is of the form [image: x^3+C] for some constant [image: C], and every function of the form [image: x^3+C] is an antiderivative of [image: 3x^2].
 b. Let [image: f(x)=\ln |x|]. For [image: x>0, \, f(x)=\ln (x)] and
 [image: \frac{d}{dx}(\ln x)=\dfrac{1}{x}]
 For [image: x<0, \, f(x)=\ln (−x)] and
 [image: \frac{d}{dx}(\ln (−x))=-\dfrac{1}{−x}=\dfrac{1}{x}]
 Therefore,
 [image: \frac{d}{dx}(\ln |x|)=\dfrac{1}{x}]
 Thus, [image: F(x)=\ln |x|] is an antiderivative of [image: \frac{1}{x}]. Therefore, every antiderivative of [image: \frac{1}{x}] is of the form [image: \ln |x|+C] for some constant [image: C] and every function of the form [image: \ln |x|+C] is an antiderivative of [image: \frac{1}{x}].
 c. We have
 [image: \frac{d}{dx}(\sin x)= \cos x],
 so [image: F(x)= \sin x] is an antiderivative of [image: \cos x]. Therefore, every antiderivative of [image: \cos x] is of the form [image: \sin x+C] for some constant [image: C] and every function of the form [image: \sin x+C] is an antiderivative of [image: \cos x].
 d. Since
 [image: \frac{d}{dx}(e^x)=e^x],
 then [image: F(x)=e^x] is an antiderivative of [image: e^x]. Therefore, every antiderivative of [image: e^x] is of the form [image: e^x+C] for some constant [image: C] and every function of the form [image: e^x+C] is an antiderivative of [image: e^x].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=j81IZAEfwhI%3Fcontrols%3D0%26start%3D47%26end%3D158%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.10 Antiderivatives” here (opens in new window).
  [ohm_question hide_question_numbers=1]5318[/ohm_question]
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				Indefinite Integrals
 We now look at the formal notation used to represent antiderivatives and examine some of their properties. These properties allow us to find antiderivatives of more complicated functions.
 Given a function [image: f], we use the notation [image: f^{\prime}(x)] or [image: \frac{df}{dx}] to denote the derivative of [image: f]. Here we introduce notation for antiderivatives.
 If [image: F] is an antiderivative of [image: f], we say that [image: F(x)+C] is the most general antiderivative of [image: f] and write
 [image: \displaystyle\int f(x) dx=F(x)+C]
 The symbol [image: \displaystyle\int] is called an integral sign, and [image: \displaystyle\int f(x) dx] is called the indefinite integral of [image: f].
 indefinite integral
 Given a function [image: f], the indefinite integral of [image: f], denoted

 [image: \displaystyle\int f(x) dx],
  
 is the most general antiderivative of [image: f]. If [image: F] is an antiderivative of [image: f], then
 [image: \displaystyle\int f(x) dx=F(x)+C]
  
 The expression [image: f(x)] is called the integrand and the variable [image: x] is the variable of integration.
  Given the terminology introduced in this definition, the act of finding the antiderivatives of a function [image: f] is usually referred to as integrating [image: f].
 For a function [image: f] and an antiderivative [image: F], the functions [image: F(x)+C], where [image: C] is any real number, is often referred to as the family of antiderivatives of [image: f].
 Since [image: x^2] is an antiderivative of [image: 2x] and any antiderivative of [image: 2x] is of the form [image: x^2+C], we write
 [image: \displaystyle\int 2x dx=x^2+C]
 The collection of all functions of the form [image: x^2+C], where [image: C] is any real number, is known as the family of antiderivatives of [image: 2x]. Figure 1 shows a graph of this family of antiderivatives.
 [image: The graphs for y = x2 + 2, y = x2 + 1, y = x2, y = x2 − 1, and y = x2 − 2 are shown.]Figure 1. The family of antiderivatives of [image: 2x] consists of all functions of the form [image: x^2+C], where [image: C] is any real number. 
  For some functions, evaluating indefinite integrals follows directly from properties of derivatives.
 For [image: n \ne −1],
 [image: \displaystyle\int x^n dx=\dfrac{x^{n+1}}{n+1}+C],
  
 which comes directly from
 [image: \frac{d}{dx}\left(\dfrac{x^{n+1}}{n+1}\right)=(n+1)\dfrac{x^n}{n+1}=x^n]
  This fact is known as the power rule for integrals.
 power rule for integrals
 For [image: n \ne −1],
 [image: \displaystyle\int x^n dx=\dfrac{x^{n+1}}{n+1}+C]
  Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the indefinite integrals for several common functions. 
 Integration Formulas 	Differentiation Formula 	Indefinite Integral 
  	[image: \frac{d}{dx}(k)=0] 	[image: \displaystyle\int kdx=\displaystyle\int kx^0 dx=kx+C] 
 	[image: \frac{d}{dx}(x^n)=nx^{n-1}] 	[image: \displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}+C] for [image: n\ne −1] 
 	[image: \frac{d}{dx}(\ln |x|)=\frac{1}{x}] 	[image: \displaystyle\int \frac{1}{x}dx=\ln |x|+C] 
 	[image: \frac{d}{dx}(e^x)=e^x] 	[image: \displaystyle\int e^x dx=e^x+C] 
 	[image: \frac{d}{dx}(\sin x)= \cos x] 	[image: \displaystyle\int \cos x dx= \sin x+C] 
 	[image: \frac{d}{dx}(\cos x)=− \sin x] 	[image: \displaystyle\int \sin x dx=− \cos x+C] 
 	[image: \frac{d}{dx}(\tan x)= \sec^2 x] 	[image: \displaystyle\int \sec^2 x dx= \tan x+C] 
 	[image: \frac{d}{dx}(\csc x)=−\csc x \cot x] 	[image: \displaystyle\int \csc x \cot x dx=−\csc x+C] 
 	[image: \frac{d}{dx}(\sec x)= \sec x \tan x] 	[image: \displaystyle\int \sec x \tan x dx= \sec x+C] 
 	[image: \frac{d}{dx}(\cot x)=−\csc^2 x] 	[image: \displaystyle\int \csc^2 x dx=−\cot x+C] 
 	[image: \frac{d}{dx}( \sin^{-1} x)=\frac{1}{\sqrt{1-x^2}}] 	[image: \displaystyle\int \frac{1}{\sqrt{1-x^2}} dx= \sin^{-1} x+C] 
 	[image: \frac{d}{dx}(\tan^{-1} x)=\frac{1}{1+x^2}] 	[image: \displaystyle\int \frac{1}{1+x^2} dx= \tan^{-1} x+C] 
 	[image: \frac{d}{dx}(\sec^{-1} |x|)=\frac{1}{x\sqrt{x^2-1}}] 	[image: \displaystyle\int \frac{1}{x\sqrt{x^2-1}} dx= \sec^{-1} |x|+C] 
  
 From the definition of indefinite integral of [image: f], we know
 [image: \displaystyle\int f(x) dx=F(x)+C]
 if and only if [image: F] is an antiderivative of [image: f]. Therefore, when claiming that
 [image: \displaystyle\int f(x) dx=F(x)+C]
 it is important to check whether this statement is correct by verifying that [image: F^{\prime}(x)=f(x)].
  Each of the following statements is of the form [image: \displaystyle\int f(x) dx=F(x)+C]. Verify that each statement is correct by showing that [image: F^{\prime}(x)=f(x)].
 	[image: \displaystyle\int (x+e^x) dx=\dfrac{x^2}{2}+e^x+C]
 	[image: \displaystyle\int xe^xdx=xe^x-e^x+C]
 
 Show Solution 
 	Since [image: \frac{d}{dx}\left(\frac{x^2}{2}+e^x+C\right)=x+e^x],
 the statement
 [image: \displaystyle\int (x+e^x)dx=\frac{x^2}{2}+e^x+C]
 is correct.
 Note that we are verifying an indefinite integral for a sum. Furthermore, [image: \frac{x^2}{2}] and [image: e^x] are antiderivatives of [image: x] and [image: e^x], respectively, and the sum of the antiderivatives is an antiderivative of the sum. We discuss this fact again later in this section.
 
 	Using the product rule, we see that [image: \frac{d}{dx}(xe^x-e^x+C)=e^x+xe^x-e^x=xe^x]
 Therefore, the statement
 [image: \displaystyle\int xe^x dx=xe^x-e^x+C]
 is correct.
 Note that we are verifying an indefinite integral for a product. The antiderivative [image: xe^x-e^x] is not a product of the antiderivatives. Furthermore, the product of antiderivatives, [image: x^2 e^x/2] is not an antiderivative of [image: xe^x] since
 [image: \frac{d}{dx}\left(\frac{x^2e^x}{2}\right)=xe^x+\frac{x^2e^x}{2} \ne xe^x].
 In general, the product of antiderivatives is not an antiderivative of a product.
 
 
   Earlier, we listed the indefinite integrals for many elementary functions. Let’s now turn our attention to evaluating indefinite integrals for more complicated functions.
 For example, consider finding an antiderivative of a sum [image: f+g]. In the last example. we showed that an antiderivative of the sum [image: x+e^x] is given by the sum [image: (\frac{x^2}{2})+e^x]—that is, an antiderivative of a sum is given by a sum of antiderivatives. This result was not specific to this example.
 In general, if [image: F] and [image: G] are antiderivatives of any functions [image: f] and [image: g], respectively, then
 [image: \frac{d}{dx}(F(x)+G(x))=F^{\prime}(x)+G^{\prime}(x)=f(x)+g(x)]
 Therefore, [image: F(x)+G(x)] is an antiderivative of [image: f(x)+g(x)] and we have
 [image: \displaystyle\int (f(x)+g(x)) dx=F(x)+G(x)+C]
 Similarly,
 [image: \displaystyle\int (f(x)-g(x)) dx=F(x)-G(x)+C]
 In addition, consider the task of finding an antiderivative of [image: kf(x)], where [image: k] is any real number. Since
 [image: \frac{d}{dx}(kf(x))=k\frac{d}{dx}F(x)=kF^{\prime}(x)]
 for any real number [image: k], we conclude that
 [image: \displaystyle\int kf(x) dx=kF(x)+C]
 These properties are summarized next.
 properties of indefinite integrals
 Let [image: F] and [image: G] be antiderivatives of [image: f] and [image: g], respectively, and let [image: k] be any real number.
  
 Sums and Differences
 [image: \displaystyle\int (f(x) \pm g(x)) dx=F(x) \pm G(x)+C]
  
 Constant Multiples
 [image: \displaystyle\int kf(x) dx=kF(x)+C]
  From this theorem, we can evaluate any integral involving a sum, difference, or constant multiple of functions with antiderivatives that are known. Evaluating integrals involving products, quotients, or compositions is more complicated. We look at and address integrals involving these more complicated functions later on in the text. In the next example, we examine how to use this theorem to calculate the indefinite integrals of several functions.
 Evaluate each of the following indefinite integrals:
 	[image: \displaystyle\int (5x^3-7x^2+3x+4) dx]
 	[image: \displaystyle\int \frac{x^2+4\sqrt[3]{x}}{x} dx]
 	[image: \displaystyle\int \frac{4}{1+x^2} dx]
 	[image: \displaystyle\int \tan x \cos x dx]
 
 Show Solution 
 	Using the properties of indefinite integrals, we can integrate each of the four terms in the integrand separately. We obtain [image: \displaystyle\int (5x^3-7x^2+3x+4) dx=\displaystyle\int 5x^3 dx-\displaystyle\int 7x^2 dx+\displaystyle\int 3x dx+\displaystyle\int 4 dx]
 From the Constant Multiples property of indefinite integrals, each coefficient can be written in front of the integral sign, which gives
 [image: \displaystyle\int 5x^3 dx-\displaystyle\int 7x^2 dx+\displaystyle\int 3x dx+\displaystyle\int 4 dx=5\displaystyle\int x^3 dx-7\displaystyle\int x^2 dx+3\displaystyle\int x dx+4\displaystyle\int 1 dx]
 Using the power rule for integrals, we conclude that
 [image: \displaystyle\int (5x^3-7x^2+3x+4) dx=\frac{5}{4}x^4-\frac{7}{3}x^3+\frac{3}{2}x^2+4x+C]
 
 	Rewrite the integrand as [image: \frac{x^2+4\sqrt[3]{x}}{x}=\frac{x^2}{x}+\frac{4\sqrt[3]{x}}{x}]
 Then, to evaluate the integral, integrate each of these terms separately. Using the power rule, we have
 [image: \begin{array}{ll} \displaystyle\int (x+\frac{4}{x^{2/3}}) dx & =\displaystyle\int x dx+4\displaystyle\int x^{-2/3} dx \\ & =\frac{1}{2}x^2+4\frac{1}{(\frac{-2}{3})+1}x^{(-2/3)+1}+C \\ & =\frac{1}{2}x^2+12x^{1/3}+C \end{array}]
 
 	Using the properties of indefinite integrals, write the integral as [image: 4\displaystyle\int \frac{1}{1+x^2} dx].
 Then, use the fact that [image: \tan^{-1} (x)] is an antiderivative of [image: \frac{1}{1+x^2}] to conclude that
 [image: \displaystyle\int \frac{4}{1+x^2} dx=4 \tan^{-1} (x)+C]
 
 	Rewrite the integrand as [image: \tan x \cos x=\frac{ \sin x}{ \cos x} \cos x= \sin x].
 Therefore,
 [image: \displaystyle\int \tan x \cos x dx=\displaystyle\int \sin x dx=− \cos x+C]
 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=j81IZAEfwhI%3Fcontrols%3D0%26start%3D409%26end%3D641%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.10 Antiderivatives” here (opens in new window).
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		Antiderivatives: Learn It 3

								

	
				Initial-Value Problems
 We look at techniques for integrating a large variety of functions involving products, quotients, and compositions later in the text. Here we turn to one common use for antiderivatives that arises often in many applications: solving differential equations.
 A differential equation is an equation that relates an unknown function and one or more of its derivatives. The equation [image: \frac{dy}{dx}=f(x)] is a simple example of a differential equation.
 Solving this equation means finding a function [image: y] with a derivative [image: f]. Therefore, the solutions of [image: \frac{dy}{dx}] are the antiderivatives of [image: f]. If [image: F] is one antiderivative of [image: f], every function of the form [image: y=F(x)+C] is a solution of that differential equation.
 The solutions of
 [image: \frac{dy}{dx}=6x^2]
 are given by
 [image: y=\displaystyle\int 6x^2 dx=2x^3+C]
  Sometimes we are interested in determining whether a particular solution curve passes through a certain point [image: (x_0,y_0)]—that is, [image: y(x_0)=y_0]. The problem of finding a function [image: y] that satisfies a differential equation [image: \frac{dy}{dx}=f(x)] with the additional condition [image: y(x_0)=y_0] is an example of an initial-value problem. The condition [image: y(x_0)=y_0] is known as an initial condition.
 Looking for a function [image: y] that satisfies the differential equation
 [image: \frac{dy}{dx}=6x^2]
  
 and the initial condition
 [image: y(1)=5]
 is an example of an initial-value problem.
 Since the solutions of the differential equation are [image: y=2x^3+C], to find a function [image: y] that also satisfies the initial condition, we need to find [image: C] such that [image: y(1)=2(1)^3+C=5]. From this equation, we see that [image: C=3], and we conclude that [image: y=2x^3+3] is the solution of this initial-value problem as shown in the following graph.
 [image: The graphs for y = 2x3 + 6, y = 2x3 + 3, y = 2x3, and y = 2x3 − 3 are shown.]Figure 2. Some of the solution curves of the differential equation [image: \frac{dy}{dx}=6x^2] are displayed. The function [image: y=2x^3+3] satisfies the differential equation and the initial condition [image: y(1)=5].  Solve the initial-value problem
 [image: \frac{dy}{dx}= \sin x, \,\,\, y(0)=5]
 Show Solution 
 First we need to solve the differential equation. If [image: \frac{dy}{dx}= \sin x,] then
 [image: y=\displaystyle\int \sin (x) dx=− \cos x+C]
 Next we need to look for a solution [image: y] that satisfies the initial condition. The initial condition [image: y(0)=5] means we need a constant [image: C] such that [image: − \cos x+C=5]. Therefore,
 [image: C=5+ \cos (0)=6]
 The solution of the initial-value problem is [image: y=− \cos x+6].
   Solve the initial value problem [image: \frac{dy}{dx}=3x^{-2}, \,\,\, y(1)=2].
 Hint 
 Find all antiderivatives of [image: f(x)=3x^{-2}].
  Show Solution [image: y=-\frac{3}{x}+5]
   Watch the following video to see the worked solution to the two previous examples.
 https://youtube.com/watch?v=j81IZAEfwhI%3Fcontrols%3D0%26start%3D696%26end%3D840%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.10 Antiderivatives” here (opens in new window).
  [ohm_question]5304[/ohm_question]
  Initial-value problems arise in many applications. Next we consider a problem in which a driver applies the brakes in a car. We are interested in how long it takes for the car to stop.
 Recall that the velocity function [image: v(t)] is the derivative of a position function [image: s(t)], and the acceleration [image: a(t)] is the derivative of the velocity function. In earlier examples in the text, we could calculate the velocity from the position and then compute the acceleration from the velocity. In the next example, we work the other way around. Given an acceleration function, we calculate the velocity function. We then use the velocity function to determine the position function.
 A car is traveling at the rate of [image: 88] ft/sec ([image: 60] mph) when the brakes are applied. The car begins decelerating at a constant rate of [image: 15] ft/sec2.
 	How many seconds elapse before the car stops?
 	How far does the car travel during that time?
 
 Show Solution 
 	First we introduce variables for this problem. Let [image: t] be the time (in seconds) after the brakes are first applied. Let [image: a(t)] be the acceleration of the car (in feet per seconds squared) at time [image: t]. Let [image: v(t)] be the velocity of the car (in feet per second) at time [image: t]. Let [image: s(t)] be the car’s position (in feet) beyond the point where the brakes are applied at time [image: t].
 The car is traveling at a rate of 88 ft/sec. Therefore, the initial velocity is [image: v(0)=88] ft/sec. Since the car is decelerating, the acceleration is [image: a(t)=-15] ft/sec2
 The acceleration is the derivative of the velocity,
 [image: v^{\prime}(t)=-15].
 Therefore, we have an initial-value problem to solve:
 [image: v^{\prime}(t)=-15, \, v(0)=88].
 Integrating, we find that
 [image: v(t)=-15t+C].
 Since [image: v(0)=88, \, C=88]. Thus, the velocity function is
 [image: v(t)=-15t+88].
 To find how long it takes for the car to stop, we need to find the time [image: t] such that the velocity is zero. Solving [image: -15t+88=0], we obtain [image: t=\frac{88}{15}] sec.
 
 	To find how far the car travels during this time, we need to find the position of the car after [image: \frac{88}{15}] sec. We know the velocity [image: v(t)] is the derivative of the position [image: s(t)]. Consider the initial position to be [image: s(0)=0]. Therefore, we need to solve the initial-value problem [image: s^{\prime}(t)=-15t+88, \, s(0)=0].
 Integrating, we have
 [image: s(t)=-\frac{15}{2}t^2+88t+C].
 Since [image: s(0)=0], the constant is [image: C=0]. Therefore, the position function is
 [image: s(t)=-\frac{15}{2}t^2+88t].
 After [image: t=\frac{88}{15}] sec, the position is [image: s(\frac{88}{15})\approx 258.133] ft.
 
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=j81IZAEfwhI%3Fcontrols%3D0%26start%3D849%26end%3D1094%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “4.10 Antiderivatives” here (opens in new window).
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		Antiderivatives: Apply It

								

	
				 	Understand indefinite integrals and learn how to find basic antiderivatives for functions
 	Use the rule for integrating functions raised to a power
 	Use antidifferentiation to solve simple initial-value problems
 
  From Theory to Practice: Understanding Antiderivatives and Initial-Value Problems
 In this apply-it task, we’ll explore the fascinating world of antiderivatives and initial-value problems, bridging the gap between abstract mathematical concepts and their real-world applications. You’ll practice finding antiderivatives for various functions, solve initial-value problems, and apply these skills to practical scenarios in physics and engineering. This exercise will not only reinforce your understanding of the reverse process of differentiation but also demonstrate how these concepts are crucial in modeling real-world phenomena. Let’s dive in and discover how antiderivatives can help us unravel the mysteries of motion, growth, and change in our everyday world!
 [ohm_question hide_question_numbers=1]288320[/ohm_question]
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		Introduction to Integration: Background You'll Need 1

								

	
				 	Find the area of rectangles, triangles, trapezoids, and irregular shapes
 
  Find the Area of a Rectangle
 A rectangle has four sides and four right angles. The opposite sides of a rectangle are the same length. We refer to one side of the rectangle as the length, [image: L], and the adjacent side as the width, [image: W].
 [image: A rectangle is shown. Each angle is marked with a square. The top and bottom are labeled L, the sides are labeled W.]
  
 The area of a rectangle is calculated as the product of its length and width. This relationship can be expressed through the formula:
 [image: A=L \times W]
 Consider a rectangular rug that is [image: 2] feet long by [image: 3] feet wide.
 [image: A rectangle made up of 6 squares. The bottom is 2 squares across and marked as 2, the side is 3 squares long and marked as 3.]
 The area of this rug would be:
 [image: A = 2 \text{ ft } \times 3 \text{ ft } = 6 \text{ square feet}]
  area of rectangles
 	Rectangles have four sides and four right [image: \left(\text{90}^ \circ\right)] angles.
 	The lengths of opposite sides are equal.
 	The area, [image: A], of a rectangle is the length times the width. The area will be expressed in square units.
 
 [image: A=L\cdot W]

  The length of a rectangle is [image: 32] meters and the width is [image: 20] meters. Find the area or the rectangle. Show Solution 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A rectangle with the top and bottom labeled 32 m and the sides labeled 20 m] 
 	Step 2. Identify what you are looking for. 	the area of a rectangle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = the area 
 	Step 4. Translate. Write the appropriate formula. Substitute. 	[image: The formula A = L times W. The formula is then written again with 32 substituted in for L and 20 substituted in for W] 
 	Step 5. Solve the equation. 	[image: A=640] 
 	Step 6. Check. 	[image: A\stackrel{?}{=}640]
 [image: 32\cdot 20\stackrel{?}{=}640]
 [image: 640=640\checkmark]  
 	Step 7. Answer the question. 	The area of the rectangle is [image: 640] square meters. 
  
   [ohm_question hide_question_numbers=1]288389[/ohm_question] Find the Area of a Triangle
 We now know how to find the area of a rectangle. We can use this fact to help us visualize the formula for the area of a triangle. In the rectangle below, we’ve labeled the length [image: b] and the width [image: h], so its area is [image: bh].
 [image: A rectangle with the side labeled h and the bottom labeled b. The center says A equals bh.]
  
 We can divide this rectangle into two congruent triangles (see the image below). Triangles that are congruent have identical side lengths and angles, and so their areas are equal. The area of each triangle is one-half the area of the rectangle, or [image: \Large\frac{1}{2}\normalsize bh]. This example helps us see why the formula for the area of a triangle is [image: A=\Large\frac{1}{2}\normalsize bh].
 [image: A rectangle with a diagonal line drawn from the upper left corner to the bottom right corner. The side of the rectangle is labeled h and the bottom is labeled b. Each triangle says one-half bh. To the right of the rectangle, it says "Area of each triangle A = one-half bh".]
  
 To find the area of the triangle, you need to know its base and height. The base is the length of one side of the triangle, usually the side at the bottom. The height is the length of the line that connects the base to the opposite vertex, and makes a [image: \text{90}^ \circ] angle with the base. The image below shows three triangles with the base and height of each marked.
 [image: Three triangles. The triangle on the left is a right triangle. The bottom is labeled b and the side is labeled h. The middle triangle is an acute triangle. The bottom is labeled b. There is a dotted line from the top vertex to the base of the triangle, forming a right angle with the base. That line is labeled h. The triangle on the right is an obtuse triangle. The bottom of the triangle is labeled b. The base has a dotted line extended out and forms a right angle with a dotted line to the top of the triangle. The vertical line is labeled h.]
 area of a triangle
 The area of a triangle is one-half the base, [image: b], times the height, [image: h].
  
 [image: A={\Large\frac{1}{2}}bh]
  
 [image: A triangle, with vertices labeled A, B, and C. The sides are labeled a, b, and c. There is a vertical dotted line from vertex B at the top of the triangle to the base of the triangle, meeting the base at a right angle. The dotted line is labeled h.]
  
  Find the area of a triangle whose base is [image: 11] inches and whose height is [image: 8] inches. Show Solution <tr”>Step 1. Read the problem. Draw the figure and label it with the given information.[image: A triangle with the base labeled 11 in and a dotted vertical line from the top vertex to the base to form a right angle. This dotted line is labeled 8 in.]Step 7. Answer the question.The area is [image: 44] square inches.
 	Step 2. Identify what you are looking for. 	the area of the triangle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = area of the triangle 
 	Step 4.Translate.
 Write the appropriate formula.
 Substitute.
  	[image: The equation A = one half times b times h. The equation is written again with 11 substituted for b and 8 substituted for h.] 
 	Step 5. Solve the equation. 	[image: A=44] square inches. 
 	Step 6. Check.
  	[image: A=\frac{1}{2}bh]
 [image: 44\stackrel{?}{=}\frac{1}{2}(11)8]
 [image: 44=44\quad\checkmark]  
  
   [ohm_question hide_question_numbers=1]288390[/ohm_question]
  Find the Area of a Trapezoid
 A trapezoid is four-sided figure, a quadrilateral, with two sides that are parallel and two sides that are not. The parallel sides are called the bases. We call the length of the smaller base [image: b], and the length of the bigger base [image: B]. The height, [image: h], of a trapezoid is the distance between the two bases as shown in the image below.
 [image: A trapezoid, with the top is labeled b and marked as the smaller base. The bottom is labeled B and marked as the larger base. A vertical line forms a right angle with both bases and is marked as h.]
  
 The formula for the area of a trapezoid is: [image: {\text{Area}}_{\text{trapezoid}}=\Large\frac{1}{2}\normalsize h\left(b+B\right)]. Splitting the trapezoid into two triangles may help us understand the formula. The area of the trapezoid is the sum of the areas of the two triangles.
 [image: A trapezoid, with the top labeled with a small b and the bottom with a big B. A diagonal is drawn in from the upper left corner to the bottom right corner.]
  
 The height of the trapezoid is also the height of each of the two triangles.
 [image: A trapezoid, with the top labeled with a small b and the bottom with a big B. A diagonal is drawn in from the upper left corner to the bottom right corner. The upper right-hand side of the trapezoid forms a blue triangle, with the height of the trapezoid drawn in as a dotted line. The lower left-hand side of the trapezoid forms a red triangle, with the height of the trapezoid drawn in as a dotted line.]
  
 The formula for the area of a trapezoid is
 [image: The formula for the area of a trapezoid, which is one half h times the quantity of lowercase b plus capital B]
  
 If we distribute, we get,
 [image: The top line says area of trapezoid equals one-half times blue little b times h plus one-half times red big B times h. Below this is area of trapezoid equals A sub blue triangle plus A sub red triangle.]
  
 properties of trapezoids
 	A trapezoid has four sides.
 	Two of its sides are parallel and two sides are not.
 	The area, [image: A], of a trapezoid is [image: \text{A}=\Large\frac{1}{2}\normalsize h\left(b+B\right)] .
 
 
  Find the area of a trapezoid whose height is [image: 6] inches and whose bases are [image: 14] and [image: 11] inches. Show Solution 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A trapezoid with one parallel side labeled 11 in and the other labeled 14 in. There is a dotted line between the two parallel sides forming right angles with each of them. It is labeled 6 in.] 
 	Step 2. Identify what you are looking for. 	the area of the trapezoid 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A=\text{the area}] 
 	Step 4.Translate. Write the appropriate formula. Substitute. 	[image: The equation A = one half times h times the quantity of little b plus big b. This formula is written again with 6 substituted in for h, 11 substituted in for little b and 14 substituted in for big b.] 
 	Step 5. Solve the equation. 	[image: A={\Large\frac{1}{2}}\normalsize\cdot 6(25)] [image: A=3(25)] [image: A=75] square inches 
 	Step 6. Check: Is this answer reasonable? 	 [image: \checkmark]  see reasoning below 
  
 If we draw a rectangle around the trapezoid that has the same big base [image: B] and a height [image: h], its area should be greater than that of the trapezoid. If we draw a rectangle inside the trapezoid that has the same little base [image: b] and a height [image: h], its area should be smaller than that of the trapezoid.[image: A table is shown with 3 columns and 4 rows. The first column has an image of a trapezoid with a rectangle drawn around it in red. The larger base of the trapezoid is labeled 14 and is the same as the base of the rectangle. The height of the trapezoid is labeled 6 and is the same as the height of the rectangle. The smaller base of the trapezoid is labeled 11. Below this is A sub rectangle equals b times h. Below is A sub rectangle equals 14 times 6. Below is A sub rectangle equals 84 square inches. The second column has an image of a trapezoid. The larger base is labeled 14, the smaller base is labeled 11, and the height is labeled 6. Below this is A sub trapezoid equals one-half times h times parentheses little b plus big B. Below this is A sub trapezoid equals one-half times 6 times parentheses 11 plus 14. Below this is A sub trapezoid equals 75 square inches. The third column has an image of a trapezoid with a red rectangle drawn inside of it. The height is labeled 6. Below this is A sub rectangle equals b times h. Below is A sub rectangle equals 11 times 6. Below is A sub rectangle equals 66 square inches.]
  
 The area of the larger rectangle is [image: 84] square inches and the area of the smaller rectangle is [image: 66] square inches. So it makes sense that the area of the trapezoid is between [image: 84] and [image: 66] square inches Step 7. Answer the question. The area of the trapezoid is [image: 75] square inches. 
   Vinny has a garden that is shaped like a trapezoid. The trapezoid has a height of [image: 3.4] yards and the bases are [image: 8.2] and [image: 5.6] yards. How many square yards will be available to plant? 
 Show Solution Solution
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A trapezoid with shorter base 5.6 yards and longer base 82 yards and a height of 3.4 yards.] 
 	Step 2. Identify what you are looking for. 	the area of a trapezoid 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: A] = the area 
 	Step 4.Translate. Write the appropriate formula. Substitute. 	[image: The equation A = one half times h times the quantity of little b plus big b. The equation is rewritten with 3.4 substituted in for h, 5.6 substituted in for little b and 8.2 substituted in for big b.] 
 	Step 5. Solve the equation. 	[image: A={\Large\frac{1}{2}}\normalsize(3.4)(13.8)] [image: A=23.46] square yards. 
 	Step 6. Check: Is this answer reasonable? Yes. The area of the trapezoid is less than the area of a rectangle with a base of [image: 8.2] yd and height [image: 3.4] yd, but more than the area of a rectangle with base [image: 5.6] yd and height [image: 3.4] yd.[image: A table with two rows. the first row is split into three columns. The first column is the formula Area of a rectangle (shown in red) equals base times height. On the next line under this it has numbers plugged into the formula; the base, 8.2 in parentheses times the height 3.4 in parentheses. Under this is it has the result 27.88 yards squared. The second column is the formula Area of a trapezoid with numbers already plugged in; one half times 3.4 yards times the quantity of 5.6 plus 8.2. Under this is has the result 23.46 yards squared. The third column is the formula Area of a rectangle (shown in blue) equals base times height. On the next line under it has number plugged into the formula; the base, 5.6 in parentheses times the height 3.4 in parentheses. Under this it has the result 19.04 yards squared. The second row shows that the Area of the red rectangle is greater than the Area of a trapezoid is greater than the Area of the blue rectangle. Beneath this, it shows the areas 27.88 for the red rectangle, 23.46 for the trapezoid, and 19.04 for the blue rectangle.] 
 	Step 7. Answer the question. 	Vinny has [image: 23.46] square yards in which he can plant. 
  
   [ohm_question hide_question_numbers=1]146944[/ohm_question]
  Find the Area of Irregular Figures
 So far, we have found area for rectangles, triangles, and trapezoids. An irregular figure is a figure that is not a standard geometric shape. Its area cannot be calculated using any of the standard area formulas. But some irregular figures are made up of two or more standard geometric shapes. To find the area of one of these irregular figures, we can split it into figures whose formulas we know and then add the areas of the figures.
 Find the area of the shaded region.
 [image: An image of an attached horizontal rectangle and a vertical rectangle is shown. The top is labeled 12, the side of the horizontal rectangle is labeled 4. The side is labeled 10, the width of the vertical rectangle is labeled 2.] Show Solution The given figure is irregular, but we can break it into two rectangles. The area of the shaded region will be the sum of the areas of both rectangles.
 [image: An image of an attached horizontal rectangle and a vertical rectangle is shown. The top is labeled 12, the side of the horizontal rectangle is labeled 4. The side is labeled 10, the width of the vertical rectangle is labeled 2.]
  
 The blue rectangle has a width of [image: 12] and a length of [image: 4]. The red rectangle has a width of [image: 2], but its length is not labeled. The right side of the figure is the length of the red rectangle plus the length of the blue rectangle. Since the right side of the blue rectangle is [image: 4] units long, the length of the red rectangle must be [image: 6] units.[image: An image of a blue horizontal rectangle attached to a red vertical rectangle is shown. The top is labeled 12, the side of the blue rectangle is labeled 4. The whole side is labeled 10, the blue portion is labeled 4 and the red portion is labeled 6. The width of the red rectangle is labeled 2.]
  
 [image: The first line says A sub figure equals A sub rectangle plus A sub red rectangle. Below this is A sub figure equals bh plus red bh. Below this is A sub figure equals 12 times 4 plus red 2 times 6. Below this is A sub figure equals 48 plus red 12. Below this is A sub figure equals 60.]
  
 The area of the figure is [image: 60] square units.
 Is there another way to split this figure into two rectangles? Try it, and make sure you get the same area.
 
   Find the area of the shaded region.
 [image: A blue geometric shape is shown. It looks like a rectangle with a triangle attached to the top on the right side. The left side is labeled 4, the top 5, the bottom 8, the right side 7.]
  
 Show Solution We can break this irregular figure into a triangle and rectangle. The area of the figure will be the sum of the areas of the triangle and the rectangle. The rectangle has a length of [image: 8] units and a width of [image: 4] units. We need to find the base and height of the triangle.
 Since both sides of the rectangle are [image: 4], the vertical side of the triangle is [image: 3] , which is [image: 7 - 4] .
 The length of the rectangle is [image: 8], so the base of the triangle will be [image: 3] , which is [image: 8 - 5] .
 [image: A geometric shape is shown. It is a blue rectangle with a red triangle attached to the top on the right side. The left side is labeled 4, the top 5, the bottom 8, the right side 7. The right side of the rectangle is labeled 4. The right side and bottom of the triangle are labeled 3.]
  
 Now we can add the areas to find the area of the irregular figure.
 [image: The top line reads A sub figure equals A sub rectangle plus A sub red triangle. The second line reads A sub figure equals lw plus one-half red bh. The next line says A sub figure equals 8 times 4 plus one-half times red 3 times red 3. The next line reads A sub figure equals 32 plus red 4.5. The last line says A sub figure equals 36.5 sq. units.]
  
 The area of the figure is [image: 36.5] square units.
  [ohm_question hide_question_numbers=1]246488[/ohm_question]
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				 	Use sigma notation to add up integers and their powers
 
  Sigma Notation
 To simplify writing lengthy sums, we use sigma notation (summation notation). The Greek letter [image: Σ] represents the sum of values. For example, if we want to add all the integers from [image: 1] to [image: 20], instead of writing out
 [image: 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20]
 we can use sigma notation:
 [image: \displaystyle\sum_{i=1}^{20} i].
 Typically, sigma notation is presented in the form
 [image: \displaystyle\sum_{i=1}^{n} a_i]
 where [image: a_i] are the terms being added and [image: i] is the index.
 sigma notation
 Sigma notation uses the Greek letter sigma ([image: ∑]) to represent the sum of a series of terms.
 [image: \displaystyle\sum_{i=1}^{n} a_i]
 Each term [image: a_i] is evaluated for all integer values of [image: i] from the lower limit to the upper limit, and then all these values are added together.
  How to: Evaluate Sigma Notation
 	Identify the Index and Limits: Locate the index variable [image: i], the starting value (often [image: 1]), and the upper limit [image: n].
 	Determine the Term Expression: Identify the term [image: a_i] that you will be summing.
 	Evaluate Each Term: Substitute each integer value from the starting value to the upper limit into the term expression.
 	Sum the Evaluated Terms: Add up all the evaluated terms to get the final sum.
 
  For example, an expression like [image: \displaystyle\sum_{i=2}^{7} s_i] is interpreted as [image: s_2+s_3+s_4+s_5+s_6+s_7].
  Note that the index is used only to keep track of the terms to be added; it does not factor into the calculation of the sum itself. The index is therefore called a dummy variable. We can use any letter we like for the index.
 Typically, mathematicians use [image: i], [image: j], [image: k], [image: m], and [image: n] for indices.
  Let’s try a couple of examples of using sigma notation.
 	Write in sigma notation and evaluate the sum of terms [image: 3^i] for [image: i=1,2,3,4,5].
 	Write the sum in sigma notation: [image: 1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}].
 
 
 Show Solution 
 	Write [image: \begin{array}{ll}\displaystyle\sum_{i=1}^{5} 3^i & =3+3^2+3^3+3^4+3^5 \\ & =363 \end{array}]
 
 	The denominator of each term is a perfect square. Using sigma notation, this sum can be written as [image: \displaystyle\sum_{i=1}^{5} \frac{1}{i^2}].
 
 Watch the following video to see the worked solution to Example: Using Sigma Notation.
 https://youtube.com/watch?v=qx-gvr8k8SY%3Fcontrols%3D0%26start%3D22%26end%3D150%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.1 Approximating Areas” here (opens in new window).
  The following rules summarize key properties of sigma notation.
 Properties of Sigma Notation
 Let [image: a_1,a_2, \cdots,a_n] and [image: b_1,b_2,\cdots,b_n] represent two sequences of terms and let [image: c] be a constant.
  
 The following properties hold for all positive integers [image: n] and for integers [image: m], with [image: 1\le m\le n].
 	[image: \underset{i=1}{\overset{n}{\Sigma}}c=nc]
 
 	[image: \underset{i=1}{\overset{n}{\Sigma}}ca_i=c\underset{i=1}{\overset{n}{\Sigma}}a_i]
 
 	[image: \underset{i=1}{\overset{n}{\Sigma}}(a_i+b_i)=\underset{i=1}{\overset{n}{\Sigma}}a_i+\underset{i=1}{\overset{n}{\Sigma}}b_i]
 
 	[image: \underset{i=1}{\overset{n}{\Sigma}}(a_i-b_i)=\underset{i=1}{\overset{n}{\Sigma}}a_i-\underset{i=1}{\overset{n}{\Sigma}}b_i]
 
 	[image: \underset{i=1}{\overset{n}{\Sigma}}a_i=\underset{i=1}{\overset{m}{\Sigma}}a_i+\underset{i=m+1}{\overset{n}{\Sigma}}a_i]
 
 
 
  Proof
 
 Let’s prove properties 2 and 3, and leave the proof of the other properties for the examples.
 Proof of Property 2: 
 [image: \begin{array}{ll}\displaystyle\sum_{i=1}^{n} ca_i & =ca_1+ca_2+ca_3+\cdots+ca_n \\ & =c(a_1+a_2+a_3+\cdots+a_n) \\ & =c\displaystyle\sum_{i=1}^{n} a_i \end{array}]
  
 Proof of Property 3: 
 [image: \begin{array}{ll}\displaystyle\sum_{i=1}^{n} (a_i+b_i) & =(a_1+b_1)+(a_2+b_2)+(a_3+b_3)+\cdots+(a_n+b_n) \\ & =(a_1+a_2+a_3+\cdots+a_n)+(b_1+b_2+b_3+\cdots+b_n) \\ & =\displaystyle\sum_{i=1}^{n} a_i+ \displaystyle\sum_{i=1}^{n} b_i \end{array}]
 [image: _\blacksquare]
  Here are a few more formulas that simplify the summation process for frequently encountered functions. These rules, which apply to sums and powers of integers, will be used in the upcoming examples.
 Sums and Powers of Integers
 	The sum of [image: n] integers is given by [image: \underset{i=1}{\overset{n}{\Sigma}}i=1+2+\cdots+n=\frac{n(n+1)}{2}].
 
 	The sum of consecutive integers squared is given by [image: \underset{i=1}{\overset{n}{\Sigma}}i^2=1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}].
 
 	The sum of consecutive integers cubed is given by [image: \underset{i=1}{\overset{n}{\Sigma}}i^3=1^3+2^3+\cdots+n^3=\frac{n^2(n+1)^2}{4}].
 
 
  Write using sigma notation and evaluate:
 	The sum of the terms [image: (i-3)^2] for [image: i=1,2,\cdots,200].
 	The sum of the terms [image: (i^3-i^2)] for [image: i=1,2,3,4,5,6].
 
 Show Solution 
 	Multiplying out [image: (i-3)^2], we can break the expression into three terms. [image: \begin{array}{ll}\underset{i=1}{\overset{200}{\Sigma}}(i-3)^2 & =\underset{i=1}{\overset{200}{\Sigma}}(i^2-6i+9) \\ & =\underset{i=1}{\overset{200}{\Sigma}}i^2-\underset{i=1}{\overset{200}{\Sigma}}6i+\underset{i=1}{\overset{200}{\Sigma}}9 \\ & =\underset{i=1}{\overset{200}{\Sigma}}i^2-6\underset{i=1}{\overset{200}{\Sigma}}i+\underset{i=1}{\overset{200}{\Sigma}}9 \\ & =\frac{200(200+1)(400+1)}{6}-6[\frac{200(200+1)}{2}]+9(200) \\ & =2,686,700-120,600+1800 \\ & =2,567,900 \end{array}]
 
 	Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms. [image: \begin{array}{ll}\underset{i=1}{\overset{6}{\Sigma}}(i^3-i^2) & =\underset{i=1}{\overset{6}{\Sigma}}i^3-\underset{i=1}{\overset{6}{\Sigma}}i^2 \\ & =\frac{6^2(6+1)^2}{4}-\frac{6(6+1)(2(6)+1)}{6} \\ & =\frac{1764}{4}-\frac{546}{6} \\ & =350 \end{array}]
 
 
 Watch the following video to see the worked solution this example.
 https://youtube.com/watch?v=qx-gvr8k8SY%3Fcontrols%3D0%26start%3D194%26end%3D377%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.1 Approximating Areas” here (opens in new window)./p>
   Find the sum of the values of [image: 4+3i] for [image: i=1,2,\cdots,100].
 Show Solution 
 [image: 15,550]
   Evaluate the sum indicated by the notation [image: \displaystyle\sum_{k=1}^{20} (2k+1)].
 Show Solution 
 [image: 440]
   [ohm_question hide_question_numbers=1]288430[/ohm_question]
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				 	Determine whether a function is even, odd, or neither
 
  Determine Whether a Functions is Even, Odd, or Neither
 Functions often display specific symmetries that define their characteristics. For instance:
 	Even Functions 	A function [image: f(x)] is called even if it is symmetric about the [image: y]-axis. This means [image: f(−x)=f(x)] for all [image: x].
 	Graphically, this symmetry means that if the graph of the function is folded along the [image: y]-axis, the two halves will match exactly.
 	Examples include [image: f(x)=x^2] or [image: f(x)=∣x∣], where horizontal reflections produce the original graph.
 
 
 	Odd Functions 	A function [image: f(x)] is called odd if it has rotational symmetry about the origin, which means [image: f(−x)=−f(x)] for all [image: x].
 	This property implies that if the function’s graph is rotated [image: 180] degrees about the origin, it will coincide with its original shape.
 	An example is [image: f(x)=x^3], where reflecting the graph both horizontally and vertically reproduces the original graph.
 
 
 
 The function [image: f(x)=x^3] demonstrates odd symmetry. As shown in the graphs below:
 [image: Graph of x^3 and its reflections.](a) The cubic toolkit function (b) Horizontal reflection of the cubic toolkit function (c) Horizontal and vertical reflections reproduce the original cubic function.   even and odd functions
 A function is called an even function if for every input [image: x],
  
 [image: f\left(x\right)=f\left(-x\right)]
  
 The graph of an even function is symmetric about the [image: y\text{-}] axis.
  
 A function is called an odd function if for every input [image: x],
  
 [image: f\left(x\right)=-f\left(-x\right)]
  
 The graph of an odd function is symmetric about the origin.
  A function can be neither even nor odd if it does not exhibit either symmetry. For example, [image: f\left(x\right)={2}^{x}] is neither even nor odd. Also, the only function that is both even and odd is the constant function [image: f\left(x\right)=0].
  How To: Determine If a Function is Even, Odd, or Neither
 	Check for Even Symmetry: 	Evaluate [image: f(−x)] and compare it with [image: f(x)]
 	If [image: f(−x)=f(x)] for all values of [image: x] in the domain of the function, then the function is even.
 
 
 	Check for Odd Symmetry: 	Evaluate [image: f(−x)] and compare it with [image: f(x)]
 	If [image: f(−x)=−f(x)] for all values of [image: x], then the function is odd.
 
 
 	Neither Even nor Odd: If neither of the above conditions is met, the function is neither even nor odd.
 
  Is the function [image: f\left(x\right)={x}^{3}+2x] even, odd, or neither?
 Show Solution 
 Without looking at a graph, we can determine whether the function is even or odd by finding formulas for the reflections and determining if they return us to the original function. Let’s begin with the rule for even functions.
 [image: f\left(-x\right)={\left(-x\right)}^{3}+2\left(-x\right)=-{x}^{3}-2x]
 This does not return us to the original function, so this function is not even. We can now test the rule for odd functions.
 [image: -f\left(-x\right)=-\left(-{x}^{3}-2x\right)={x}^{3}+2x]
 Because [image: -f\left(-x\right)=f\left(x\right)], this is an odd function.
 Consider the graph of [image: f]. Notice that the graph is symmetric about the origin. For every point [image: \left(x,y\right)] on the graph, the corresponding point [image: \left(-x,-y\right)] is also on the graph. For example, (1, 3) is on the graph of [image: f], and the corresponding point [image: \left(-1,-3\right)] is also on the graph.
 [image: Graph of f(x) with labeled points at (1, 3) and (-1, -3).]
   Is the function [image: f\left(s\right)={s}^{4}+3{s}^{2}+7] even, odd, or neither?
 Show Solution 
 Even
   [ohm_question hide_question_numbers=1]293883[/ohm_question]
  //plugin.3playmedia.com/show?mf=6454976&p3sdk_version=1.10.1&p=20361&pt=375&video_id=VvUI6E78cN4&video_target=tpm-plugin-saqsqzpb-VvUI6E78cN4
 You can view the transcript for “Introduction to Odd and Even Functions” here (opens in new window).
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				 	Estimate the area under a curve by adding up the areas of rectangles
 	Estimate the area under a curve using Riemann sums
 
  Approximating Area
 Archimedes used a process known as the method of exhaustion to calculate the area of various shapes. This involved using smaller and smaller shapes to approximate the area more accurately. We can use a similar method to approximate the area under a curve, [image: f(x)], between [image: a] and b. By dividing the area into smaller rectangles, we get closer approximations.
 Let [image: f(x)] be a continuous, nonnegative function defined on the closed interval [image: [a,b]]. Our goal is to approximate the area [image: A] bounded by [image: f(x)] above, the [image: x]-axis below, the line [image: x=a] on the left, and the line [image: x=b] on the right (Figure 1).
 [image: A graph in quadrant one of an area bounded by a generic curve f(x) at the top, the x-axis at the bottom, the line x = a to the left, and the line x = b to the right. About midway through, the concavity switches from concave down to concave up, and the function starts to increases shortly before the line x = b.]Figure 1. An area (shaded region) bounded by the curve [image: f(x)] at top, the x-axis at bottom, the line [image: x=a] to the left, and the line [image: x=b] at right. To approximate the area under this curve, we use a geometric approach. By dividing the region into many small shapes with known area formulas, we can sum these areas to estimate the true area reasonably well.
 We begin by dividing the interval [image: [a,b]] into [image: n] subintervals of equal width, [image: \frac{b-a}{n}]. We select equally spaced points [image: x_0,x_1,x_2,\cdots,x_n] with [image: x_0=a, \, x_n=b], and
 [image: x_i-x_{i-1}=\dfrac{b-a}{n}]
 for [image: i=1,2,3,\cdots,n].
 The width of each subinterval is denoted as [image: \Delta x], so [image: \Delta x=\dfrac{b-a}{n}] and the points are defined by
 [image: x_i=x_0+i \Delta x]
 for [image: i=1,2,3,\cdots,n].
 This method of dividing an interval [image: [a,b]] into subintervals using equally spaced points is commonly used to approximate the area under a curve. Let’s define some relevant terminology to make this process clearer.
 partition
 A set of points [image: P=\{x_i\}] for [image: i=0,1,2,\cdots,n] with [image: a=x_0 < x_1 < x_2 < \cdots < x_n=b], which divides the interval [image: [a,b]] into subintervals of the form [image: [x_0,x_1], \, [x_1,x_2],\cdots,[x_{n-1},x_n]] is called a partition of [image: [a,b]]. If the subintervals all have the same width, the set of points forms a regular partition of the interval [image: [a,b]].

  We can use this regular partition as the basis of a method for estimating the area under the curve. We next examine two methods: the left-endpoint approximation and the right-endpoint approximation.
 Left-Endpoint Approximation
 On each subinterval [image: [x_{i-1},x_i]] (for [image: i=1,2,3,\cdots,n]), construct a rectangle with width [image: \Delta x] and height equal to [image: f(x_{i-1})], which is the function value at the left endpoint of the subinterval. Then the area of this rectangle is [image: f(x_{i-1})\Delta x].
 Adding the areas of all these rectangles, we get an approximate value for [image: A]. We use the notation [image: L_n] to denote that this is a left-endpoint approximation of [image: A] using [image: n] subintervals.
 [image: \begin{array}{ll} A \approx L_n & =f(x_0)\Delta x+f(x_1)\Delta x+\cdots+f(x_{n-1})\Delta x \\ & =\displaystyle\sum_{i=1}^{n} f(x_{i-1})\Delta x \end{array}]
 left-endpoint approximation
 In the left-endpoint approximation, we estimate the area under a curve by constructing rectangles whose heights are determined by the function values at the left endpoints of subintervals.
  
 The approximation of the area [image: A] using [image: n] subintervals is given by the formula:
 [image: A \approx L_n = \displaystyle\sum_{i=1}^{n} f(x_{i-1})\Delta x]
 where [image: \Delta x =\frac{b-a}{n}] is the width of each subinterval, and [image: x_{i-1}] are the left endpoints of the subintervals.
  [image: A diagram showing the left-endpoint approximation of area under a curve. Under a parabola with vertex on the y axis and above the x axis, rectangles are drawn between a=x0 on the origin and b = xn. The rectangles have endpoints at a=x0, x1, x2…x(n-1), and b = xn, spaced equally. The height of each rectangle is determined by the value of the given function at the left endpoint of the rectangle.]Figure 2. In the left-endpoint approximation of area under a curve, the height of each rectangle is determined by the function value at the left of each subinterval. How to: Perform Left-Endpoint Approximation
 	Identify the Interval and Function: Determine the interval [image: [a,b]] and the function [image: f(x)] you are working with.
 	Divide the Interval: Divide [image: [a,b]] into [image: n] subintervals of equal width [image: \Delta x =\frac{b-a}{n}].
 	Determine Left Endpoints: Identify the left endpoints of each subinterval: [image: x_0,x_1,x_2,\cdots,x_{n-1}]
 	Evaluate the Function: Calculate the function values at each left endpoint: [image: f(x_0), f(x_1), f(x_2), \cdots, f(x_{n-1})].
 	Calculate Rectangle Areas: Multiply each function value by the width [image: Δx] to get the area of each rectangle.
 	Sum the Areas: Add up all the rectangle areas to get the approximate area under the curve[image: A \approx \displaystyle\sum_{i=1}^{n} f(x_{i-1})\Delta x]
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				Approximating Area Cont.
 Right-Endpoint Approximation
 The second method for approximating area under a curve is the right-endpoint approximation. It is almost the same as the left-endpoint approximation, but now the heights of the rectangles are determined by the function values at the right of each subinterval.
 Right-Endpoint Approximation
 In the right-endpoint approximation, we estimate the area under a curve by constructing rectangles whose heights are determined by the function values at the right endpoints of subintervals.
  
 The approximation of the area [image: A] using [image: n] subintervals is given by the formula:
 [image: A \approx R_n = \displaystyle\sum_{i=1}^{n} f(x_i)\Delta x]
  
 where [image: \Delta x =\frac{b-a}{n}] is the width of each subinterval, and [image: x_{i}] are the right endpoints of the subintervals.
  [image: A diagram showing the right-endpoint approximation of area under a curve. Under a parabola with vertex on the y axis and above the x axis, rectangles are drawn between a=x0 on the origin and b = xn. The rectangles have endpoints at a=x0, x1, x2…x(n-1), and b = xn, spaced equally. The height of each rectangle is determined by the value of the given function at the right endpoint of the rectangle.]Figure 3. In the right-endpoint approximation of area under a curve, the height of each rectangle is determined by the function value at the right of each subinterval. Note that the right-endpoint approximation differs from the left-endpoint approximation in (Figure). Since we have already seen how to solve using left-endpoint approximation, the right-endpoint approximation follows a similar process. The key difference is that the heights of the rectangles are determined by the function values at the right endpoints of the subintervals, rather than the left endpoints. This means:
 	Left-Endpoint Approximation: Uses [image: f(x_{i -1})] for each subinterval.
 	Right-Endpoint Approximation: Uses [image: f(x_i)] for each subinterval.
 
 By adjusting the endpoint used, we slightly alter the position and height of the rectangles, which can affect the accuracy of the approximation depending on the behavior of the function.
  The graphs in Figure 4 represent the curve [image: f(x)=\frac{x^2}{2}].
 [image: Diagrams side by side, showing the differences in approximating the area under a parabolic curve with vertex at the origin between the left endpoints method (the first diagram) and the right endpoints method (the second diagram). In the first diagram, rectangles are drawn at even intervals (delta x) under the curve with heights determined by the value of the function at the left endpoints. In the second diagram, the rectangles are drawn in the same fashion, but with heights determined by the value of the function at the right endpoints. The endpoints in both are spaced equally from the origin to (3, 0), labeled x0 to x6.]Figure 4. Methods of approximating the area under a curve by using (a) the left endpoints and (b) the right endpoints. In graph (a) we divide the region represented by the interval [image: [0,3]] into six subintervals, each of width [image: 0.5]. Thus, [image: \Delta x=0.5].
 We then form six rectangles by drawing vertical lines perpendicular to [image: x_{i-1}], the left endpoint of each subinterval.
 We determine the height of each rectangle by calculating [image: f(x_{i-1})] for [image: i=1,2,3,4,5,6].
 The intervals are [image: [0,0.5], \, [0.5,1], \, [1,1.5], \, [1.5,2], \, [2,2.5], \, [2.5,3]].
 We find the area of each rectangle by multiplying the height by the width.
 Then, the sum of the rectangular areas approximates the area between [image: f(x)] and the [image: x]-axis.
 When the left endpoints are used to calculate height, we have a left-endpoint approximation. Thus,
 [image: \begin{array}{ll} A \approx L_6 & =\displaystyle\sum_{i=1}^{6} f(x_{i-1})\Delta x=f(x_0)\Delta x+f(x_1)\Delta x+f(x_2)\Delta x+f(x_3)\Delta x+f(x_4)\Delta x+f(x_5)\Delta x \\ & =f(0)0.5+f(0.5)0.5+f(1)0.5+f(1.5)0.5+f(2)0.5+f(2.5)0.5 \\ & =(0)0.5+(0.125)0.5+(0.5)0.5+(1.125)0.5+(2)0.5+(3.125)0.5 \\ & =0+0.0625+0.25+0.5625+1+1.5625 \\ & =3.4375 \end{array}] 
 In Figure 4(b), we draw vertical lines perpendicular to [image: x_i] such that [image: x_i] is the right endpoint of each subinterval, and calculate [image: f(x_i)] for [image: i=1,2,3,4,5,6].
 We multiply each [image: f(x_i)] by [image: \Delta x] to find the rectangular areas, and then add them. This is a right-endpoint approximation of the area under [image: f(x)]. Thus,
 [image: \begin{array}{ll} A \approx R_6 & =\displaystyle\sum_{i=1}^{6} f(x_i)\Delta x=f(x_1)\Delta x+f(x_2)\Delta x+f(x_3)\Delta x+f(x_4)\Delta x+f(x_5)\Delta x+f(x_6)\Delta x \\ & =f(0.5)0.5+f(1)0.5+f(1.5)0.5+f(2)0.5+f(2.5)0.5+f(3)0.5 \\ & =(0.125)0.5+(0.5)0.5+(1.125)0.5+(2)0.5+(3.125)0.5+(4.5)0.5 \\ & =0.0625+0.25+0.5625+1+1.5625+2.25 \\ & =5.6875 \end{array}]
  Use both left-endpoint and right-endpoint approximations to approximate the area under the curve of [image: f(x)=x^2] on the interval [image: [0,2]]; use [image: n=4].
 Show Solution 
 First, divide the interval [image: [0,2]] into [image: n] equal subintervals.
 Using [image: n=4, \, \Delta x=\frac{(2-0)}{4}=0.5]. This is the width of each rectangle.
 The intervals [image: [0,0.5], \, [0.5,1], \, [1,1.5], \, [1.5,2]] are shown in Figure 5.
 [image: A graph of the left-endpoint approximation of the area under the curve f(x) = x^2 from 0 to 2 with endpoints spaced .5 units apart. The heights of the rectangle are determined by the values of the function at their left endpoints.]Figure 5. The graph shows the left-endpoint approximation of the area under [image: f(x)=x^2] from 0 to 2. 
 Using a left-endpoint approximation, the heights are [image: f(0)=0, \, f(0.5)=0.25, \, f(1)=1, \, f(1.5)=2.25]. Then,
 [image: \begin{array}{ll} L_4 & =f(x_0)\Delta x+f(x_1)\Delta x+f(x_2)\Delta x+f(x_3)\Delta x \\ & =0(0.5)+0.25(0.5)+1(0.5)+2.25(0.5) \\ & =1.75 \end{array}]
 The right-endpoint approximation is shown in Figure 6. The intervals are the same, [image: \Delta x=0.5], but now use the right endpoint to calculate the height of the rectangles.
 [image: A graph of the right-endpoint approximation method of the area under the curve f(x) = x^2 from 0 to 2 with endpoints spaced .5 units apart. The heights of the rectangles are determined by the values of the function at the right endpoints.]Figure 6. The graph shows the right-endpoint approximation of the area under [image: f(x)=x^2] from 0 to 2. We have
 [image: \begin{array}{ll} R_4 & =f(x_1)\Delta x+f(x_2)\Delta x+f(x_3)\Delta x+f(x_4)\Delta x \\ & =0.25(0.5)+1(0.5)+2.25(0.5)+4(0.5) \\ & =3.75 \end{array}]
  
 
 The left-endpoint approximation is [image: 1.75]; the right-endpoint approximation is [image: 3.75].
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=qx-gvr8k8SY%3Fcontrols%3D0%26start%3D570%26end%3D820%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.1 Approximating Areas” here (opens in new window).
  
  Sketch left-endpoint and right-endpoint approximations for [image: f(x)=\frac{1}{x}] on [image: [1,2]]; use [image: n=4]. Approximate the area using both methods.
 Show Solution 
 The left-endpoint approximation is [image: 0.7595]. The right-endpoint approximation is [image: 0.6345]. See the graphs below.
 [image: Two graphs side by side showing the left-endpoint approximation ad right-endpoint approximation of the area under the curve f(x) = 1/x from 1 to 2 with endpoints spaced evenly at .25 units. The heights of the left-endpoint approximation one are determined by the values of the function at the left endpoints, and the height of the right-endpoint approximation one are determined by the values of the function at the right endpoints.]Figure 7.  
  Looking at Figure 4 and the graphs in the previous example, we can see that when we use a small number of intervals, neither the left-endpoint approximation nor the right-endpoint approximation is a particularly accurate estimate of the area under the curve.
 However, it seems logical that if we increase the number of points in our partition, our estimate of [image: A] will improve. We will have more rectangles, but each rectangle will be thinner, so we will be able to fit the rectangles to the curve more precisely.
 We can demonstrate the improved approximation obtained through smaller intervals with an example.
 Let’s explore the idea of increasing [image: n], first in a left-endpoint approximation with four rectangles, then eight rectangles, and finally [image: 32] rectangles. Then, let’s do the same thing in a right-endpoint approximation, using the same sets of intervals, of the same curved region.
 Figure 8 shows the area of the region under the curve [image: f(x)=(x-1)^3+4] on the interval [image: [0,2]] using a left-endpoint approximation where [image: n=4].
 [image: A graph of the left-endpoint approximation of the area under the given curve from a = x0 to b=x4. The heights of the rectangles are determined by the values of the function at the left endpoints.]Figure 8. With a left-endpoint approximation and dividing the region from a to b into four equal intervals, the area under the curve is approximately equal to the sum of the areas of the rectangles. The width of each rectangle is
 [image: \Delta x=\frac{2-0}{4}=\frac{1}{2}]
 The area is approximated by the summed areas of the rectangles, or
 [image: \begin{array}{ll} L_4 & =f(0)(0.5)+f(0.5)(0.5)+f(1)(0.5)+f(1.5)0.5 \\ & =7.5 \end{array}]
  
 
 Figure 9 shows the same curve divided into eight subintervals.
 [image: A graph showing the left-endpoint approximation for the area under the given curve from a=x0 to b = x8. The heights of the rectangles are determined by the values of the function at the left endpoints.]Figure 9. The region under the curve is divided into [image: n=8] rectangular areas of equal width for a left-endpoint approximation. Comparing the graph with four rectangles in Figure 8 with this graph with eight rectangles, we can see there appears to be less white space under the curve when [image: n=8]. This white space is area under the curve we are unable to include using our approximation.
 The area of the rectangles is
 [image: \begin{array}{ll} L_8 & =f(0)(0.25)+f(0.25)(0.25)+f(0.5)(0.25)+f(0.75)(0.25) \\ & +f(1)(0.25)+f(1.25)(0.25)+f(1.5)(0.25)+f(1.75)(0.25) \\ & =7.75 \end{array}]
  
 
 The graph in Figure 10 shows the same function with 32 rectangles inscribed under the curve.
 [image: A graph of the left-endpoint approximation of the area under the given curve from a = x0 to b = x32. The heights of the rectangles are determined by the values of the function at the left endpoints.]Figure 10. Here, 32 rectangles are inscribed under the curve for a left-endpoint approximation. There appears to be little white space left. The area occupied by the rectangles is
 [image: \begin{array}{ll} L_{32} & =f(0)(0.0625)+f(0.0625)(0.0625)+f(0.125)(0.0625)+\cdots+f(1.9375)(0.0625) \\ & =7.9375 \end{array}]
  
 
 We can carry out a similar process for the right-endpoint approximation method. A right-endpoint approximation of the same curve, using four rectangles (Figure 11), yields an area
 [image: \begin{array}{ll} R_4 & =f(0.5)(0.5)+f(1)(0.5)+f(1.5)(0.5)+f(2)(0.5) \\ & =8.5 \end{array}]
  
 [image: A graph of the right-endpoint approximation for the area under the given curve from x0 to x4. The heights of the rectangles are determined by the values of the function at the right endpoints.]Figure 11. Now we divide the area under the curve into four equal subintervals for a right-endpoint approximation. 
 Dividing the region over the interval [image: [0,2]] into eight rectangles results in [image: \Delta x=\frac{2-0}{8}=0.25]. The graph is shown in Figure 12. The area is
 [image: \begin{array}{ll} R_8 & =f(0.25)(0.25)+f(0.5)(0.25)+f(0.75)(0.25)+f(1)(0.25) \\ & +f(1.25)(0.25)+f(1.5)(0.25)+f(1.75)(0.25)+f(2)(0.25) \\ & =8.25 \end{array}]
  
 [image: A graph of the right-endpoint approximation for the area under the given curve from a=x0 to b=x8.The heights of the rectangles are determined by the values of the function at the right endpoints.]Figure 12. Here we use right-endpoint approximation for a region divided into eight equal subintervals. 
 Last, the right-endpoint approximation with [image: n=32] is close to the actual area (Figure 13). The area is approximately
 [image: \begin{array}{ll} R_{32} & =f(0.0625)(0.0625)+f(0.125)(0.0625)+f(0.1875)(0.0625)+\cdots+f(2)(0.0625) \\ & =8.0625 \end{array}]
  
 [image: A graph of the right-endpoint approximation for the area under the given curve from a=x0 to b=x32. The heights of the rectangles are determined by the values of the function at the right endpoints.]Figure 13. The region is divided into 32 equal subintervals for a right-endpoint approximation. 
 Based on these figures and calculations, it appears we are on the right track; the rectangles appear to approximate the area under the curve better as [image: n] gets larger.
 Furthermore, as [image: n] increases, both the left-endpoint and right-endpoint approximations appear to approach an area of [image: 8] square units.
 The table below shows a numerical comparison of the left- and right-endpoint methods. 
 Converging Values of Left- and Right-Endpoint Approximations as [image: n] Increases 	Values of [image: n] 	Approximate Area [image: L_n] 	Approximate Area [image: R_n] 
  	[image: n=4] 	[image: 7.5] 	[image: 8.5] 
 	[image: n=8] 	[image: 7.75] 	[image: 8.25] 
 	[image: n=32] 	[image: 7.94] 	[image: 8.06] 
  
  The idea that the approximations of the area under the curve get better and better as [image: n] gets larger and larger is very important, and we now explore this idea in more detail.
  [ohm_question hide_question_numbers=1]219940[/ohm_question]
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		Approximating Areas: Learn It 3

								

	
				Riemann Sums
 So far we have been using rectangles to approximate the area under a curve. We’ve determined the heights of these rectangles by evaluating the function at either the right or left endpoints of each subinterval [image: [x_{i-1},x_i]].
 However, we do not have to restrict the evaluation to just these points. We can evaluate the function at any point [image: x_i^*] within the subinterval [image: [x_{i-1},x_i]], and use [image: f(x_i^*)] as the height of our rectangle. This gives us an estimate for the area of the form:
 [image: A \approx \displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x].
 A sum of this form is called a Riemann sum, named after the 19th-century mathematician Bernhard Riemann.
 Riemann sum
 Let [image: f(x)] be defined on a closed interval [image: [a,b]] and let [image: P] be a regular partition of [image: [a,b]]. Let [image: \Delta x] be the width of each subinterval [image: [x_{i-1},x_i]] and for each [image: i], let [image: x_i^*] be any point in [image: [x_{i-1},x_i]].

  
 A Riemann sum is defined for [image: f(x)] as
 [image: \displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x].
  When using left- and right-endpoint approximations, our estimates improve as we increase the number of subintervals [image: n]. The same idea applies to Riemann sums: the more subintervals we use, the better our approximation. Now, let’s define the area under a curve using Riemann sums.
 area under a curve using Riemann sums
 Let [image: f(x)] be a continuous, nonnegative function on an interval [image: [a,b]], and let [image: \displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x] be a Riemann sum for [image: f(x)].

  
 Then, the area under the curve [image: y=f(x)] on [image: [a,b]] is given by
 [image: A=\underset{n\to \infty }{\lim}\displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x].
  Taking the limit of a sum is a bit different from taking the limit of a function [image: f(x)] as [image: x] goes to infinity. We discuss limits of sums in more detail in the chapter on Sequences and Series in Calculus 2. For now, assume that the techniques we use to compute limits of functions also apply to sums.
 We must also consider what happens if our sum converges to different limits for different choices of [image: x_i^*]. If [image: f(x)] is continuous on [image: [a,b]], the limit:
 [image: \underset{n\to \infty }{\lim}\displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x]
 is unique and does not depend on the choice of [image: x_i^*].
 Before we dive into examples, let’s discuss some specific choices for [image: x_i^*]. Any choice for [image: x_i^*] gives us an estimate of the area under the curve, but we might want to know if our estimate is too high or too low. We can choose [image: x_i^*] to guarantee one result or the other.
 	Overestimate: Choose [image: x_i^*] so that [image: f(x_i^*)] is the maximum value on [image: [x_{i-1},x_i]]. This makes our Riemann sum an upper sum.
 	Underestimate: Choose [image: x_i^*] so that [image: f(x_i^*)] is the minimum value on [image: [x_{i-1},x_i]]. This makes our Riemann sum a lower sum.
 
 	If a function is increasing over an interval, using the right endpoints for the upper sum and the left endpoints for the lower sum gives us a good estimate.
 	If a function is decreasing, using the left endpoints for the upper sum and the right endpoints for the lower sum is effective.
 
  Find a lower sum for [image: f(x)=10-x^2] on [image: [1,2]]; use [image: n=4] subintervals.
 Show Solution With [image: n=4] over the interval [image: [1,2], \, \Delta x=\frac{1}{4}]. We can list the intervals as [image: [1,1.25], \, [1.25,1.5], \, [1.5,1.75], \, [1.75,2]]. Because the function is decreasing over the interval [image: [1,2]], (Figure 14) shows that a lower sum is obtained by using the right endpoints.
 [image: The graph of f(x) = 10 − x^2 from 0 to 2. It is set up for a right-end approximation of the area bounded by the curve and the x axis on [1, 2], labeled a=x0 to x4. It shows a lower sum.]Figure 14. The graph of [image: f(x)=10-x^2] is set up for a right-endpoint approximation of the area bounded by the curve and the x-axis on [image: [1,2]], and it shows a lower sum. The Riemann sum is
 [image: \begin{array}{ll}\displaystyle\sum_{k=1}^{4} (10-x^2)(0.25)& =0.25[10-(1.25)^2+10-(1.5)^2+10-(1.75)^2+10-(2)^2] \\ & =0.25[8.4375+7.75+6.9375+6] \\ & =7.28 \end{array}]
  
 The area of [image: 7.28] is a lower sum and an underestimate.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=qx-gvr8k8SY%3Fcontrols%3D0%26start%3D825%26end%3D1020%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.1 Approximating Areas” here (opens in new window).
   	Find an upper sum for [image: f(x)=10-x^2] on [image: [1,2]]; let [image: n=4].
 	Sketch the approximation.
 
 Hint 
 [image: f(x)] is decreasing on [image: [1,2]], so the maximum function values occur at the left endpoints of the subintervals.
  Show Solution 
 	Upper sum [image: =8.0313].
 	[image: A graph of the function f(x) = 10 − x^2 from 0 to 2. It is set up for a right endpoint approximation over the area [1,2], which is labeled a=x0 to x4. It is an upper sum.]Figure 15. 
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		Approximating Areas: Apply It

								

	
				 	Estimate the area under a curve by adding up the areas of rectangles
 	Estimate the area under a curve using Riemann sums
 
  Exploring Area Under Curves with Riemann Sums
 In this apply-it task, we’ll dive into the concept of Riemann sums and their application in approximating the area under curves. We’ll explore how different choices of evaluation points affect our estimates and how increasing the number of subintervals improves our approximation. This exercise will help you understand the foundation of integral calculus and its connection to finding areas of complex shapes.
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		The Definite Integral: Learn It 1

								

	
				 	Recognize the parts of an integral and when it can be used
 	Explain how definite integrals relate to the net area under a curve and use geometry to evaluate them
 	Determine the average value of a function
 
  Defining and Evaluating Definite Integrals
 In the preceding section we defined the area under a curve in terms of Riemann sums:
 [image: A=\underset{n\to \infty }{\lim} \displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x].
 However, this definition came with restrictions. We required [image: f(x)] to be continuous and nonnegative. Unfortunately, real-world problems don’t always meet these restrictions. In this section, we look at how to apply the concept of the area under the curve to a broader set of functions through the use of the definite integral.
 Definition and Notation
 The definite integral generalizes the concept of the area under a curve. We relax the requirement that [image: f(x)] be continuous and nonnegative and define the definite integral as follows.
 definite integral
 If [image: f(x)] is a function defined on an interval [image: [a,b]], the definite integral of [image: f] from [image: a] to [image: b] is given by

 [image: \displaystyle\int_a^b f(x) dx=\underset{n\to \infty }{\lim} \displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x],
 provided the limit exists.
  
 If this limit exists, the function [image: f(x)] is said to be integrable on [image: [a,b]], or is an integrable function.
  The integral symbol in the previous definition should look familiar. We have seen similar notation in the chapter on Applications of Derivatives, where we used the indefinite integral symbol (without the [image: a] and [image: b] above and below) to represent an antiderivative.
  Although the notation for indefinite integrals may look similar to the notation for a definite integral, they are not the same.
 A definite integral is a number. An indefinite integral is a family of functions.
 Later in this chapter we examine how these concepts are related. However, close attention should always be paid to notation so we know whether we’re working with a definite integral or an indefinite integral.
 Integral notation goes back to the late seventeenth century and is one of the contributions of Gottfried Wilhelm Leibniz, who is often considered to be the codiscoverer of calculus, along with Isaac Newton.
  The integration symbol [image: \displaystyle\int] is an elongated S, suggesting sigma or summation. On a definite integral, the bounds [image: a] and [image: b] are the limits of integration, specifying the interval [image: [a,b]]; specifically, [image: a] is the lower limit and [image: b] is the upper limit.
 To clarify, we are using the word limit in two different ways in the context of the definite integral. First, we talk about the limit of a sum as [image: n\to \infty]. Second, the boundaries of the region are called the limits of integration.
  We call the function [image: f(x)] the integrand, and the [image: dx] indicates that [image: f(x)] is a function with respect to [image: x], called the variable of integration. Note that, like the index in a sum, the variable of integration is a dummy variable, and has no impact on the computation of the integral. We could use any variable we like as the variable of integration:
 [image: \displaystyle\int_a^b f(x) dx=\displaystyle\int_a^b f(t) dt=\displaystyle\int_a^b f(u) du]
 Previously, we discussed the fact that if [image: f(x)] is continuous on [image: [a,b]], then the limit
 [image: \underset{n\to \infty }{\lim} \displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x]
 exists and is unique. 
 integrability of continuous functions
 If [image: f(x)] is continuous on [image: [a,b]], then [image: f] is integrable on [image: [a,b]].
  Functions that are not continuous on [image: [a,b]] may still be integrable, depending on the nature of the discontinuities. For example, functions with a finite number of jump discontinuities on a closed interval are integrable.
 It is also worth noting here that we have retained the use of a regular partition in the Riemann sums. This restriction is not strictly necessary.
 Any partition can be used to form a Riemann sum. However, if a nonregular partition is used to define the definite integral, it is not sufficient to take the limit as the number of subintervals goes to infinity. Instead, we must take the limit as the width of the largest subinterval goes to zero.
 This introduces a little more complex notation in our limits and makes the calculations more difficult without really gaining much additional insight, so we stick with regular partitions for the Riemann sums.
 Use the definition of the definite integral to evaluate [image: \displaystyle\int_0^2 x^2 dx]. Use a right-endpoint approximation to generate the Riemann sum.
 
 Show Solution We first want to set up a Riemann sum.
 Based on the limits of integration, we have [image: a=0] and [image: b=2]. For [image: i=0,1,2, \cdots ,n], let [image: P=\{x_i\}] be a regular partition of [image: [0,2]]. Then,
 [image: \Delta x=\frac{b-a}{n}=\frac{2}{n}].
 Since we are using a right-endpoint approximation to generate Riemann sums, for each [image: i], we need to calculate the function value at the right endpoint of the interval [image: [x_{i-1},x_i]].
 The right endpoint of the interval is [image: x_i], and since [image: P] is a regular partition,
 [image: x_i=x_0+i \Delta x=0+i(\frac{2}{n})=\frac{2i}{n}].
 Thus, the function value at the right endpoint of the interval is,
  
 [image: f(x_i)=x_i^2=(\frac{2i}{n})^2=\frac{4i^2}{n^2}].
 Then the Riemann sum takes the form,
 [image: \displaystyle\sum_{i=1}^{n} f(x_i)\Delta x=\displaystyle\sum_{i=1}^{n} (\frac{4i^2}{n^2})\frac{2}{n}=\displaystyle\sum_{i=1}^{n} \frac{8i^2}{n^3}=\frac{8}{n^3}\displaystyle\sum_{i=1}^{n} i^2].
 Using the summation formula for [image: \displaystyle\sum_{i=1}^{n} i^2], we have,
 [image: \begin{array}{ll} \displaystyle\sum_{i=1}^{n} f(x_i)\Delta x & =\frac{8}{n^3}\displaystyle\sum_{i=1}^{n} i^2 \\ & =\frac{8}{n^3}\left[\frac{n(n+1)(2n+1)}{6}\right] \\ & =\frac{8}{n^3}\left[\frac{2n^3+3n^2+n}{6}\right] \\ & =\frac{16n^3+24n^2+n}{6n^3} \\ & =\frac{8}{3}+\frac{4}{n}+\frac{1}{6n^2} \end{array}]
 Now, to calculate the definite integral, we need to take the limit as [image: n\to \infty]. We get,
 [image: \begin{array}{ll} \displaystyle\int_0^2 x^2 dx & =\underset{n\to \infty }{\lim} \displaystyle\sum_{i=1}^{n} f(x_i)\Delta x \\ & =\underset{n\to \infty }{\lim}\left(\frac{8}{3}+\frac{4}{n}+\frac{1}{6n^2}\right) \\ & =\underset{n\to \infty }{\lim}\left(\frac{8}{3}\right)+\underset{n\to \infty }{\lim}\left(\frac{4}{n}\right)+\underset{n\to \infty }{\lim}\left(\frac{1}{6n^2}\right) \\ & =\frac{8}{3}+0+0=\frac{8}{3} \end{array}]
   Evaluating Definite Integrals
 Evaluating definite integrals using Riemann sums can be quite tedious due to the complexity of the calculations. Later in this chapter, we will learn techniques for evaluating definite integrals without taking the limits of Riemann sums.
 For now, we can rely on the fact that definite integrals represent the area under the curve. We can evaluate definite integrals by using geometric formulas to calculate that area. This helps us confirm that definite integrals do indeed represent areas, and we can then discuss how to handle cases where the curve of a function drops below the [image: x]-axis.
 Use the formula for the area of a circle to evaluate [image: \displaystyle\int_3^6 \sqrt{9-(x-3)^2} dx].
 Show Solution 
 The function describes a semicircle with radius [image: 3]. To find
 [image: \displaystyle\int_3^6 \sqrt{9-(x-3)^2} dx],
  
 we want to find the area under the curve over the interval [image: [3,6]]. The formula for the area of a circle is [image: A=\pi r^2]. The area of a semicircle is just one-half the area of a circle, or [image: A=(\frac{1}{2})\pi r^2]. The shaded area in Figure 1 covers one-half of the semicircle, or [image: A=(\frac{1}{4})\pi r^2]. Thus,
 [image: \begin{array}{ll} \displaystyle\int_3^6 \sqrt{9-(x-3)^2} & =\frac{1}{4}\pi (3)^2 \\ & =\frac{9}{4}\pi \\ & \approx 7.069. \end{array}]
  
  
 [image: A graph of a semi circle in quadrant one over the interval [0,6] with center at (3,0). The area under the curve over the interval [3,6] is shaded in blue.]Figure 1. The value of the integral of the function [image: f(x)] over the interval [image: [3,6]] is the area of the shaded region. 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=tto0E7yOSLo%3Fcontrols%3D0%26end%3D689%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.2 The Definite Integral” here (opens in new window).
   Use the formula for the area of a trapezoid to evaluate [image: \displaystyle\int_2^4 (2x+3) dx].
 Hint 
 Graph the function [image: f(x)] and calculate the area under the function on the interval [image: [2,4]].
  Show Solution 
 [image: 18] square units
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				Area and the Definite Integral
 When we defined the definite integral, we lifted the requirement that [image: f(x)] be nonnegative. But how do we interpret “the area under the curve” when [image: f(x)] is negative?
 Net Signed Area
 Let us return to the Riemann sum.
 Consider, for example, the function [image: f(x)=2-2x^2] (shown in Figure 2) on the interval [image: [0,2]]. Use [image: n=8] and choose [image: x_i^*] as the left endpoint of each interval. Construct a rectangle on each subinterval of height [image: f(x_i^*)] and width [image: \Delta x].
 [image: A graph of a downward opening parabola over [-1, 2] with vertex at (0,2) and x-intercepts at (-1,0) and (1,0). Eight rectangles are drawn evenly over [0,2] with heights determined by the value of the function at the left endpoints of each.]Figure 2. For a function that is partly negative, the Riemann sum is the area of the rectangles above the [image: x]-axis minus the area of the rectangles below the [image: x]-axis. When [image: f(x_i^*)] is positive, the product [image: f(x_i^*) \Delta x] represents the area of the rectangle, as before. When [image: f(x_i^*)] is negative, however, the product [image: f(x_i^*) \Delta x] represents the negative of the area of the rectangle.
 The Riemann sum then becomes
 [image: \displaystyle\sum_{i=1}^{8}f(x_i^*) \Delta x =] (Area of rectangles above the [image: x]-axis) [image: -] (Area of rectangles below the [image: x]-axis)
  
 
 Taking the limit as [image: n\to \infty], the Riemann sum approaches the area between the curve above the [image: x]-axis and the [image: x]-axis, minus the area between the curve below the [image: x]-axis and the [image: x]-axis, as shown in Figure 3.
 [image: A graph of a downward opening parabola over [-2, 2] with vertex at (0,2) and x-intercepts at (-1,0) and (1,0). The area in quadrant one under the curve is shaded blue and labeled A1. The area in quadrant four above the curve and to the left of x=2 is shaded blue and labeled A2.]Figure 3. In the limit, the definite integral equals area [image: A_1] minus area [image: A_2], or the net signed area. Then,
 [image: \begin{array}{ll} \displaystyle\int_0^2 f(x) dx & =\underset{n\to \infty}{\lim} \displaystyle\sum_{i=1}^{n} f(c_i) \Delta x \\ & =A_1-A_2 \end{array}]
 The quantity [image: A_1-A_2] is called the net signed area.
 Notice that net signed area can be positive, negative, or zero. If the area above the [image: x]-axis is larger, the net signed area is positive. If the area below the [image: x]-axis is larger, the net signed area is negative. If the areas above and below the [image: x]-axis are equal, the net signed area is zero.
  Find the net signed area between the curve of the function [image: f(x)=2x] and the [image: x]-axis over the interval [image: [-3,3]].
 Show Solution 
 The function produces a straight line that forms two triangles: one from [image: x=-3] to [image: x=0] and the other from [image: x=0] to [image: x=3] (Figure 4). Using the geometric formula for the area of a triangle, [image: A=\frac{1}{2}bh], the area of triangle [image: A_1], above the axis, is
 [image: A_1=\frac{1}{2}3(6)=9],
 where [image: 3] is the base and [image: 2(3)=6] is the height. The area of triangle [image: A_2], below the axis, is
 [image: A_2=\frac{1}{2}(3)(6)=9],
 where [image: 3] is the base and [image: 6] is the height. Thus, the net area is
 [image: \displaystyle\int_{-3}^3 2x dx=A_1-A_2=9-9=0].
 [image: A graph of an increasing line over [-6, 6] going through the origin and (-3, -6) and (3,6). The area under the line in quadrant one over [0,3] is shaded blue and labeled A1, and the area above the line in quadrant three over [-3,0] is shaded blue and labeled A2.]Figure 4. The area above the curve and below the [image: x]-axis equals the area below the curve and above the [image: x]-axis. 
 Analysis
 If [image: A_1] is the area above the [image: x]-axis and [image: A_2] is the area below the [image: x]-axis, then the net area is [image: A_1-A_2]. Since the areas of the two triangles are equal, the net area is zero.
 Starting at timestamp 8:40, watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=tto0E7yOSLo%3Fenablejsapi%3D1+
  
 
You can view the transcript for this segmented clip of “5.2 The Definite Integral” here (opens in new window).
   Total Area
 One application of the definite integral is finding displacement when given a velocity function. If [image: v(t)] represents the velocity of an object as a function of time, then the area under the curve tells us how far the object is from its original position.
 This is a very important application of the definite integral, and we examine it in more detail later in the chapter. For now, we’re just going to look at some basics to get a feel for how this works by studying constant velocities.
 When velocity is a constant, the area under the curve is just velocity times time. This idea is already very familiar.
 If a car travels away from its starting position in a straight line at a speed of [image: 70] mph for [image: 2] hours, then it is [image: 140] mi away from its original position (Figure 6). Using integral notation, we have
 [image: \displaystyle\int_0^2 70 dt=140]
 [image: A graph in quadrant 1 with the x-axis labeled as t (hours) and y-axis labeled as v (mi/hr). The area under the line v(t) = 75 is shaded blue over [0,2].]Figure 6. The area under the curve [image: v(t)=75] tells us how far the car is from its starting point at a given time. 
 In the context of displacement, net signed area allows us to take direction into account.
 If a car travels straight north at a speed of [image: 60] mph for [image: 2] hours, it is [image: 120] mi north of its starting position. If the car then turns around and travels south at a speed of [image: 40] mph for [image: 3] hours, it will be back at it starting position (Figure 7).
 [image: A graph in quadrants one and four with the x-axis labeled as t (hours) and the y axis labeled as v (mi/hr). The first part of the graph is the line v(t) = 60 over [0,2], and the area under the line in quadrant one is shaded. The second part of the graph is the line v(t) = -40 over [2,5], and the area above the line in quadrant four is shaded.]Figure 7. The area above the axis and the area below the axis are equal, so the net signed area is zero. Again, using integral notation, we have
 [image: \begin{array}{ll} \displaystyle\int_0^2 60 dt + \displaystyle\int_2^5 -40 dt & =120-120 \\ & =0 \end{array}]
 In this case the displacement is zero. 
 Suppose we want to know how far the car travels overall, regardless of direction. In this case, we want to know the area between the curve and the [image: x]-axis, regardless of whether that area is above or below the axis. This is called the total area.
 Graphically, it is easiest to think of calculating total area by adding the areas above the axis and the areas below the axis (rather than subtracting the areas below the axis, as we did with net signed area).
 To accomplish this mathematically, we use the absolute value function. Thus, the total distance traveled by the car is
 [image: \begin{array}{ll} \displaystyle\int_0^2 |60| dt + \displaystyle\int_2^5 |-40| dt & = \displaystyle\int_0^2 60 dt + \displaystyle\int_2^5 40 dt \\ & =120+120 \\ & =240 \end{array}]
  Bringing these ideas together formally, we state the following definitions.
 net signed area and total area
 Let [image: f(x)] be an integrable function defined on an interval [image: [a,b]]. Let [image: A_1] represent the area between [image: f(x)] and the [image: x]-axis that lies above the axis and let [image: A_2] represent the area between [image: f(x)] and the [image: x]-axis that lies below the axis.
  
 Then, the net signed area between [image: f(x)] and the [image: x]-axis is given by
 [image: \displaystyle\int_a^b f(x) dx = A_1-A_2]
  
 The total area between [image: f(x)] and the [image: x]-axis is given by
 [image: \displaystyle\int_a^b |f(x)| dx = A_1+A_2]
  Find the total area between [image: f(x)=x-2] and the [image: x]-axis over the interval [image: [0,6]].
 Show Solution 
 Calculate the [image: x]-intercept as [image: (2,0)] (set [image: y=0], solve for [image: x]). To find the total area, take the area below the [image: x]-axis over the subinterval [image: [0,2]] and add it to the area above the [image: x]-axis on the subinterval [image: [2,6]] (Figure 8).
 [image: A graph of a increasing line f(x) = x-2 going through the points (-2,-4), (0,2), (2,0), (4,2), and (6,4). The area under the line in quadrant one and to the left of the line x=6 is shaded and labeled A1. The area above the line in quadrant four is shaded and labeled A2.]Figure 8. The total area between the line and the [image: x]-axis over [image: [0,6]] is [image: A_2] plus [image: A_1]. We have
 [image: \displaystyle\int_0^6 |(x-2)| dx = A_2+A_1]
 Then, using the formula for the area of a triangle, we obtain
 [image: A_2=\frac{1}{2}bh=\frac{1}{2} \cdot 2 \cdot 2=2]
 [image: A_1=\frac{1}{2}bh=\frac{1}{2} \cdot 4 \cdot 4=8]
 The total area, then, is
 [image: A_1+A_2=8+2=10].
  
 Starting at timestamp 11:34, watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=tto0E7yOSLo%3Fenablejsapi%3D1+
  
 
You can view the transcript for this segmented clip of “5.2 The Definite Integral” here (opens in new window). 
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				Properties of the Definite Integral
 The properties of indefinite integrals apply to definite integrals as well. Definite integrals also have properties related to the limits of integration. These properties, along with the rules of integration that we examine later, help us manipulate expressions to evaluate definite integrals.
 Properties of the Definite Integral
 	[image: \displaystyle\int_a^a f(x) dx = 0]
 If the limits of integration are the same, the integral is just a line and contains no area.
 
 	[image: \displaystyle\int_b^a f(x) dx = −\displaystyle\int_a^b f(x) dx]
 If the limits are reversed, then place a negative sign in front of the integral.
 
 	[image: \displaystyle\int_a^b [f(x)+g(x)] dx = \displaystyle\int_a^b f(x) dx + \displaystyle\int_a^b g(x) dx]
 The integral of a sum is the sum of the integrals.
 
 	[image: \displaystyle\int_a^b [f(x)-g(x)] dx = \displaystyle\int_a^b f(x) dx - \displaystyle\int_a^b g(x) dx]
 The integral of a difference is the difference of the integrals.
 
 	[image: \displaystyle\int_a^b cf(x) dx= c \displaystyle\int_a^b f(x) dx]
 for constant [image: c]. The integral of the product of a constant and a function is equal to the constant multiplied by the integral of the function.
 
 	[image: \displaystyle\int_a^b f(x) dx = \displaystyle\int_a^c f(x) dx + \displaystyle\int_c^b f(x) dx]
 Although this formula normally applies when [image: c] is between [image: a] and [image: b], the formula holds for all values of [image: a], [image: b], and [image: c], provided [image: f(x)] is integrable on the largest interval.
 
 
  Use the properties of the definite integral to express the definite integral of [image: f(x)=-3x^3+2x+2] over the interval [image: [-2,1]] as the sum of three definite integrals.
 Show Solution 
 Using integral notation, we have [image: \displaystyle\int_{-2}^1 (-3x^3+2x+2) dx]. We apply properties 3 and 5 to get
 [image: \begin{array}{ll} \displaystyle\int_{-2}^1 (-3x^3+2x+2) dx & = \displaystyle\int_{-2}^1 -3x^3 dx + \displaystyle\int_{-2}^1 2x dx + \displaystyle\int_{-2}^1 2 dx \\ & =-3 \displaystyle\int_{-2}^1 x^3 dx + 2 \displaystyle\int_{-2}^1 x dx + \displaystyle\int_{-2}^1 2 dx \end{array}]
  If it is known that [image: \displaystyle\int_0^8 f(x) dx = 10] and [image: \displaystyle\int_0^5 f(x) dx = 5], find the value of [image: \displaystyle\int_5^8 f(x) dx].
 Show Solution 
 By property 6,
 [image: \displaystyle\int_a^b f(x) dx = \displaystyle\int_a^c f(x) dx + \displaystyle\int_c^b f(x) dx].
 Thus,
 [image: \begin{array}{lll} \displaystyle\int_0^8 f(x) dx & = & \displaystyle\int_0^5 f(x) dx + \displaystyle\int_5^8 f(x) dx \\ 10 & = & 5 + \displaystyle\int_5^8 f(x) dx \\ 5 & = & \displaystyle\int_5^8 f(x) dx \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=tto0E7yOSLo%3Fcontrols%3D0%26start%3D1016%26end%3D1107%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.2 The Definite Integral” here (opens in new window). 
  Comparison Properties of Integrals
 A picture can sometimes tell us more about a function than the results of computations. Comparing functions by their graphs as well as by their algebraic expressions can often give new insight into the process of integration.
 Intuitively, we might say that if a function [image: f(x)] is above another function [image: g(x)], then the area between [image: f(x)] and the [image: x]-axis is greater than the area between [image: g(x)] and the [image: x]-axis. This is true depending on the interval over which the comparison is made. The properties of definite integrals are valid whether [image: a<b, \, a=b], or [image: a>b].
 The following properties, however, concern only the case [image: a \le b], and are used when we want to compare the sizes of integrals.
 Comparison Theorem
 	If [image: f(x) \ge 0] for [image: a \le x \le b], then [image: \displaystyle\int_a^b f(x) dx \ge 0].
 
 	If [image: f(x) \ge g(x)] for [image: a \le x \le b], then [image: \displaystyle\int_a^b f(x) dx \ge \displaystyle\int_a^b g(x) dx].
 
 	If [image: m] and [image: M] are constants such that [image: m \le f(x) \le M] for [image: a \le x \le b], then [image: m(b-a) \le \displaystyle\int_a^b f(x) dx \le M(b-a)].
 
 
  Compare [image: f(x)=\sqrt{1+x^2}] and [image: g(x)=\sqrt{1+x}] over the interval [image: [0,1]].
 Show Solution 
 Graphing these functions is necessary to understand how they compare over the interval [image: [0,1]].
 Initially, when graphed on a graphing calculator, [image: f(x)] appears to be above [image: g(x)] everywhere. However, on the interval [image: [0,1]], the graphs appear to be on top of each other. We need to zoom in to see that, on the interval [image: [0,1], \, g(x)] is above [image: f(x)].
 The two functions intersect at [image: x=0] and [image: x=1] (Figure 9).
 [image: A graph of the function f(x) = sqrt(1 + x^2) in red and g(x) = sqrt(1 + x) in blue over [-2, 3]. The function f(x) appears above g(x) except over the interval [0,1]. A second, zoomed-in graph shows this interval more clearly.]Figure 9. (a) The function [image: f(x)] appears above the function [image: g(x)] except over the interval [image: [0,1]] (b) Viewing the same graph with a greater zoom shows this more clearly. We can see from the graph that over the interval [image: [0,1], \, g(x) \ge f(x)].
 Comparing the integrals over the specified interval [image: [0,1]], we also see that [image: \displaystyle\int_0^1 g(x) dx \ge \displaystyle\int_0^1 f(x) dx] (Figure 10). The thin, red-shaded area shows just how much difference there is between these two integrals over the interval [image: [0,1]].
 [image: A graph showing the functions f(x) = sqrt(1 + x^2) and g(x) = sqrt(1 + x) over [-3, 3]. The area under g(x) in quadrant one over [0,1] is shaded. The area under g(x) and f(x) is included in this shaded area. The second, zoomed-in graph shows more clearly that equality between the functions only holds at the endpoints.]Figure 10. (a) The graph shows that over the interval [image: [0,1], \, g(x) \ge f(x)], where equality holds only at the endpoints of the interval. (b) Viewing the same graph with a greater zoom shows this more clearly. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=tto0E7yOSLo%3Fcontrols%3D0%26start%3D1240%26end%3D1411%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.2 The Definite Integral” here (opens in new window).
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				Average Value of a Function
 We often need to find the average of a set of numbers, such as an average test grade.
 Suppose you received the following test scores in your algebra class: [image: 89, 90, 56, 78, 100], and [image: 69]. Your semester grade is your average of test scores and you want to know what grade to expect.
 We can find the average by adding all the scores and dividing by the number of scores. In this case, there are six test scores. Thus,
 [image: \dfrac{89+90+56+78+100+69}{6}=\dfrac{482}{6}\approx 80.33]
 Therefore, your average test grade is approximately [image: 80.33].
  Suppose, however, that we have a function [image: v(t)] that gives us the speed of an object at any time [image: t], and we want to find the object’s average speed. The function [image: v(t)] takes on an infinite number of values, so we can’t use the process just described. Fortunately, we can use a definite integral to find the average value of a function such as this.
 Let [image: f(x)] be continuous over the interval [image: [a,b]] and let [image: [a,b]] be divided into [image: n] subintervals of width [image: \Delta x=\frac{(b-a)}{n}]. Choose a representative [image: x_i^*] in each subinterval and calculate [image: f(x_i^*)] for [image: i=1,2, \cdots , n].
 In other words, consider each [image: f(x_i^*)] as a sampling of the function over each subinterval. The average value of the function may then be approximated as,
 [image: \dfrac{f(x_1^*)+f(x_2^*)+ \cdots +f(x_n^*)}{n}],
 which is basically the same expression used to calculate the average of discrete values.
 But we know [image: \Delta x=\frac{b-a}{n}], so [image: n=\frac{b-a}{\Delta x}], and we get,
 [image: \dfrac{f(x_1^*)+f(x_2^*)+ \cdots +f(x_n^*)}{n}=\dfrac{f(x_1^*)+f(x_2^*)+ \cdots +f(x_n^*)}{\dfrac{(b-a)}{\Delta x}}].
 Following through with the algebra, the numerator is a sum that is represented as [image: \displaystyle\sum_{i=1}^{n} f(x_i^*)], and we are dividing by a fraction. 
 To divide by a fraction, invert the denominator and multiply.
  Thus, an approximate value for the average value of the function is given by,
 [image: \begin{array}{ll}\frac{\displaystyle\sum_{i=1}^{n} f(x_i^*)}{\dfrac{\left(b-a\right)}{\Delta x}} & =\left(\dfrac{\Delta x}{b-a}\right)\displaystyle\sum_{i=1}^{n} f(x_i^*) \\ & =\left(\dfrac{1}{b-a}\right)\displaystyle\sum_{i=1}^{n} f(x_i^*) \Delta x \end{array}]
 This is a Riemann sum. To get the exact average value, take the limit as [image: n] goes to infinity. Thus, the average value of a function is given by,
 [image: \dfrac{1}{b-a}\underset{n\to \infty }{\lim}\displaystyle\sum_{i=1}^{n} f(x_i) \Delta x=\dfrac{1}{b-a} \displaystyle\int_a^b f(x) dx].
 average value of a function
 Let [image: f(x)] be continuous over the interval [image: [a,b]]. Then, the average value of the function [image: f(x)] (or [image: f_{\text{ave}}]) on [image: [a,b]] is given by,
 [image: f_{\text{ave}}=\dfrac{1}{b-a} \displaystyle\int_a^b f(x) dx].
  Find the average value of [image: f(x)=x+1] over the interval [image: [0,5]].
 Show Solution 
 First, graph the function on the stated interval, as shown in Figure 11.
 [image: A graph in quadrant one showing the shaded area under the function f(x) = x + 1 over [0,5].]Figure 11. The graph shows the area under the function [image: f(x)=x+1] over [image: [0,5]]. The region is a trapezoid lying on its side, so we can use the area formula for a trapezoid [image: A=\frac{1}{2}h(a+b)], where [image: h] represents height, and [image: a] and [image: b] represent the two parallel sides. Then,
 [image: \begin{array}{ll} \displaystyle\int_0^5 x+1 dx & =\frac{1}{2}h(a+b) \\ & =\frac{1}{2} \cdot 5 \cdot (1+6) \\ & =\frac{35}{2} \end{array}]
 Thus the average value of the function is
 [image: \frac{1}{5-0} \displaystyle\int_0^5 x+1 dx = \frac{1}{5} \cdot \frac{35}{2}=\frac{7}{2}.]
 Watch the following video to see the worked solution to Example: Finding the Average Value of a Linear Function.
 https://youtube.com/watch?v=tto0E7yOSLo%3Fcontrols%3D0%26start%3D1427%26end%3D1559%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.2 The Definite Integral” here (opens in new window). 
  [ohm_question hide_question_numbers=1]20448[/ohm_question]
  
 
	

			CC licensed content, Original
	5.2 The Definite Integral. Authored by: Ryan Melton. License: CC BY: Attribution

CC licensed content, Shared previously
	Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Retrieved from: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction



			


		
	
		
			
	
		167

		The Definite Integral: Apply It

								

	
				 	Recognize the parts of an integral and when it can be used
 	Explain how definite integrals relate to the net area under a curve and use geometry to evaluate them
 	Determine the average value of a function
 
  Exploring Definite Integrals: Properties, Comparisons, and Average Values
 In this apply-it task, we’ll dive into the fundamental properties of definite integrals, explore how to compare integrals, and calculate the average value of functions over given intervals. These concepts are crucial for understanding the behavior of functions and their integrals, and have wide-ranging applications in physics, engineering, and economics. Let’s put your knowledge to the test!
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				 	Understand the Mean Value Theorem for Integrals and both components of the Fundamental Theorem of Calculus
 	Use the Fundamental Theorem of Calculus to find derivatives of integral functions and calculate definite integrals
 	Describe how differentiation and integration are interconnected
 
  In the previous two sections, we looked at the definite integral and its relationship to the area under the curve of a function. Unfortunately, the only tools we have available to calculate the value of a definite integral are geometric area formulas and limits of Riemann sums, and both approaches are extremely cumbersome. In this section, we will look at more powerful and useful techniques for evaluating definite integrals.
 These new techniques rely on the relationship between differentiation and integration. This relationship was discovered and explored by both Sir Isaac Newton and Gottfried Wilhelm Leibniz (among others) during the late 1600s and early 1700s, and it is codified in what we now call the Fundamental Theorem of Calculus.
 Isaac Newton’s contributions to mathematics and physics changed the way we look at the world. The relationships he discovered, codified as Newton’s laws and the law of universal gravitation, are still taught as foundational material in physics today, and his calculus has spawned entire fields of mathematics. To learn more, read a brief biography of Newton with multimedia clips.
  The Mean Value Theorem for Integrals
 The Mean Value Theorem for Integrals states that a continuous function on a closed interval takes on its average value at the same point in that interval. The theorem guarantees that if [image: f(x)] is continuous, a point [image: c] exists in an interval [image: \left[a,b\right]] such that the value of the function at [image: c] is equal to the average value of [image: f(x)] over [image: \left[a,b\right].]
 We state this theorem mathematically with the help of the formula for the average value of a function that we presented at the end of the preceding section.
 the mean value theorem for integrals
 If [image: f(x)] is continuous over an interval [image: \left[a,b\right],] then there is at least one point [image: c\in \left[a,b\right]] such that
 [image: f(c)=\frac{1}{b-a}{\displaystyle\int }_{a}^{b}f(x)dx.]
 This formula can also be stated as
 [image: {\displaystyle\int }_{a}^{b}f(x)dx=f(c)(b-a).]
  Proof
 
 Since [image: f(x)] is continuous on [image: \left[a,b\right],] by the extreme value theorem, it assumes minimum and maximum values—[image: m] and M, respectively—on [image: \left[a,b\right].] Then, for all [image: x] in [image: \left[a,b\right],] we have [image: m\le f(x)\le M.] Therefore, by the comparison theorem, we have
 [image: m(b-a)\le {\displaystyle\int }_{a}^{b}f(x)dx\le M(b-a).]
 Dividing by [image: b-a] gives us
 [image: m\le \frac{1}{b-a}{\displaystyle\int }_{a}^{b}f(x)dx\le M.]
 Since [image: \frac{1}{b-a}{\displaystyle\int }_{a}^{b}f(x)dx] is a number between [image: m] and M, and since [image: f(x)] is continuous and assumes the values [image: m] and M over [image: \left[a,b\right],] by the Intermediate Value Theorem, there is a number [image: c] over [image: \left[a,b\right]] such that
 [image: f(c)=\dfrac{1}{b-a}{\displaystyle\int}_{a}^{b}f(x)dx,]
 and the proof is complete.
 [image: _\blacksquare]
  Find the average value of the function [image: f(x)=8-2x] over the interval [image: \left[0,4\right]] and find [image: c] such that [image: f(c)] equals the average value of the function over [image: \left[0,4\right].]
 Show Solution The formula states the mean value of [image: f(x)] is given by
 [image: \frac{1}{4-0}{\displaystyle\int }_{0}^{4}(8-2x)dx.]
 We can see in Figure 1 that the function represents a straight line and forms a right triangle bounded by the [image: x]– and [image: y]-axes. The area of the triangle is [image: A=\frac{1}{2}(\text{base})(\text{height}).] We have
 [image: A=\frac{1}{2}(4)(8)=16.]
 The average value is found by multiplying the area by [image: \frac{1}{(4-0)}.] Thus, the average value of the function is
 [image: \frac{1}{4}(16)=4.]
 Set the average value equal to [image: f(c)] and solve for [image: c].
 [image: \begin{array}{ccc}8-2c\hfill & =\hfill & 4\hfill \\ \hfill c& =\hfill & 2\hfill \end{array}]
 At [image: c=2,f(2)=4.]
 [image: The graph of a decreasing line f(x) = 8 – 2x over [-1,4.5]. The line y=4 is drawn over [0,4], which intersects with the line at (2,4). A line is drawn down from (2,4) to the x axis and from (4,4) to the y axis. The area under y=4 is shaded.]Figure 1. By the Mean Value Theorem, the continuous function [image: f(x)] takes on its average value at c at least once over a closed interval. Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=UdsTNaiWmbs%3Fcontrols%3D0%26start%3D76%26end%3D215%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.3 The Fundamental Theorem of Calculus” here (opens in new window). 
  Given [image: {\displaystyle\int }_{0}^{3}{x}^{2}dx=9,] find [image: c] such that [image: f(c)] equals the average value of [image: f(x)={x}^{2}] over [image: \left[0,3\right].]
 Show Solution 
 We are looking for the value of [image: c] such that
 [image: f(c)=\frac{1}{3-0}{\displaystyle\int }_{0}^{3}{x}^{2}dx=\frac{1}{3}(9)=3.]
 Replacing [image: f(c)] with [image: c^2], we have
 [image: \begin{array}{ccc}{c}^{2}\hfill & =\hfill & 3\hfill \\ c\hfill & =\hfill & \text{±}\sqrt{3}.\hfill \end{array}]
 Since [image: \text{−}\sqrt{3}] is outside the interval, take only the positive value. Thus, [image: c=\sqrt{3}] (Figure 2).
 [image: A graph of the parabola f(x) = x^2 over [-2, 3]. The area under the curve and above the x axis is shaded, and the point (sqrt(3), 3) is marked.]Figure 2. Over the interval [image: \left[0,3\right],] the function [image: f(x)={x}^{2}] takes on its average value at [image: c=\sqrt{3}.] Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=UdsTNaiWmbs%3Fcontrols%3D0%26start%3D218%26end%3D299%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.3 The Fundamental Theorem of Calculus” here (opens in new window). 
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				Fundamental Theorem of Calculus Part 1: Integrals and Antiderivatives
 As mentioned earlier, the Fundamental Theorem of Calculus is an extremely powerful theorem that establishes the relationship between differentiation and integration, and gives us a way to evaluate definite integrals without using Riemann sums or calculating areas.
 The theorem is comprised of two parts. The first part, which is stated here, establishes the relationship between differentiation and integration.
 Fundamental Theorem of Calculus, Part 1
 If [image: f(x)] is continuous over an interval [image: \left[a,b\right],] and the function [image: F(x)] is defined by
 [image: F(x)={\displaystyle\int }_{a}^{x}f(t)dt,]
 then [image: {F}^{\prime }(x)=f(x)] over [image: \left[a,b\right].]
  Before we look at the proof, let’s clarify a few points:
 	Notation: We define [image: F(x)] as the definite integral of [image: f(t)] from [image: a] to [image: x]. This might seem confusing because we’ve said a definite integral is a number. However, [image: F(x)] is a function that gives the value of the definite integral for each [image: x].
 
 	Implications: The Fundamental Theorem of Calculus is crucial because it shows that integration and differentiation are inverse processes. It guarantees that any continuous function [image: f(x)] has an antiderivative [image: F(x)].
 
 Proof
 
 Applying the definition of the derivative, we have
 [image: \begin{array}{}{F}^{\prime }(x)\hfill & =\underset{h\to 0}{\text{lim}}\dfrac{F(x+h)-F(x)}{h}\hfill \\ & =\underset{h\to 0}{\text{lim}}\dfrac{1}{h}\left[{\displaystyle\int }_{a}^{x+h}f(t)dt-{\displaystyle\int }_{a}^{x}f(t)dt\right]\hfill \\ & =\underset{h\to 0}{\text{lim}}\dfrac{1}{h}\left[{\displaystyle\int }_{a}^{x+h}f(t)dt+{\displaystyle\int }_{x}^{a}f(t)dt\right]\hfill \\ & =\underset{h\to 0}{\text{lim}}\dfrac{1}{h}{\displaystyle\int }_{x}^{x+h}f(t)dt.\hfill \end{array}]
 Looking carefully at this last expression, we see [image: \dfrac{1}{h}{\displaystyle\int }_{x}^{x+h}f(t)dt] is just the average value of the function [image: f(x)] over the interval [image: \left[x,x+h\right].] Therefore, by the mean value theorem for integrals, there is some number [image: c] in [image: \left[x,x+h\right]] such that
 [image: \dfrac{1}{h}{\displaystyle\int }_{x}^{x+h}f(x)dx=f(c).]
 In addition, since [image: c] is between [image: x] and [image: x+h], [image: c] approaches [image: x] as [image: h] approaches zero. Also, since [image: f(x)] is continuous, we have [image: \underset{h\to 0}{\text{lim}}f(c)=\underset{c\to x}{\text{lim}}f(c)=f(x).]
 Putting all these pieces together, we have
 [image: \begin{array}{}{F}^{\prime }(x)\hfill & =\underset{h\to 0}{\text{lim}}\frac{1}{h}{\displaystyle\int }_{x}^{x+h}f(x)dx\hfill \\ & =\underset{h\to 0}{\text{lim}}f(c)\hfill \\ & =f(x),\hfill \end{array}]
 and the proof is complete.
 [image: _\blacksquare]
  Use the first part of the Fundamental Theorem of Calculus to find the derivative of
 [image: g(x)={\displaystyle\int }_{1}^{x}\dfrac{1}{{t}^{3}+1}dt.]
 Show Solution 
 According to the Fundamental Theorem of Calculus, the derivative is given by
 [image: {g}^{\prime }(x)=\frac{1}{{x}^{3}+1}.]
  Let [image: F(x)={\displaystyle\int }_{1}^{\sqrt{x}} \sin tdt.] Find [image: {F}^{\prime }(x).]
 Show Solution 
 Letting [image: u(x)=\sqrt{x},] we have [image: F(x)={\displaystyle\int }_{1}^{u(x)} \sin tdt.] Thus, by the Fundamental Theorem of Calculus and the chain rule,
 [image: \begin{array}{}\\ {F}^{\prime }(x)\hfill & = \sin (u(x))\frac{du}{dx}\hfill \\ & = \sin (u(x))·(\frac{1}{2}{x}^{-1\text{/}2})\hfill \\ & =\frac{ \sin \sqrt{x}}{2\sqrt{x}}.\hfill \end{array}]
 
 
  Let [image: F(x)={\displaystyle\int }_{x}^{2x}{t}^{3}dt.] Find [image: {F}^{\prime }(x).]
 Show Solution 
 We have [image: F(x)={\displaystyle\int }_{x}^{2x}{t}^{3}dt.] Both limits of integration are variable, so we need to split this into two integrals. We get
 [image: \begin{array}{}\\ F(x)\hfill & ={\displaystyle\int }_{x}^{2x}{t}^{3}dt\hfill \\ & ={\displaystyle\int }_{x}^{0}{t}^{3}dt+{\displaystyle\int }_{0}^{2x}{t}^{3}dt\hfill \\ & =\text{−}{\displaystyle\int }_{0}^{x}{t}^{3}dt+{\displaystyle\int }_{0}^{2x}{t}^{3}dt.\hfill \end{array}]
 Differentiating the first term, we obtain
 [image: \frac{d}{dx}\left[\text{−}{\displaystyle\int }_{0}^{x}{t}^{3}dt\right]=\text{−}{x}^{3}.]
 Differentiating the second term, we first let [image: u(x)=2x.] Then,
 [image: \begin{array}{}\\ \frac{d}{dx}\left[{\displaystyle\int }_{0}^{2x}{t}^{3}dt\right]\hfill & =\frac{d}{dx}\left[{\displaystyle\int }_{0}^{u(x)}{t}^{3}dt\right]\hfill \\ & ={(u(x))}^{3}\frac{du}{dx}\hfill \\ & ={(2x)}^{3}·2\hfill \\ & =16{x}^{3}.\hfill \end{array}]
 Thus,
 [image: \begin{array}{}\\ \\ {F}^{\prime }(x)\hfill & =\frac{d}{dx}\left[\text{−}{\displaystyle\int }_{0}^{x}{t}^{3}dt\right]+\frac{d}{dx}\left[{\displaystyle\int }_{0}^{2x}{t}^{3}dt\right]\hfill \\ & =\text{−}{x}^{3}+16{x}^{3}\hfill \\ & =15{x}^{3}.\hfill \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=UdsTNaiWmbs%3Fcontrols%3D0%26start%3D707%26end%3D831%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.3 The Fundamental Theorem of Calculus” here (opens in new window). 
 
  [ohm_question hide_question_numbers=1]288431[/ohm_question]
  [ohm_question hide_question_numbers=1]288432[/ohm_question]
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				Fundamental Theorem of Calculus, Part 2: The Evaluation Theorem
 The Fundamental Theorem of Calculus, Part 2, is perhaps the most important theorem in calculus. After tireless efforts by mathematicians for approximately 500 years, new techniques emerged that provided scientists with the necessary tools to explain many phenomena. Using calculus, astronomers could finally determine distances in space and map planetary orbits. Everyday financial problems such as calculating marginal costs or predicting total profit could now be handled with simplicity and accuracy. Engineers could calculate the bending strength of materials or the three-dimensional motion of objects. Our view of the world was forever changed with calculus.
 After finding approximate areas by adding the areas of [image: n] rectangles, the application of this theorem is straightforward by comparison. It almost seems too simple that the area of an entire curved region can be calculated by just evaluating an antiderivative at the first and last endpoints of an interval.
 The Fundamental Theorem of Calculus, Part 2
 If [image: f] is continuous over the interval [image: \left[a,b\right]] and [image: F(x)] is any antiderivative of [image: f(x),] then
 [image: {\displaystyle\int }_{a}^{b}f(x)dx=F(b)-F(a)]
  We often see the notation [image: {F(x)|}_{a}^{b}] to denote the expression [image: F(b)-F(a).]
 We use this vertical bar and associated limits [image: a] and [image: b] to indicate that we should evaluate the function [image: F(x)] at the upper limit (in this case, [image: b]), and subtract the value of the function [image: F(x)] evaluated at the lower limit (in this case, [image: a]).
  The Fundamental Theorem of Calculus, Part 2 (also known as the evaluation theorem) states that if we can find an antiderivative for the integrand, then we can evaluate the definite integral by evaluating the antiderivative at the endpoints of the interval and subtracting.
 Proof
 
 Let [image: P=\left\{{x}_{i}\right\},i=0,1\text{,…,}n] be a regular partition of [image: \left[a,b\right].] Then, we can write
 [image: \begin{array}{cc}F(b)-F(a)\hfill & =F({x}_{n})-F({x}_{0})\hfill \\ & =\left[F({x}_{n})-F({x}_{n-1})\right]+\left[F({x}_{n-1})-F({x}_{n-2})\right]+\text{…}+\left[F({x}_{1})-F({x}_{0})\right]\hfill \\ \\ & =\underset{i=1}{\overset{n}{\text{∑}}}\left[F({x}_{i})-F({x}_{i-1})\right].\hfill \end{array}]
 Now, we know F is an antiderivative of [image: f] over [image: \left[a,b\right],] so by the Mean Value Theorem for [image: i=0,1\text{,…,}n] we can find [image: {c}_{i}] in [image: \left[{x}_{i-1},{x}_{i}\right]] such that
 [image: F({x}_{i})-F({x}_{i-1})={F}^{\prime }({c}_{i})({x}_{i}-{x}_{i-1})=f({c}_{i})\text{Δ}x.]
 Then, substituting into the previous equation, we have
 [image: F(b)-F(a)=\underset{i=1}{\overset{n}{\text{∑}}}f({c}_{i})\text{Δ}x.]
 Taking the limit of both sides as [image: n\to \infty ,] we obtain
 [image: \begin{array}{}\\ \\ F(b)-F(a)\hfill & =\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}f({c}_{i})\text{Δ}x\hfill \\ & ={\displaystyle\int }_{a}^{b}f(x)dx.\hfill \end{array}]
 [image: _\blacksquare]
  Use the second part of the Fundamental Theorem of Calculus to evaluate
 [image: {\displaystyle\int }_{-2}^{2}({t}^{2}-4)dt.]
 Show Solution 
 Recall the power rule for antiderivatives:
 [image: \text{ If }y={x}^{n},\displaystyle\int {x}^{n}dx=\frac{{x}^{n+1}}{n+1}+C.]
 Use this rule to find the antiderivative of the function and then apply the theorem. We have
 [image: \begin{array}{cc}{\displaystyle\int }_{-2}^{2}({t}^{2}-4)dt\hfill & =\frac{{t}^{3}}{3}-{4t|}_{-2}^{2}\hfill \\ \\ \\ & =\left[\frac{{(2)}^{3}}{3}-4(2)\right]-\left[\frac{{(-2)}^{3}}{3}-4(-2)\right]\hfill \\ & =(\frac{8}{3}-8)-(-\frac{8}{3}+8)\hfill \\ & =\frac{8}{3}-8+\frac{8}{3}-8\hfill \\ & =\frac{16}{3}-16\hfill \\ & =-\frac{32}{3}.\hfill \end{array}]
 Analysis
 Notice that we did not include the “+ C” term when we wrote the antiderivative. The reason is that, according to the Fundamental Theorem of Calculus, Part 2, any antiderivative works. So, for convenience, we chose the antiderivative with [image: C=0.] If we had chosen another antiderivative, the constant term would have canceled out. This always happens when evaluating a definite integral.
 The region of the area we just calculated is depicted in Figure 3. Note that the region between the curve and the [image: x]-axis is all below the [image: x]-axis. Area is always positive, but a definite integral can still produce a negative number (a net signed area). For example, if this were a profit function, a negative number indicates the company is operating at a loss over the given interval.
 [image: The graph of the parabola f(t) = t^2 – 4 over [-4, 4]. The area above the curve and below the x axis over [-2, 2] is shaded.]Figure 3. The evaluation of a definite integral can produce a negative value, even though area is always positive.   Use the second part of the Fundamental Theorem of Calculus to evaluate [image: {\displaystyle\int }_{1}^{2}{x}^{-4}dx.]
 Show Solution 
 [image: \frac{7}{24}]
   James and Kathy are racing on roller skates. They race along a long, straight track, and whoever has gone the farthest after [image: 5] sec wins a prize. If James can skate at a velocity of [image: f(t)=5+2t] ft/sec and Kathy can skate at a velocity of [image: g(t)=10+ \cos (\frac{\pi }{2}t)] ft/sec, who is going to win the race?
 Show Solution 
 We need to integrate both functions over the interval [image: \left[0,5\right]] and see which value is bigger. For James, we want to calculate
 [image: {\displaystyle\int }_{0}^{5}(5+2t)dt.]
 Using the power rule, we have
 [image: \begin{array}{cc}{\displaystyle\int }_{0}^{5}(5+2t)dt\hfill & ={(5t+{t}^{2})|}_{0}^{5}\hfill \\ & =(25+25)=50.\hfill \end{array}]
 Thus, James has skated [image: 50] ft after [image: 5] sec. Turning now to Kathy, we want to calculate
 [image: {\displaystyle\int }_{0}^{5}10+ \cos (\frac{\pi }{2}t)dt.]
 We know [image: \sin t] is an antiderivative of [image: \cos t,] so it is reasonable to expect that an antiderivative of [image: \cos (\frac{\pi }{2}t)] would involve [image: \sin (\frac{\pi }{2}t).] However, when we differentiate [image: \sin (\frac{\pi }{2}t),] we get [image: \frac{\pi }{2} \cos (\frac{\pi }{2}t)] as a result of the chain rule, so we have to account for this additional coefficient when we integrate. We obtain
 [image: \begin{array}{cc}{\displaystyle\int }_{0}^{5}10+ \cos (\frac{\pi }{2}t)dt\hfill & ={(10t+\frac{2}{\pi } \sin (\frac{\pi }{2}t))|}_{0}^{5}\hfill \\ & =(50+\frac{2}{\pi })-(0-\frac{2}{\pi } \sin 0)\hfill \\ & \approx 50.6.\hfill \end{array}]
 Kathy has skated approximately [image: 50.6] ft after [image: 5] sec. Kathy wins, but not by much!
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=UdsTNaiWmbs%3Fcontrols%3D0%26start%3D1072%26end%3D1258%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.3 The Fundamental Theorem of Calculus” here (opens in new window).
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				 	Understand the Mean Value Theorem for Integrals and both components of the Fundamental Theorem of Calculus
 	Use the Fundamental Theorem of Calculus to find derivatives of integral functions and calculate definite integrals
 	Describe how differentiation and integration are interconnected
 
  A Parachutist in Free Fall
  
 [image: Two skydivers free falling in the sky.]Figure 5. Skydivers can adjust the velocity of their dive by changing the position of their body during the free fall. (credit: Jeremy T. Lock) Julie is an avid skydiver. She has more than [image: 300] jumps under her belt and has mastered the art of making adjustments to her body position in the air to control how fast she falls. If she arches her back and points her belly toward the ground, she reaches a terminal velocity of approximately [image: 120] mph ([image: 176] ft/sec). If, instead, she orients her body with her head straight down, she falls faster, reaching a terminal velocity of [image: 150] mph ([image: 220] ft/sec).
 Since Julie will be moving (falling) in a downward direction, we assume the downward direction is positive to simplify our calculations. Julie executes her jumps from an altitude of [image: 12,500] ft. After she exits the aircraft, she immediately starts falling at a velocity given by [image: v(t)=32t.] She continues to accelerate according to this velocity function until she reaches terminal velocity. After she reaches terminal velocity, her speed remains constant until she pulls her ripcord and slows down to land.
 On her first jump of the day, Julie orients herself in the slower “belly down” position (terminal velocity is [image: 176] ft/sec). Using this information, answer the following questions.
 [ohm_question hide_question_numbers=1]288189[/ohm_question]
  We can now set up an expression that represents the distance Julie falls after [image: 30] sec.
 [image: \int_0^{5.5} 32t \, dt + \int_{5.5}^{30} 176 \, dt]
 [ohm_question hide_question_numbers=1]288190[/ohm_question]
  [ohm_question hide_question_numbers=1]288191[/ohm_question]
  On Julie’s second jump of the day, she decides she wants to fall a little faster and orients herself in the “head down” position. Her terminal velocity in this position is [image: 220] ft/sec. Answer these questions based on this velocity: 
 [ohm_question hide_question_numbers=1]288192[/ohm_question]
  [ohm_question hide_question_numbers=1]288193[/ohm_question]
  Some jumpers wear “wingsuits” (see Figure 6). These suits have fabric panels between the arms and legs and allow the wearer to glide around in a free fall, much like a flying squirrel. (Indeed, the suits are sometimes called “flying squirrel suits.”) When wearing these suits, terminal velocity can be reduced to about [image: 30] mph ([image: 44] ft/sec), allowing the wearers a much longer time in the air. Wingsuit flyers still use parachutes to land; although the vertical velocities are within the margin of safety, horizontal velocities can exceed [image: 70] mph, much too fast to land safely.
 [image: A person falling in a wingsuit, which works to reduce the vertical velocity of a skydiver’s fall.]Figure 6. The fabric panels on the arms and legs of a wingsuit work to reduce the vertical velocity of a skydiver’s fall. (credit: Richard Schneider) Answer the following question based on the velocity in a wingsuit.
 [ohm_question hide_question_numbers=1]288194[/ohm_question]
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				 	Understand and apply the net change theorem to calculate how quantities change over an interval
 	Use integration formulas to calculate the integrals of odd and even functions
 
  In this section, we will use basic integration formulas to solve key applied problems. It is important to note that these formulas are presented in terms of indefinite integrals. While definite and indefinite integrals are closely related, there are some key differences:
 	A definite integral represents a number (when the limits of integration are constants) or a function (when the limits are variables).
 	An indefinite integral represents a family of functions, all differing by a constant.
 
 As you become more familiar with integration, you will learn when to use definite integrals and when to use indefinite integrals. You will naturally select the correct approach for a given problem without much thought. However, until these concepts are firmly understood, consider carefully whether you need a definite or indefinite integral and use the proper notation accordingly.
 Basic Integration Formulas
 To solve problems using integration, we need to recall the integration formulas given in the Table of Antiderivatives (below) and the properties of definite integrals covered in the Differentiation Rules section.
 Integration Formulas 	Differentiation Formula 	Indefinite Integral 
  	[image: \frac{d}{dx}(k)=0] 	[image: \displaystyle\int kdx=\displaystyle\int kx^0 dx=kx+C] 
 	[image: \frac{d}{dx}(x^n)=nx^{n-1}] 	[image: \displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}+C] for [image: n\ne −1] 
 	[image: \frac{d}{dx}(\ln |x|)=\frac{1}{x}] 	[image: \displaystyle\int \frac{1}{x}dx=\ln |x|+C] 
 	[image: \frac{d}{dx}(e^x)=e^x] 	[image: \displaystyle\int e^x dx=e^x+C] 
 	[image: \frac{d}{dx}(\sin x)= \cos x] 	[image: \displaystyle\int \cos x dx= \sin x+C] 
 	[image: \frac{d}{dx}(\cos x)=− \sin x] 	[image: \displaystyle\int \sin x dx=− \cos x+C] 
 	[image: \frac{d}{dx}(\tan x)= \sec^2 x] 	[image: \displaystyle\int \sec^2 x dx= \tan x+C] 
 	[image: \frac{d}{dx}(\csc x)=−\csc x \cot x] 	[image: \displaystyle\int \csc x \cot x dx=−\csc x+C] 
 	[image: \frac{d}{dx}(\sec x)= \sec x \tan x] 	[image: \displaystyle\int \sec x \tan x dx= \sec x+C] 
 	[image: \frac{d}{dx}(\cot x)=−\csc^2 x] 	[image: \displaystyle\int \csc^2 x dx=−\cot x+C] 
 	[image: \frac{d}{dx}( \sin^{-1} x)=\frac{1}{\sqrt{1-x^2}}] 	[image: \displaystyle\int \frac{1}{\sqrt{1-x^2}} dx= \sin^{-1} x+C] 
 	[image: \frac{d}{dx}(\tan^{-1} x)=\frac{1}{1+x^2}] 	[image: \displaystyle\int \frac{1}{1+x^2} dx= \tan^{-1} x+C] 
 	[image: \frac{d}{dx}(\sec^{-1} |x|)=\frac{1}{x\sqrt{x^2-1}}] 	[image: \displaystyle\int \frac{1}{x\sqrt{x^2-1}} dx= \sec^{-1} |x|+C] 
  
  Let’s look at a few examples of how to apply these rules.
 Use the power rule to integrate the function [image: {\displaystyle\int }_{1}^{4}\sqrt{t}(1+t)dt.]
 Show Solution 
 The first step is to rewrite the function and simplify it so we can apply the power rule:
 [image: \begin{array}{cc}{\displaystyle\int }_{1}^{4}\sqrt{t}(1+t)dt\hfill & ={\displaystyle\int }_{1}^{4}{t}^{1\text{/}2}(1+t)dt\hfill \\ \\ & ={\displaystyle\int }_{1}^{4}({t}^{1\text{/}2}+{t}^{3\text{/}2})dt.\hfill \end{array}]
 Now apply the power rule:
 [image: \begin{array}{cc}{\displaystyle\int }_{1}^{4}({t}^{1\text{/}2}+{t}^{3\text{/}2})dt\hfill & ={(\frac{2}{3}{t}^{3\text{/}2}+\frac{2}{5}{t}^{5\text{/}2})|}_{1}^{4}\hfill \\ & =\left[\frac{2}{3}{(4)}^{3\text{/}2}+\frac{2}{5}{(4)}^{5\text{/}2}\right]-\left[\frac{2}{3}{(1)}^{3\text{/}2}+\frac{2}{5}{(1)}^{5\text{/}2}\right]\hfill \\ & =\frac{256}{15}.\hfill \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=v7nDnOyx8Mw%3Fcontrols%3D0%26start%3D9%26end%3D96%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.4 Integration Formulas and the Net Change Theorem” here (opens in new window). 
  Find the definite integral of [image: f(x)={x}^{2}-3x] over the interval [image: \left[1,3\right].]
 Show Solution 
 [image: -\frac{10}{3}]
   [ohm_question hide_question_numbers=1]20040[/ohm_question]
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				The Net Change Theorem
 The net change theorem considers the integral of a rate of change. It says that when a quantity changes, the new value equals the initial value plus the integral of the rate of change of that quantity.
 The formula can be expressed in two ways. The second is more familiar; it is simply the definite integral.
 net change theorem
 The new value of a changing quantity equals the initial value plus the integral of the rate of change:
 [image: \begin{array}{}\\ \\ F(b)=F(a)+{\displaystyle\int }_{a}^{b}F\text{'}(x)dx\hfill \\ \hfill \text{or}\hfill \\ {\displaystyle\int }_{a}^{b}F\text{'}(x)dx=F(b)-F(a).\hfill \end{array}]
  Subtracting [image: F(a)] from both sides of the first equation yields the second equation. Since they are equivalent formulas, which one we use depends on the application.
  The significance of the net change theorem lies in the results. Net change can be applied to area, distance, and volume, to name only a few applications. Net change accounts for negative quantities automatically without having to write more than one integral.
 To illustrate, let’s apply the net change theorem to a velocity function in which the result is displacement. We looked at a simple example of this in The Definite Integral section.
 Suppose a car is moving due north (the positive direction) at [image: 40] mph between [image: 2] p.m. and [image: 4] p.m., then the car moves south at [image: 30] mph between [image: 4] p.m. and [image: 5] p.m. We can graph this motion as shown in the figure below.
 [image: A graph with the x axis marked as t and the y axis marked normally. The lines y=40 and y=-30 are drawn over [2,4] and [4,5], respectively.The areas between the lines and the x axis are shaded.]Figure 1. The graph shows speed versus time for the given motion of a car. Just as we did before, we can use definite integrals to calculate the net displacement as well as the total distance traveled. The net displacement is given by
 [image: \begin{array}{cc}{\displaystyle\int }_{2}^{5}v(t)dt\hfill & ={\int }_{2}^{4}40dt+{\displaystyle\int }_{4}^{5}-30dt\hfill \\ & =80-30\hfill \\ & =50.\hfill \end{array}]
 Thus, at [image: 5] p.m. the car is [image: 50] mi north of its starting position. The total distance traveled is given by
 [image: \begin{array}{} {\displaystyle\int }_{2}^{5}|v(t)|dt\hfill & ={\int }_{2}^{4}40dt+{\displaystyle\int }_{4}^{5}30dt\hfill \\ & =80+30\hfill \\ & =110.\hfill \end{array}]
 Therefore, between [image: 2] p.m. and [image: 5] p.m., the car traveled a total of [image: 110] mi.
  To summarize, net displacement can include both positive and negative values, accounting for both forward and backward distances. To find the net displacement, integrate the velocity function over the given interval.
 Total distance traveled, however, is always positive. To find the total distance traveled by an object, regardless of direction, integrate the absolute value of the velocity function.
 Given a velocity function [image: v(t)=3t-5] (in meters per second) for a particle in motion from time [image: t=0] to time [image: t=3,] find the net displacement of the particle.
 Show Solution 
 Applying the net change theorem, we have
 [image: \begin{array}{ll}{\int }_{0}^{3}(3t-5)dt\hfill & =\frac{3{t}^{2}}{2}-5t{|}_{0}^{3}\hfill \\ \\ & =\left[\frac{3{(3)}^{2}}{2}-5(3)\right]-0\hfill \\ & =\frac{27}{2}-15\hfill \\ & =\frac{27}{2}-\frac{30}{2}\hfill \\ & =-\frac{3}{2}.\hfill \end{array}]
  
 The net displacement is [image: -\frac{3}{2}] m.
 [image: A graph of the line v(t) = 3t – 5, which goes through points (0, -5) and (5/3, 0). The area over the line and under the x axis in the interval [0, 5/3] is shaded. The area under the line and above the x axis in the interval [5/3, 3] is shaded.]Figure 2. The graph shows velocity versus time for a particle moving with a linear velocity function.   Use the previous example to find the total distance traveled by a particle according to the velocity function [image: v(t)=3t-5] m/sec over a time interval [image: \left[0,3\right].]
 Show Solution 
 The total distance traveled includes both the positive and the negative values. Therefore, we must integrate the absolute value of the velocity function to find the total distance traveled.
 To continue with the example, use two integrals to find the total distance. First, find the [image: t]-intercept of the function, since that is where the division of the interval occurs. Set the equation equal to zero and solve for [image: t].
 Thus,
 [image: \begin{array}{ccc}3t-5\hfill & =\hfill & 0\hfill \\ \hfill 3t& =\hfill & 5\hfill \\ \hfill t& =\hfill & \frac{5}{3}.\hfill \end{array}]
 The two subintervals are [image: \left[0,\frac{5}{3}\right]] and [image: \left[\frac{5}{3},3\right].]
 To find the total distance traveled, integrate the absolute value of the function. Since the function is negative over the interval [image: \left[0,\frac{5}{3}\right],] we have [image: |v(t)|=\text{−}v(t)] over that interval. Over [image: \left[\frac{5}{3},3\right],] the function is positive, so [image: |v(t)|=v(t).]
 Thus, we have
 [image: \begin{array}{} {\int }_{0}^{3}|v(t)|dt\hfill & ={\int }_{0}^{5\text{/}3}\text{−}v(t)dt+{\int }_{5\text{/}3}^{3}v(t)dt\hfill \\ \\ & ={\int }_{0}^{5\text{/}3}5-3tdt+{\int }_{5\text{/}3}^{3}3t-5dt\hfill \\ & ={(5t-\frac{3{t}^{2}}{2})|}_{0}^{5\text{/}3}+{(\frac{3{t}^{2}}{2}-5t)|}_{5\text{/}3}^{3}\hfill \\ & =\left[5(\frac{5}{3})-\frac{3{(5\text{/}3)}^{2}}{2}\right]-0+\left[\frac{27}{2}-15\right]-\left[\frac{3{(5\text{/}3)}^{2}}{2}-\frac{25}{3}\right]\hfill \\ & =\frac{25}{3}-\frac{25}{6}+\frac{27}{2}-15-\frac{25}{6}+\frac{25}{3}\hfill \\ & =\frac{41}{6}.\hfill \end{array}]
 So, the total distance traveled is [image: \frac{41}{6}] m.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=v7nDnOyx8Mw%3Fcontrols%3D0%26start%3D244%26end%3D456%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.4 Integration Formulas and the Net Change Theorem” here (opens in new window).
   Applying the Net Change Theorem
 The net change theorem can be applied to the flow and consumption of fluids, as shown in the example below.
 If the motor on a motorboat is started at [image: t=0] and the boat consumes gasoline at a rate which can be modeled for the first two hours as [image: 5-\frac{t^{3}}{100}] gal/hr for the first hour, how much gasoline is used in the first hour?
 Show Solution 
 Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus. The limits of integration are the endpoints of the interval [image: \left[0,1\right].] We have
 [image: \begin{array}{cc}{\displaystyle\int _{0}^{1}}\left(5-\dfrac{{t}^{3}}{100}\right)dt\hfill & =\left(5t-\dfrac{{t}^{4}}{400}\right){\displaystyle |_{0}^{1}}\hfill \\ \\ \\ & =\left[5(1)-\dfrac{{(1)}^{4}}{400}\right]-0\hfill \\ & =5-\frac{1}{400}\hfill \\ & =4.9975.\hfill \end{array}]
 Thus, the motorboat uses [image: 4.9975] gal of gas in [image: 1] hour.
   Suppose that, instead of remaining steady during the second half hour of Andrew’s outing, the wind starts to die down according to the function [image: v(t)=-10t+15.] In other words, the wind speed is given by
 [image: v(t)=\bigg\{\begin{array}{lll}20t+5\hfill & \text{ for }\hfill & 0\le t\le \frac{1}{2}\hfill \\ -10t+15\hfill & \text{ for }\hfill & \frac{1}{2}\le t\le 1.\hfill \end{array}]
 Under these conditions, how far from his starting point is Andrew after [image: 1] hour?
 Hint 
 Don’t forget that Andrew’s iceboat moves twice as fast as the wind.
  Show Solution 
 [image: 17.5] mi
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				Integrating Even and Odd Functions
 Recall that an even function is a function in which [image: f(\text{−}x)=f(x)] for all [image: x] in the domain. This means the graph of the curve is unchanged when [image: x] is replaced with −[image: x]. The graphs of even functions are symmetric about the [image: y]-axis. An odd function is one in which [image: f(\text{−}x)=\text{−}f(x)] for all [image: x] in the domain, and the graph of the function is symmetric about the origin.
 Integrals of even functions, when the limits of integration are from [image: -a] to [image: a], involve two equal areas, because they are symmetric about the [image: y]-axis. Integrals of odd functions, when the limits of integration are similarly [image: \left[\text{−}a,a\right],] evaluate to zero because the areas above and below the [image: x]-axis are equal.
 Integrals of Even and Odd Functions
 For continuous even functions such that [image: f(\text{−}x)=f(x),]
 [image: {\displaystyle\int }_{\text{−}a}^{a}f(x)dx=2{\displaystyle\int }_{0}^{a}f(x)dx.]
  
 For continuous odd functions such that [image: f(\text{−}x)=\text{−}f(x),]
 [image: {\displaystyle\int }_{\text{−}a}^{a}f(x)dx=0.]
 
  Integrate the even function [image: {\displaystyle\int }_{-2}^{2}(3{x}^{8}-2)dx] and verify that the integration formula for even functions holds.
 Show Solution 
 The symmetry appears in the graphs in Figure 3. Graph (a) shows the region below the curve and above the [image: x]-axis. We have to zoom in to this graph by a huge amount to see the region. Graph (b) shows the region above the curve and below the [image: x]-axis. The signed area of this region is negative. Both views illustrate the symmetry about the [image: y]-axis of an even function.
 [image: Two graphs of the same function f(x) = 3x^8 – 2, side by side. It is symmetric about the y axis, has x-intercepts at (-1,0) and (1,0), and has a y-intercept at (0,-2). The function decreases rapidly as x increases until about -.5, where it levels off at -2. Then, at about .5, it increases rapidly as a mirror image. The first graph is zoomed-out and shows the positive area between the curve and the x axis over [-2,-1] and [1,2]. The second is zoomed-in and shows the negative area between the curve and the x-axis over [-1,1].]Figure 3. Graph (a) shows the positive area between the curve and the x-axis, whereas graph (b) shows the negative area between the curve and the x-axis. Both views show the symmetry about the y-axis. We have,
 [image: \begin{array}{ll}{\int }_{-2}^{2}(3{x}^{8}-2)dx\hfill & =(\frac{{x}^{9}}{3}-2x){|}_{-2}^{2}\hfill  \\ & =\left[\frac{{(2)}^{9}}{3}-2(2)\right]-\left[\frac{{(-2)}^{9}}{3}-2(-2)\right]\hfill \\ & =(\frac{512}{3}-4)-(-\frac{512}{3}+4)\hfill \\ & =\frac{1000}{3}.\hfill \end{array}]
 To verify the integration formula for even functions, we can calculate the integral from [image: 0] to [image: 2] and double it, then check to make sure we get the same answer.
 [image: \begin{array}{ll}{\int }_{0}^{2}(3{x}^{8}-2)dx\hfill & =(\frac{{x}^{9}}{3}-2x){|}_{0}^{2}\hfill \\ & =\frac{512}{3}-4\hfill \\ & =\frac{500}{3}\hfill \end{array}]
 Since [image: 2·\frac{500}{3}=\frac{1000}{3},] we have verified the formula for even functions in this particular example.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=v7nDnOyx8Mw%3Fcontrols%3D0%26start%3D795%26end%3D850%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.4 Integration Formulas and the Net Change Theorem” here (opens in new window). 
  Evaluate the definite integral of the odd function [image: -5 \sin x] over the interval [image: \left[\text{−}\pi ,\pi \right].]
 Show Solution 
 The graph is shown in Figure 4. We can see the symmetry about the origin by the positive area above the [image: x]-axis over [image: \left[\text{−}\pi ,0\right],] and the negative area below the [image: x]-axis over [image: \left[0,\pi \right].]
 [image: A graph of the given function f(x) = -5 sin(x). The area under the function but above the x axis is shaded over [-pi, 0], and the area above the function and under the x axis is shaded over [0, pi].]Figure 4. The graph shows areas between a curve and the x-axis for an odd function. We have,
 [image: \begin{array}{ll}{\int }_{\text{−}\pi }^{\pi }-5 \sin xdx\hfill & =-5(\text{−} \cos x){|}_{\text{−}\pi }^{\pi }\hfill \\ & =5 \cos x{|}_{\text{−}\pi }^{\pi }\hfill \\ & =\left[5 \cos \pi \right]-\left[5 \cos (\text{−}\pi )\right]\hfill \\ & =-5-(-5)\hfill \\ & =0.\hfill \end{array}]
  
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=v7nDnOyx8Mw%3Fcontrols%3D0%26start%3D853%26end%3D917%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.4 Integration Formulas and the Net Change Theorem” here (opens in new window).
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				 	Understand and apply the net change theorem to calculate how quantities change over an interval
 	Use integration formulas to calculate the integrals of odd and even functions
 
  Exploring Integrals: From Basic Formulas to Advanced Applications
 In this activity, we will delve into the world of integrals, a fundamental concept in calculus with diverse applications. From finding antiderivatives and calculating displacement to determining the properties of functions and evaluating definite integrals, integrals play a crucial role in understanding and solving real-world problems. This series of exercises will guide you through the process of evaluating indefinite integrals, applying the net change theorem, and exploring the behavior of functions through integration. 
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				 	Rewrite composite functions into its simpler parts
 
  In the Integration using Substitution topic, we will learn all about using substitution as an integration method. Substitution is basically the process used to find the antiderivative of a function that was differentiated using the chain rule. That being said, it is important to be able to look at a composite function and identify the inside function and outside function. Usually, the inside function is what we set our substitution variable equal to.
 Rewriting Composite Functions into Simpler Components
 Understanding the structure of composite functions is essential for dissecting complex mathematical expressions into more manageable parts. A composite function is formed when one function is applied to the result of another function. Decomposing these functions helps in understanding and simplifying their operations.
 Consider [image: f\left(x\right)=\sqrt{5-{x}^{2}}]. This can be seen as a composition of two simpler functions:
 	[image: g\left(x\right)=5-{x}^{2}]
 	[image: h\left(x\right)=\sqrt{x}]
 
 Here, [image: f(x) = h(g(x))], where [image: g(x)] is first evaluated, and then [image: h(x)] is applied to the result. 
  composite functions
 A composite function is formed when the output of one function becomes the input of another. They are expressed as 
 [image: f(x) = h(g(x))],
 with [image: g(x)] being evaluated first and [image: h(x)] applied to its output.
  How To: Decompose Composite Functions
 	Identify the Outer Function: Determine the last operation applied in the function. This is your outer function [image: h(x)]
 	Identify the Inner Function: Look for the operation inside the outer function. This operation, which is applied first, is your inner function [image: g(x)]
 	Express as a Composition: Write the original function as [image: f(x) = h(g(x))], where [image: g(x)] is evaluated first, and its result is used as the input for [image: h(x)] 
 
  Write [image: f\left(x\right)=e^{4x-3}] as the composition of two functions.
 Show Solution 
 We are looking for two functions, [image: g] and [image: h], so [image: f\left(x\right)=h\left(g\left(x\right)\right)]. To do this, we look for a function inside a function in the formula for [image: f\left(x\right)]. As one possibility, we might notice that the expression [image: 4x-3] is within the exponent of the exponential function. We could then decompose the function as
 [image: g\left(x\right)=4x-3\hspace{2mm}\text{and}\hspace{2mm}h\left(x\right)=e^{x}]
 We can check our answer by recomposing the functions.
 [image: h\left(g\left(x\right)\right)=h(4x-3)=e^{4x-3}]
   Write [image: f\left(x\right)=\dfrac{4}{3-\sqrt{4+{x}^{2}}}] as the composition of two functions.
 Show Solution 
 There are many possible answers, one potential answer is:
 [image: g\left(x\right)=\sqrt{4+{x}^{2}}]
 [image: h\left(x\right)=\dfrac{4}{3-x}]
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				 	Apply properties of exponential and logarithmic functions
 
  Exponential Functions
 Exponential functions arise in many applications. One common example is population growth.
 If a population starts with [image: P_0] individuals and then grows at an annual rate of [image: 2\%], its population after [image: 1] year is
 [image: P(1)=P_0+0.02P_0=P_0(1+0.02)=P_0(1.02)]
 Its population after [image: 2] years is
 [image: P(2)=P(1)+0.02P(1)=P(1)(1.02)=P_0(1.02)^2]
 In general, its population after [image: t] years is
 [image: P(t)=P_0(1.02)^t],
 which is an exponential function.
  More generally, any function of the form [image: f(x)=b^x], where [image: b>0, \, b \ne 1], is an exponential function with base [image: b] and exponent [image: x]. Exponential functions have constant bases and variable exponents.
 exponential function
 For any real number [image: x], an exponential function is a function with the form
 [image: f(x)=ab^x]
 where,
 	[image: a] is a non-zero real number called the initial value and
 	[image: b] is any positive real number ([image: b>0]) such that [image: b≠1].
 
 
  Evaluating Exponential Functions
 To evaluate an exponential function with the form [image: f(x)=b^x], we simply substitute [image: x] with the given value, and calculate the resulting power.
 Let [image: f(x)=2^x]. What is [image: f(3)]?
 [image: \begin{array}{rcl} f(x) & = & 2^x \\ f(3) & = & 2^3 & \quad \text{Substitute } x = 3. \\ & = & 8 & \quad \text{Evaluate the power.} \end{array}]
  
  To evaluate an exponential function with a form other than the basic form, it is important to follow the order of operations.
 Let [image: f(x)=30(2)^x]. What is [image: f(3)]?
 [image: \begin{array}{rcll} f(x) & = & 30(2)^x & \\ f(3) & = & 30(2)^3 & \quad \text{Substitute } x = 3. \\ & = & 30(8) & \quad \text{Simplify the power first.} \\ & = & 240 & \quad \text{Multiply.} \end{array}]Note that if the order of operations were not followed, the result would be incorrect:[image: f(3)=30(2)^3≠60^3=216,000]
 How To: Evaluating Exponential Functions
 	Given an exponential function, identify [image: a], [image: b], and the value of [image: x] you’re being asked to substitute into the function.
 	Replace the variable [image: x] in the function with the given number.
 	Compute the value of [image: b^x]. This means raising the base [image: b] to the power of [image: x].
 	If there is a coefficient [image: a] in front of the base, multiply the result of [image: b^x] by [image: a]. If [image: a] is [image: 1], this step does not change the value.
 	Simplify the expression if necessary. This could involve performing any additional multiplication or addition/subtraction if the function has more terms.
 
  Let [image: f(x)=5(3)^x+1]. Evaluate [image: f(2)] without using a calculator.
 
 Show Answer Follow the order of operations. Be sure to pay attention to the parentheses.
 [image: \begin{array}{rcll} f(x) & = & 5(3)^{x+1} & \\ f(2) & = & 5(3)^{2+1} & \quad \text{Substitute } x = 2. \\ & = & 5(3)^3 & \quad \text{Add the exponents.} \\ & = & 5(27) & \quad \text{Simplify the power.} \\ & = & 135 & \quad \text{Multiply.} \end{array}]
   [ohm_question hide_question_numbers=1]284250[/ohm_question]
  Suppose a particular population of bacteria is known to double in size every [image: 4] hours. If a culture starts with [image: 1000] bacteria, the number of bacteria after [image: 4] hours is [image: n(4)=1000·2]. The number of bacteria after [image: 8] hours is [image: n(8)=n(4)·2=1000·2^2].
 In general, the number of bacteria after [image: 4m] hours is [image: n(4m)=1000·2^m]. Letting [image: t=4m], we see that the number of bacteria after [image: t] hours is [image: n(t)=1000·2^{t/4}].
 Find the number of bacteria after [image: 6] hours, [image: 10] hours, and [image: 24] hours.
 Show Solution 
 The number of bacteria after [image: 6] hours is given by [image: n(6)=1000·2^{6/4} \approx 2828] bacteria.
 The number of bacteria after [image: 10] hours is given by [image: n(10)=1000·2^{10/4} \approx 5657] bacteria.
 The number of bacteria after [image: 24] hours is given by [image: n(24)=1000·2^{24/4}=1000·2^6=64,000] bacteria.
   Laws of Exponents
 The Laws of Exponents are fundamental rules that govern the operations involving powers. These rules are essential for simplifying expressions and are foundational for higher-level math.
 laws of exponents
 	The Product of Powers rule states that when you multiply two exponents with the same base, you can add the exponents.[image: b^x·b^y=b^{x+y}]
 	The Quotient of Powers rule tells us that when dividing exponents with the same base, we subtract the exponents.[image: \large\frac{b^x}{b^y} \normalsize = b^{x-y}]
 	The Power of a Power rule shows that when taking an exponent to another exponent, we multiply the exponents.[image: (b^x)^y=b^{xy}]
 	The Power of a Product rule lets us know that when raising a product to an exponent, each factor in the product is raised to the exponent.[image: (ab)^x=a^x b^x]
 	The Power of a Quotient rule indicates that when a quotient is raised to an exponent, both the numerator and the denominator are raised to the exponent.[image: \dfrac{a^x}{b^x} =\left(\dfrac{a}{b}\right)^x]
 
 Note: This is true for any constants [image: a>0, \, b>0], and for all [image: x] and [image: y]
  Use the laws of exponents to simplify each of the following expressions.
 	[image: \large \frac{(2x^{2/3})^3}{(4x^{-1/3})^2}]
 	[image: \large \frac{(x^3 y^{-1})^2}{(xy^2)^{-2}}]
 
 Show Solution 
 	We can simplify as follows: [image: \large \frac{(2x^{2/3})^3}{(4x^{-1/3})^2} \normalsize = \large \frac{2^3(x^{2/3})^3}{4^2(x^{-1/3})^2} \normalsize = \large \frac{8x^2}{16x^{-2/3}} \normalsize = \large \frac{x^2x^{2/3}}{2} \normalsize = \large \frac{x^{8/3}}{2}]
 
 	We can simplify as follows: [image: \large \frac{(x^3y^{-1})^2}{(xy^2)^{-2}} \normalsize = \large \frac{(x^3)^2(y^{-1})^2}{x^{-2}(y^2)^{-2}} \normalsize = \large \frac{x^6y^{-2}}{x^{-2}y^{-4}} \normalsize = x^6x^2y^{-2}y^4 = x^8y^2]
 
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=tOkk_pSFpzk%3Fcontrols%3D0%26start%3D212%26end%3D380%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   When you encounter a negative exponent on a term in the denominator of a fraction, you can transform it into a positive exponent by moving the term to the numerator.
 [image: \frac{1}{a^-n}=a^{n}]Using this rule can significantly simplify expressions involving exponents.
 [ohm_question hide_question_numbers=1]123515[/ohm_question]
  Logarithmic Functions
 Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. 
 Inverse Functions
 For any one-to-one function [image: f\left(x\right)=y], a function [image: {f}^{-1}\left(x\right)] is an inverse function of [image: f] if [image: {f}^{-1}\left(y\right)=x]. 
 The notation [image: {f}^{-1}] is read “[image: f] inverse.” Like any other function, we can use any variable name as the input for [image: {f}^{-1}], so we will often write [image: {f}^{-1}\left(x\right)], which we read as [image: "f] inverse of [image: x]“.
  Logarithmic functions come in handy when we need to consider any phenomenon that varies over a wide range of values, such as pH in chemistry or decibels in sound levels.
 The exponential function [image: f(x)=b^x] is one-to-one, with domain [image: (−\infty ,\infty)] and range [image: (0,\infty )]. Therefore, it has an inverse function, called the logarithmic function with base [image: b].
 For any [image: b>0, \, b \ne 1], the logarithmic function with base [image: b], denoted [image: \log_b], has domain [image: (0,\infty )] and range [image: (−\infty ,\infty )], and satisfies
 [image: \log_b(x)=y] if and only if [image: b^y=x].
 logarithmic functions
 A logarithmic function is the inverse of an exponential function and is written as [image: log_{b}(x)]. For a given base [image: b], it tells us the power to which [image: b] must be raised to get [image: x].
  [image: \begin{array}{cccc} \log_2 (8)=3\hfill & & & \text{since}\phantom{\rule{3em}{0ex}}2^3=8,\hfill \\ \log_{10} (\frac{1}{100})=-2\hfill & & & \text{since}\phantom{\rule{3em}{0ex}}10^{-2}=\frac{1}{10^2}=\frac{1}{100},\hfill \\ \log_b (1)=0\hfill & & & \text{since}\phantom{\rule{3em}{0ex}}b^0=1 \, \text{for any base} \, b>0.\hfill \end{array}]
  The most commonly used logarithmic function is the function [image: \log_e (x)]. Since this function uses natural [image: e] as its base, it is called the natural logarithm. Here we use the notation [image: \ln(x)] or [image: \ln x] to mean [image: \log_e (x)].
 [image: \begin{array}{l}\ln (e)=\log_e (e)=1 \\ \ln(e^3)=\log_e (e^3)=3 \\ \ln(1)=\log_e (1)=0\end{array}] Euler’s number, denoted as [image: e], is a fundamental mathematical constant approximately equal to [image: 2.71828]. It is the base of the natural logarithm and the natural exponential function, known for its unique properties in calculus, especially in relation to growth processes and compound interest calculations.
  Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.
 Properties of Logarithms
 If [image: a,b,c>0, \, b\ne 1], and [image: r] is any real number, then
 [image: \begin{array}{cccc}1.\phantom{\rule{2em}{0ex}}\log_b (ac)=\log_b (a)+\log_b (c)\hfill & & & \text{(Product property)}\hfill \\ 2.\phantom{\rule{2em}{0ex}}\log_b(\frac{a}{c})=\log_b (a) -\log_b (c)\hfill & & & \text{(Quotient property)}\hfill \\ 3.\phantom{\rule{2em}{0ex}}\log_b (a^r)=r \log_b (a)\hfill & & & \text{(Power property)}\hfill \end{array}]
  Solve each of the following equations for [image: x].
 	[image: \ln \left(\frac{1}{x}\right)=4]
 	[image: \log_{10} \sqrt{x}+ \log_{10} x=2]
 	[image: \ln(2x)-3 \ln(x^2)=0]
 
 Show Solution 
 	By the definition of the natural logarithm function, [image: \ln\big(\frac{1}{x}\big)=4 \, \text{ if and only if } \, e^4=\frac{1}{x}]
 Therefore, the solution is [image: x=\frac{1}{e^4}].
 
 	Using the product and power properties of logarithmic functions, rewrite the left-hand side of the equation as [image: \log_{10} \sqrt{x}+ \log_{10} x = \log_{10} x \sqrt{x} = \log_{10}x^{3/2} = \frac{3}{2} \log_{10} x]
 Therefore, the equation can be rewritten as
 [image: \frac{3}{2} \log_{10} x = 2 \, \text{ or } \, \log_{10} x = \frac{4}{3}]
 The solution is [image: x=10^{4/3}=10\sqrt[3]{10}].
 
 	Using the power property of logarithmic functions, we can rewrite the equation as [image: \ln(2x) - \ln(x^6) = 0].
 Using the quotient property, this becomes [image: \ln\big(\frac{2}{x^5}\big)=0]
 Therefore, [image: \frac{2}{x^5}=1], which implies [image: x=\sqrt[5]{2}]. We should then check for any extraneous solutions.
 
 
   Solve each of the following equations for [image: x].
 	[image: 5^x=2]
 	[image: e^x+6e^{−x}=5]
 
 Show Solution 
 	Applying the natural logarithm function to both sides of the equation, we have [image: \ln 5^x=\ln 2]
 Using the power property of logarithms,
 [image: x \ln 5=\ln 2]
 Therefore, [image: x=\frac{\ln 2 }{\ln 5}].
 
 	Multiplying both sides of the equation by [image: e^x], we arrive at the equation [image: e^{2x}+6=5e^x]
 Rewriting this equation as
 [image: e^{2x}-5e^x+6=0],
 we can then rewrite it as a quadratic equation in [image: e^x]:
 [image: (e^x)^2-5(e^x)+6=0]
 Now we can solve the quadratic equation. Factoring this equation, we obtain
 [image: (e^x-3)(e^x-2)=0]
 Therefore, the solutions satisfy [image: e^x=3] and [image: e^x=2]. Taking the natural logarithm of both sides gives us the solutions
 [image: x=\ln 3, \, \ln 2]
 
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=tOkk_pSFpzk%3Fcontrols%3D0%26start%3D640%26end%3D823%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
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		Techniques for Integration: Background You'll Need 3

								

	
				 	Find angles using inverse sine, cosine, and tangent functions
 
  Evaluating Angles Using Inverse Trigonometric Functions
 Inverse trigonometric functions are essential tools in mathematics for finding angles when the ratios of the sides of right triangles are known. These functions “undo” the calculations made by their respective trigonometric functions, translating a ratio back into an angle measurement. Inverse trigonometric functions allow us to retrieve the angle from a given trigonometric ratio. They provide crucial insights in fields ranging from engineering to physics, where angles need to be determined from known lengths or ratios.
 	Inverse Sine (arcsin): If [image: \sin{(y)}=x], then [image: y={\sin}^{-1}{(x)}]. 	[image: {\sin}^{-1}{(x)}] is defined for [image: x] in the interval [image: [-1,1]] and returns an angle [image: y] in the interval [image: [-\frac{\pi}{2},\frac{\pi}{2}]]
 
 
 	Inverse Cosine (arccos): If [image: \cos{(y)}=x], then [image: y={\cos}^{-1}{(x)}]. 	[image: {\cos}^{-1}{(x)}] is defined for [image: x] in the interval [image: [-1,1]] and returns an angle [image: y] in the interval [image: [0,\pi]]
 
 
 	Inverse Tangent (arctan): If [image: \tan{(y)}=x], then [image: y={\tan}^{-1}{(x)}]. 	[image: {\tan}^{-1}{(x)}] does not have restrictions on [image: x] but returns an angle [image: y] in the interval [image: [-\frac{\pi}{2},\frac{\pi}{2}]]
 
 
 
 inverse sine, cosine, and tangent
 For angles in the interval [image: \left[−\frac{\pi}{2}\text{, }\frac{\pi}{2}\right]], if [image: \sin{(y)}=x], then [image: {\sin}^{-1}{(x)}=y].
 For angles in the interval [image: [0,\pi]], if [image: \cos{(y)}=x], then [image: {\cos}^{-1}{(x)}=y].
 For angles in the interval [image: \left(−\frac{\pi}{2}\text{, }\frac{\pi}{2}\right)], if [image: \tan{(y)}=x], then [image: {\tan}^{-1}{(x)}=y].
  Be aware that [image: {\sin}^{-1}{(x)}] denotes the inverse sine function, which is not the same as the reciprocal of sine, [image: \frac{1}{\sin{(x)}}].
  To accurately evaluate inverse trigonometric functions, particularly for special input values, it’s essential to recognize the outputs for standard angles and adjust these for specific cases. This is analogous to the processes used with original trigonometric functions, enhancing the understanding of their inverse counterparts.
 With the inverse trigonometric functions, special angles such as [image: \frac{\pi}{ 6} (30^\circ)\text{, }\frac{\pi}{ 4} (45^\circ),\text{ and } \frac{\pi}{ 3} (60^\circ)], and their reflections are used to find exact values, mirroring the process used for trigonometric functions.
 Standard trigonometric functions—sine, cosine, and tangent—are used to find the ratio of sides in a right triangle given an angle. For instance, [image: \sin{(x)}] represents the ratio of the opposite side to the hypotenuse, [image: \cos{(x)}] is the adjacent side to the hypotenuse, and [image: \tan{(x)}] is the opposite side to the adjacent side.
 	Angle 	[image: \sin(\theta)] 	[image: \cos(\theta)] 	[image: \tan(\theta)] 
 	[image: \frac{\pi}{ 6}(30^\circ)] 	[image: \frac{1}{2}] 	[image: \frac{\sqrt{3}}{2}] 	[image: \frac{1}{\sqrt{3}}] 
 	[image: \frac{\pi}{ 4}(45^\circ)] 	[image: \frac{\sqrt{2}}{2}] 	[image: \frac{\sqrt{2}}{2}] 	[image: 1] 
 	[image: \frac{\pi}{ 3}(60^\circ)] 	[image: \frac{\sqrt{3}}{2}] 	[image: \frac{1}{2}] 	[image: \sqrt{3}] 
  
  How To: Evaluate an Inverse Trigonometric Function for Special Input Values
 	Identify the Corresponding Angle: Determine which angle [image: x] produces an output equal to the input value for the inverse trigonometric function based on known trigonometric values.
 	Check for Validity: Ensure that the identified [image: x] falls within the function’s defined range, and that it appropriately corresponds to the given inverse function (sine, cosine, or tangent).
 	Calculate the Inverse: For valid inputs, use the inverse function to compute the corresponding angle that the trigonometric ratio represents.
 
  Evaluate each of the following.
 a. [image: \sin−1\left(\frac{1}{2}\right)]
 b. [image: \sin−1\left(−\frac{2}{\sqrt{2}}\right)]
 c. [image: \cos−1\left(−\frac{3}{\sqrt{2}}\right)]
 d. [image: \tan^{− 1}(1)]
 Show Solution 
 a. Evaluating [image: \sin^{−1}(\frac{1}{2})] is the same as determining the angle that would have a sine value of [image: \frac{1}{2}]. In other words, what angle x would satisfy [image: \sin(x)=\frac{1}{2}]? There are multiple values that would satisfy this relationship, such as [image: \frac{\pi}{6}] and [image: \frac{5\pi}{6}], but we know we need the angle in the interval [image: \left[−\frac{\pi}{2}\text{, }\frac{\pi}{2}\right]], so the answer will be [image: \sin^{−1}(\frac{1}{2})=\frac{\pi}{6}]. Remember that the inverse is a function, so for each input, we will get exactly one output.
 b. To evaluate [image: \sin^{−1}\left(−\frac{\sqrt{2}}{2}\right)], we know that [image: \frac{5\pi}{4}] and [image: \frac{7\pi}{4}] both have a sine value of [image: −\frac{\sqrt{2}}{2}], but neither is in the interval [image: \left[−\frac{\pi}{2}\text{, }\frac{\pi}{2}\right]]. For that, we need the negative angle coterminal with [image: \frac{7\pi}{4}:\sin^{−1}\left(−\frac{\sqrt{2}}{2}\right)=−\frac{\pi}{4}].
 c. To evaluate [image: \cos^{−1}\left(−\frac{\sqrt{3}}{2}\right)], we are looking for an angle in the interval [image: [0,\pi]] with a cosine value of [image: −\frac{\sqrt{3}}{2}]. The angle that satisfies this is [image: \cos^{−1}\left(−\frac{\sqrt{3}}{2}\right)=\frac{5\pi}{6}].
 d. Evaluating [image: \tan^{−1}(1)], we are looking for an angle in the interval [image: (−\frac{\pi}{2}\text{, }\frac{\pi}{2})] with a tangent value of 1. The correct angle is [image: \tan^{−1}(1)=\frac{\pi}{4}].
   [ohm_question hide_question_numbers=1]288434[/ohm_question]
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		Integration using Substitution: Learn It 1

								

	
				 	Identify when to use substitution to simplify and solve integrals
 	Apply substitution methods to find indefinite integrals
 	Apply substitution methods to find definite integrals
 
  The Fundamental Theorem of Calculus gave us a method to evaluate integrals without using Riemann sums. The drawback of this method, though, is that we must be able to find an antiderivative, and this is not always easy. In this section we examine a technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us find antiderivatives when the integrand is the result of a chain-rule derivative.
 Substitution for Indefinite Integrals
 At first, the approach to the substitution procedure may not appear very obvious. However, it is primarily a visual task—that is, the integrand shows you what to do; it is a matter of recognizing the form of the function. 
 So, what are we supposed to see? We are looking for an integrand of the form [image: f\left[g(x)\right]{g}^{\prime }(x)dx.]
 For example, in the integral [image: \displaystyle\int {({x}^{2}-3)}^{3}2xdx,] we have [image: f(x)={x}^{3},g(x)={x}^{2}-3,] and [image: g\text{‘}(x)=2x.] Then,
 [image: f\left[g(x)\right]{g}^{\prime }(x)={({x}^{2}-3)}^{3}(2x),]
 and we see that our integrand is in the correct form.
  The method is called substitution because we substitute part of the integrand with the variable [image: u] and part of the integrand with du. It is also referred to as change of variables because we are changing variables to obtain an expression that is easier to work with for applying the integration rules.
 substitution with indefinite integrals
 Let [image: u=g(x),,] where [image: {g}^{\prime }(x)] is continuous over an interval, let [image: f(x)] be continuous over the corresponding range of [image: g], and let [image: F(x)] be an antiderivative of [image: f(x).] Then,
 [image: \begin{array}{cc} {\displaystyle\int f\left[g(x)\right]{g}^{\prime }(x)dx}\hfill & = {\displaystyle\int f(u)du}\hfill \\ & =F(u)+C\hfill \\ & =F(g(x))+C.\hfill \end{array}]
 
  Proof
 
 Let [image: f], [image: g], [image: u], and F be as specified in the theorem. Then
 [image: \begin{array}{cc}\frac{d}{dx}F(g(x))\hfill & ={F}^{\prime }(g(x)){g}^{\prime }(x)\hfill \\ & =f\left[g(x)\right]{g}^{\prime }(x).\hfill \end{array}]
  
 Integrating both sides with respect to [image: x], we see that
 [image: \displaystyle\int f\left[g(x)\right]{g}^{\prime }(x)dx=F(g(x))+C.]
  
 If we now substitute [image: u=g(x),] and [image: du=g\text{‘}(x)dx,] we get
 [image: \begin{array}{cc} {\displaystyle\int f\left[g(x)\right]{g}^{\prime }(x)dx}\hfill & = {\displaystyle\int f(u)du}\hfill \\ & =F(u)+C\hfill \\ & =F(g(x))+C.\hfill \end{array}]
 [image: _\blacksquare]
  Returning to the problem we looked at originally, we let [image: u={x}^{2}-3] and then [image: du=2xdx.] Rewrite the integral in terms of [image: u]:
 [image: {\displaystyle\int \underset{u}{\underbrace{({x}^{2}-3)}}}^{3}\underset{du}{\underbrace{(2xdx)}}=\displaystyle\int {u}^{3}du.]
 Using the power rule for integrals, we have
 [image: \displaystyle\int {u}^{3}du=\frac{{u}^{4}}{4}+C]
  
 Substitute the original expression for [image: x] back into the solution:
 [image: \dfrac{{u}^{4}}{4}+C=\dfrac{{({x}^{2}-3)}^{4}}{4}+C]
 How To: Integrate by Substitution
 	Look carefully at the integrand and select an expression [image: g(x)] within the integrand to set equal to [image: u]. Let’s select [image: g(x).] such that [image: {g}^{\prime }(x)] is also part of the integrand.
 	Substitute [image: u=g(x)] and [image: du={g}^{\prime }(x)dx] into the integral.
 	We should now be able to evaluate the integral with respect to [image: u]. If the integral can’t be evaluated we need to go back and select a different expression to use as [image: u].
 	Evaluate the integral in terms of [image: u].
 	Write the result in terms of [image: x] and the expression [image: g(x).]
 
  Use substitution to find the antiderivative of [image: \displaystyle\int 6x{(3{x}^{2}+4)}^{4}dx.]
 Show Solution 
 The first step is to choose an expression for [image: u]. We choose [image: u=3{x}^{2}+4.] because then [image: du=6xdx.,] and we already have du in the integrand. Write the integral in terms of [image: u]:
 [image: \displaystyle\int 6x{(3{x}^{2}+4)}^{4}dx=\displaystyle\int {u}^{4}du.]
 Remember that du is the derivative of the expression chosen for [image: u], regardless of what is inside the integrand. Now we can evaluate the integral with respect to [image: u]:
 [image: \begin{array}{ll} {\displaystyle\int {u}^{4}du}\hfill & =\frac{{u}^{5}}{5}+C\hfill \\ \\ \\ & =\frac{{(3{x}^{2}+4)}^{5}}{5}+C.\hfill \end{array}]
 Analysis
 We can check our answer by taking the derivative of the result of integration. We should obtain the integrand. Picking a value for C of 1, we let [image: y=\frac{1}{5}{(3{x}^{2}+4)}^{5}+1.] We have
 [image: y=\frac{1}{5}{(3{x}^{2}+4)}^{5}+1,]
 so
 [image: \begin{array}{}\\ \hfill {y}^{\prime }& =(\frac{1}{5})5{(3{x}^{2}+4)}^{4}6x\hfill \\ & =6x{(3{x}^{2}+4)}^{4}.\hfill \end{array}]
 This is exactly the expression we started with inside the integrand.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=Ak_y3lsBNfE%3Fcontrols%3D0%26start%3D52%26end%3D163%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.5 Substitution” here (opens in new window).
  Sometimes we need to adjust the constants in our integral if they don’t match up exactly with the expressions we are substituting.
 As long as you select a [image: g(x)] for [image: u] such that a multiple of [image: g'(x)] exists in the integrand, it will work! In other words, make sure the exponents work – don’t worry about the constants.
 For instance, in the example below, if we select [image: {u={z}^{2}-5}], [image: g'(x)={2z}]. Although [image: g'(x)={2z}] doesn’t appear in the integrand, [image: z] does. Substitution can work here! 
  Use substitution to find the antiderivative of [image: \displaystyle\int z\sqrt{{z}^{2}-5}dz.]
 Show Solution 
 Rewrite the integral as [image: \displaystyle\int z{({z}^{2}-5)}^{1\text{/}2}dz.] Let [image: u={z}^{2}-5] and [image: du=2zdz.]
 Now we have a problem because [image: du=2zdz] and the original expression has only [image: zdz.] We have to alter our expression for du or the integral in [image: u] will be twice as large as it should be. If we multiply both sides of the du equation by [image: \frac{1}{2}.] we can solve this problem. Thus,
 [image: \begin{array}{}\\ \hfill u& ={z}^{2}-5\hfill \\ \hfill du& =2zdz\hfill \\ \hfill \frac{1}{2}du& =\frac{1}{2}(2z)dz=zdz.\hfill \end{array}]
 Write the integral in terms of [image: u], but pull the [image: \frac{1}{2}] outside the integration symbol:
 [image: \displaystyle\int z{({z}^{2}-5)}^{1\text{/}2}dz=\frac{1}{2}\displaystyle\int {u}^{1\text{/}2}du.]
 Integrate the expression in [image: u]:
 [image: \begin{array}{}\\ \frac{1}{2} {\displaystyle\int {u}^{1\text{/}2}du}\hfill & =(\frac{1}{2})\frac{{u}^{3\text{/}2}}{\frac{3}{2}}+C\hfill \\ \\ & =(\frac{1}{2})(\frac{2}{3}){u}^{3\text{/}2}+C\hfill \\ & =\frac{1}{3}{u}^{3\text{/}2}+C\hfill \\ & =\frac{1}{3}{({z}^{2}-5)}^{3\text{/}2}+C.\hfill \end{array}]   
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=Ak_y3lsBNfE%3Fcontrols%3D0%26start%3D165%26end%3D266%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.5 Substitution” here (opens in new window).
  Use substitution to evaluate the integral [image: \displaystyle\int \frac{ \sin t}{{ \cos }^{3}t}dt.]
 Show Solution 
 We know the derivative of [image: \cos t] is [image: \text{−} \sin t,] so we set [image: u= \cos t.] Then [image: du=\text{−} \sin tdt.] Substituting into the integral, we have
 [image: \displaystyle\int \frac{ \sin t}{{ \cos }^{3}t}dt=\text{−}\displaystyle\int \frac{du}{{u}^{3}}.]
 Evaluating the integral, we get
 [image: \begin{array}{}\\ \\ \text{−}{\displaystyle\int \frac{du}{{u}^{3}}}\hfill & =\text{−} {\displaystyle\int {u}^{-3}du}\hfill \\ & =\text{−}(-\frac{1}{2}){u}^{-2}+C.\hfill \end{array}]
 Putting the answer back in terms of [image: t], we get
 [image: \begin{array}{cc} {\displaystyle\int \frac{ \sin t}{{ \cos }^{3}t}dt}\hfill & =\frac{1}{2{u}^{2}}+C\hfill \\ \\ & =\dfrac{1}{2{ \cos }^{2}t}+C.\hfill \end{array}] 

  Sometimes we need to manipulate an integral in ways that are more complicated than just multiplying or dividing by a constant. We need to eliminate all the expressions within the integrand that are in terms of the original variable. When we are done, [image: u] should be the only variable in the integrand.
 In some cases, this means solving for the original variable in terms of [image: u]. This technique should become clear in the next example.
 Use substitution to find the antiderivative of [image: \displaystyle\int \frac{x}{\sqrt{x-1}}dx.]
 Show Solution 
 If we let [image: u=x-1,] then [image: du=dx.] But this does not account for the [image: x] in the numerator of the integrand. We need to express [image: x] in terms of [image: u]. If [image: u=x-1,] then [image: x=u+1.] Now we can rewrite the integral in terms of [image: u]:
 [image: \begin{array}{ll} {\displaystyle\int \frac{x}{\sqrt{x-1}}dx}\hfill & = {\displaystyle\int \frac{u+1}{\sqrt{u}}du}\hfill \\ \\ & = {\displaystyle\int \sqrt{u}+\frac{1}{\sqrt{u}}du}\hfill \\ & = {\displaystyle\int ({u}^{1\text{/}2}+{u}^{-1\text{/}2})du}.\hfill \end{array}]
 Then we integrate in the usual way, replace [image: u] with the original expression, and factor and simplify the result. Thus,
 [image: \begin{array}{cc} {\displaystyle\int ({u}^{1\text{/}2}+{u}^{-1\text{/}2})du}\hfill & =\frac{2}{3}{u}^{3\text{/}2}+2{u}^{1\text{/}2}+C\hfill \\ \\ & =\frac{2}{3}{(x-1)}^{3\text{/}2}+2{(x-1)}^{1\text{/}2}+C\hfill \\ & ={(x-1)}^{1\text{/}2}\left[\frac{2}{3}(x-1)+2\right]+C\hfill \\ & ={(x-1)}^{1\text{/}2}(\frac{2}{3}x-\frac{2}{3}+\frac{6}{3})\hfill \\ & ={(x-1)}^{1\text{/}2}(\frac{2}{3}x+\frac{4}{3})\hfill \\ & =\frac{2}{3}{(x-1)}^{1\text{/}2}(x+2)+C.\hfill \end{array}] 
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				Substitution for Definite Integrals
 Substitution can be used with definite integrals, too. However, using substitution to evaluate a definite integral requires a change to the limits of integration. If we change variables in the integrand, the limits of integration change as well.
 substitution with definite integrals
 Let [image: u=g(x)] and let [image: {g}^{\text{′}}] be continuous over an interval [image: \left[a,b\right],] and let [image: f] be continuous over the range of [image: u=g(x).] Then,
 [image: {\displaystyle\int }_{a}^{b}f(g(x)){g}^{\prime }(x)dx={\displaystyle\int }_{g(a)}^{g(b)}f(u)du]
 
  Although we will not formally prove this theorem, we justify it with some calculations here. From the substitution rule for indefinite integrals, if [image: F(x)] is an antiderivative of [image: f(x),] we have
 [image: \displaystyle\int f(g(x)){g}^{\prime }(x)dx=F(g(x))+C]
 Then
 [image: \begin{array}{cc}{\displaystyle\int }_{a}^{b}f\left[g(x)\right]{g}^{\prime }(x)dx\hfill & ={F(g(x))|}_{x=a}^{x=b}\hfill \\ & =F(g(b))-F(g(a))\hfill \\ & ={F(u)|}_{u=g(a)}^{u=g(b)}\hfill \\ \\ \\ & ={\displaystyle\int }_{g(a)}^{g(b)}f(u)du,\hfill \end{array}]
 and we have the desired result.
 Use substitution to evaluate [image: {\displaystyle\int }_{0}^{1}{x}^{2}{(1+2{x}^{3})}^{5}dx.]
 Show Solution 
 Let [image: u=1+2{x}^{3},] so [image: du=6{x}^{2}dx.]
 Since the original function includes one factor of [image: x^2] and [image: du=6{x}^{2}dx,] multiply both sides of the du equation by [image: \frac{1}{6}.]
 Then,
 [image: \begin{array}{ccc}du\hfill & =\hfill & 6{x}^{2}dx\hfill \\ \frac{1}{6}du\hfill & =\hfill & {x}^{2}dx.\hfill \end{array}]
 To adjust the limits of integration, note that when [image: x=0,u=1+2(0)=1,] and when [image: x=1,u=1+2(1)=3.]
 Then,
 [image: {\displaystyle\int }_{0}^{1}{x}^{2}{(1+2{x}^{3})}^{5}dx=\frac{1}{6}{\displaystyle\int }_{1}^{3}{u}^{5}du.]
 Evaluating this expression, we get
 [image: \begin{array}{}\frac{1}{6}{\displaystyle\int }_{1}^{3}{u}^{5}du\hfill & =(\frac{1}{6})(\frac{{u}^{6}}{6}){|}_{1}^{3}\hfill \\ & =\frac{1}{36}\left[{(3)}^{6}-{(1)}^{6}\right]\hfill \\ & =\frac{182}{9}.\hfill \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=Ak_y3lsBNfE%3Fcontrols%3D0%26start%3D519%26end%3D664%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.5 Substitution” here (opens in new window).
  Use substitution to evaluate [image: {\displaystyle\int }_{0}^{1}x{e}^{4{x}^{2}+3}dx.]
 Show Solution 
 Let [image: u=4{x}^{3}+3.] Then, [image: du=8xdx.]
 To adjust the limits of integration, we note that when [image: x=0,u=3,] and when [image: x=1,u=7.]
 So our substitution gives,
 [image: \begin{array}{cc}{\displaystyle\int }_{0}^{1}x{e}^{4{x}^{2}+3}dx\hfill & =\frac{1}{8}{\displaystyle\int }_{3}^{7}{e}^{u}du\hfill \\ \\ & =\frac{1}{8}{e}^{u}{|}_{3}^{7}\hfill \\ & =\frac{{e}^{7}-{e}^{3}}{8}\hfill \\ & \approx 134.568.\hfill \end{array}]
  Substitution may be only one of the techniques needed to evaluate a definite integral. All of the properties and rules of integration apply independently, and trigonometric functions may need to be rewritten using a trigonometric identity before we can apply substitution. Also, we have the option of replacing the original expression for [image: u] after we find the antiderivative, which means that we do not have to change the limits of integration. These two approaches are shown in the following examples.
 Use substitution to evaluate [image: {\displaystyle\int }_{0}^{\pi \text{/}2}{ \cos }^{2}\theta d\theta .]
 Show Solution 
 Let us first use a trigonometric identity to rewrite the integral. The trig identity [image: { \cos }^{2}\theta =\frac{1+ \cos 2\theta }{2}] allows us to rewrite the integral as
 [image: {\displaystyle\int }_{0}^{\pi \text{/}2}{ \cos }^{2}\theta d\theta ={\displaystyle\int }_{0}^{\pi \text{/}2}\frac{1+ \cos 2\theta }{2}d\theta .]
  
 Then,
 [image: \begin{array}{cc}{\displaystyle\int }_{0}^{\pi \text{/}2}\left(\frac{1+ \cos 2\theta }{2}\right)d\theta \hfill & ={\displaystyle\int }_{0}^{\pi \text{/}2}\left(\frac{1}{2}+\frac{1}{2} \cos 2\theta \right)d\theta \hfill \\ \\ \\ & =\frac{1}{2}{\displaystyle\int }_{0}^{\pi \text{/}2}d\theta + \frac{1}{2}{\displaystyle\int }_{0}^{\pi \text{/}2} \cos 2\theta d\theta .\hfill \end{array}]
  
 We can evaluate the first integral as it is, but we need to make a substitution to evaluate the second integral. Let [image: u=2\theta .] Then, [image: du=2d\theta ,] or [image: \frac{1}{2}du=d\theta .] Also, when [image: \theta =0,u=0,] and when [image: \theta =\pi \text{/}2,u=\pi .] Expressing the second integral in terms of [image: u], we have
 [image: \begin{array}{}\\ \\ \frac{1}{2}{\displaystyle\int }_{0}^{\pi \text{/}2}d\theta +\frac{1}{2}{\displaystyle\int }_{0}^{\pi \text{/}2} \cos 2\theta d\theta \hfill & =\frac{1}{2}{\displaystyle\int }_{0}^{\pi \text{/}2}d\theta +\frac{1}{2}(\frac{1}{2}){\displaystyle\int }_{0}^{\pi } \cos udu\hfill \\ & =\frac{\theta }{2}{|}_{\theta =0}^{\theta =\pi \text{/}2}+\frac{1}{4} \sin u{|}_{u=0}^{u=\theta }\hfill \\ & =(\frac{\pi }{4}-0)+(0-0)=\frac{\pi }{4}.\hfill \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=Ak_y3lsBNfE%3Fcontrols%3D0%26start%3D774%26end%3D978%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.5 Substitution” here (opens in new window).
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		Integration using Substitution: Apply It

								

	
				 	Identify when to use substitution to simplify and solve integrals
 	Apply substitution methods to find indefinite integrals
 	Apply substitution methods to find definite integrals
 
  Transforming Integrals: The Power of Substitution
 In this activity, we will explore the technique of integration by substitution, a powerful method for solving complex integrals. By transforming integrals into simpler forms, substitution allows us to evaluate them more easily.  
 [ohm_question hide_question_numbers=1]288339[/ohm_question]
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		Integrals Involving Exponential and Logarithmic Functions: Learn It 1

								

	
				 	Perform integrations on functions that include exponential terms
 	Solve integrals that feature logarithmic functions
 
  Integrals of Exponential Functions
 The exponential function is perhaps the most efficient function in terms of the operations of calculus. The exponential function, [image: y={e}^{x},] is its own derivative and its own integral.
 integrals of exponential functions
 Exponential functions can be integrated using the following formulas.
 [image: \begin{array}{ccc} {\displaystyle\int{e}^{x}dx} & {=} & {{e}^{x}+C} \\ {\displaystyle\int{a}^{x}dx} & {=} & {\dfrac{{a}^{x}}{\text{ln}a}+C}\end{array}]
  The nature of the antiderivative of [image: {e}^{x}] makes it fairly easy to identify what to choose as [image: u]. 
 If only one [image: e] exists, choose the exponent of [image: e] as [image: u]. If more than one [image: e] exists, choose the more complicated function involving [image: e] as [image: u].
  Find the antiderivative of the exponential function [image: e^{-x}].
 Show Solution 
 Use substitution, setting [image: u=\text{−}x,] and then [image: du=-1dx.]
 Multiply the du equation by [image: −1], so you now have [image: \text{−}du=dx.]
 Then,
 [image: \begin{array}{cc}{\displaystyle\int {e}^{\text{−}x}dx}\hfill & =\text{−}{\displaystyle\int {e}^{u}du}\hfill \\ & =\text{−}{e}^{u}+C\hfill \\ & =\text{−}{e}^{\text{−}x}+C.\hfill \end{array}]
 
  A common mistake when dealing with exponential expressions is treating the exponent on [image: e] the same way we treat exponents in polynomial expressions. We cannot use the power rule for the exponent on [image: e]. This can be especially confusing when we have both exponentials and polynomials in the same expression, as in the previous checkpoint. In these cases, we should always double-check to make sure we’re using the right rules for the functions we’re integrating.
  Find the antiderivative of the exponential function [image: {e}^{x}\sqrt{1+{e}^{x}}.]
 Show Solution 
 First rewrite the problem using a rational exponent:
 [image: \displaystyle\int {e}^{x}\sqrt{1+{e}^{x}}dx=\displaystyle\int {e}^{x}{(1+{e}^{x})}^{1\text{/}2}dx.]
 Using substitution, choose [image: u=1+{e}^{x}.u=1+{e}^{x}.]
 Then, [image: du={e}^{x}dx.] We have,
 [image: \displaystyle\int {e}^{x}{(1+{e}^{x})}^{1\text{/}2}dx=\displaystyle\int {u}^{1\text{/}2}du.]
 Then
 [image: \displaystyle\int {u}^{1\text{/}2}du=\frac{{u}^{3\text{/}2}}{3\text{/}2}+C=\frac{2}{3}{u}^{3\text{/}2}+C=\frac{2}{3}{(1+{e}^{x})}^{3\text{/}2}+C.]
 [image: A graph of the function f(x) = e^x * sqrt(1 + e^x), which is an increasing concave up curve, over [-3, 1]. It begins close to the x axis in quadrant two, crosses the y axis at (0, sqrt(2)), and continues to increase rapidly.]Figure 1. The graph shows an exponential function times the square root of an exponential function.   Use substitution to evaluate the indefinite integral [image: \displaystyle\int 3{x}^{2}{e}^{2{x}^{3}}dx.]
 Show Solution 
 Here we choose to let [image: u] equal the expression in the exponent on [image: e].
 Let [image: u=2{x}^{3}] and [image: du=6{x}^{2}dx..] Again, du is off by a constant multiplier; the original function contains a factor of 3[image: x^2], not 6[image: x^2].
 Multiply both sides of the equation by [image: \frac{1}{2}] so that the integrand in [image: u] equals the integrand in [image: x].
 Thus,
 [image: \displaystyle\int 3{x}^{2}{e}^{2{x}^{3}}dx=\frac{1}{2}\displaystyle\int {e}^{u}du.]
 Integrate the expression in [image: u] and then substitute the original expression in [image: x] back into the [image: u] integral:
 [image: \frac{1}{2}\displaystyle\int {e}^{u}du=\frac{1}{2}{e}^{u}+C=\frac{1}{2}{e}^{2{x}^{3}}+C.]
  Exponential functions are used in many real-life applications. The number e is often associated with compounded or accelerating growth, as we have seen in earlier sections about the derivative. Although the derivative represents a rate of change or a growth rate, the integral represents the total change or the total growth. Let’s look at an example in which integration of an exponential function solves a common business application.
 A price–demand function tells us the relationship between the quantity of a product demanded and the price of the product. In general, price decreases as quantity demanded increases.
 The marginal price–demand function is the derivative of the price–demand function and it tells us how fast the price changes at a given level of production.
 These functions are used in business to determine the price–elasticity of demand, and to help companies determine whether changing production levels would be profitable.
  Find the price–demand equation for a particular brand of toothpaste at a supermarket chain when the demand is [image: 50] tubes per week at [image: $2.35] per tube, given that the marginal price—demand function, [image: {p}^{\prime }(x),] for [image: x] number of tubes per week, is given as
 [image: p\text{'}(x)=-0.015{e}^{-0.01x}.]
 If the supermarket chain sells [image: 100] tubes per week, what price should it set?
 Show Solution 
 To find the price–demand equation, integrate the marginal price–demand function. First find the antiderivative, then look at the particulars.
 Thus,
 [image: \begin{array}{}\\ \\ p(x)\hfill & =\int -0.015{e}^{-0.01x}dx\hfill \\ & =-0.015\int {e}^{-0.01x}dx.\hfill \end{array}]
 Using substitution, let [image: u=-0.01x] and [image: du=-0.01dx.] Then, divide both sides of the du equation by [image: −0.01].
 This gives,
 [image: \begin{array}{cc}\frac{-0.015}{-0.01}\int {e}^{u}du\hfill & =1.5\int {e}^{u}du\hfill \\ \\ & =1.5{e}^{u}+C\hfill \\ & =1.5{e}^{-0.01x}+C.\hfill \end{array}]
 The next step is to solve for [image: C]. We know that when the price is [image: $2.35] per tube, the demand is [image: 50] tubes per week. This means
 [image: \begin{array}{}\\ \\ p(50)\hfill & =1.5{e}^{-0.01(50)}+C\hfill \\ & =2.35.\hfill \end{array}]
 Now, just solve for [image: C]:
 [image: \begin{array}{}\\ C\hfill & =2.35-1.5{e}^{-0.5}\hfill \\ & =2.35-0.91\hfill \\ & =1.44.\hfill \end{array}]
 Thus,
 [image: p(x)=1.5{e}^{-0.01x}+1.44.]
 If the supermarket sells [image: 100] tubes of toothpaste per week, the price would be,
 [image: p(100)=1.5{e}^{-0.01(100)}+1.44=1.5{e}^{-1}+1.44\approx 1.99.]
 The supermarket should charge [image: $1.99] per tube if it is selling [image: 100] tubes per week.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=V9NlSl17duk%3Fcontrols%3D0%26start%3D465%26end%3D815%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.6.1” here (opens in new window).
  Evaluate the definite integral [image: {\displaystyle\int }_{1}^{2}{e}^{1-x}dx.]
 Show Solution 
 Again, substitution is the method to use. Let [image: u=1-x,] so [image: du=-1dx] or [image: \text{−}du=dx.] Then [image: \displaystyle\int {e}^{1-x}dx=\text{−}\displaystyle\int {e}^{u}du.] Next, change the limits of integration. Using the equation [image: u=1-x,] we have
 [image: \begin{array}{c}u=1-(1)=0\hfill \\ u=1-(2)=-1.\hfill \end{array}]
 The integral then becomes
 [image: \begin{array}{cc}{\displaystyle\int }_{1}^{2}{e}^{1-x}dx\hfill & =\text{−}{\displaystyle\int }_{0}^{-1}{e}^{u}du\hfill  \\ & ={\displaystyle\int }_{-1}^{0}{e}^{u}du\hfill \\ & ={{e}^{u}|}_{-1}^{0}\hfill \\ & ={e}^{0}-({e}^{-1})\hfill \\ & =\text{−}{e}^{-1}+1.\hfill \end{array}]
 [image: A graph of the function f(x) = e^(1-x) over [0, 3]. It crosses the y axis at (0, e) as a decreasing concave up curve and symptotically approaches 0 as x goes to infinity.]Figure 2. The indicated area can be calculated by evaluating a definite integral using substitution.   Suppose the rate of growth of bacteria in a Petri dish is given by [image: q(t)={3}^{t},] where [image: t] is given in hours and [image: q(t)] is given in thousands of bacteria per hour. If a culture starts with [image: 10,000] bacteria, find a function [image: Q(t)] that gives the number of bacteria in the Petri dish at any time [image: t]. How many bacteria are in the dish after [image: 2] hours?
 Show Solution 
 We have,
 [image: Q(t)=\int {3}^{t}dt=\frac{{3}^{t}}{\text{ln}3}+C.]
 Then, at [image: t=0] we have
 [image: Q(0)=10=\frac{1}{\text{ln}3}+C,] 
 so [image: C\approx 9.090] and we get,
 [image: Q(t)=\frac{{3}^{t}}{\text{ln}3}+9.090.]
 Note: We are using [image: 10] in place of [image: 10,000] since [image: 10 ,000] bacteria are [image: 10] thousands of bacteria. We will multiple our final answer by a power of [image: 1000] at the end of our calculation to account for this. 
 
 At time [image: t=2,] we have,
 [image: Q(2)=\frac{{3}^{2}}{\text{ln}3}+9.090=17.282]
 After [image: 2] hours, there are [image: 17,282] bacteria in the dish.
   Evaluate the definite integral using substitution:
 [image: {\displaystyle\int }_{1}^{2}\dfrac{{e}^{1\text{/}x}}{{x}^{2}}dx.]
 Show Solution 
 This problem requires some rewriting to simplify applying the properties.
 First, rewrite the exponent on [image: e] as a power of [image: x], then bring the [image: x^2] in the denominator up to the numerator using a negative exponent.
 We have,
 [image: {\displaystyle\int }_{1}^{2}\frac{{e}^{1\text{/}x}}{{x}^{2}}dx={\displaystyle\int }_{1}^{2}{e}^{{x}^{-1}}{x}^{-2}dx.]
 Let [image: u={x}^{-1},] the exponent on [image: e].
 Then,
 [image: \begin{array}{cc}\hfill du& =\text{−}{x}^{-2}dx\hfill \\ \hfill -du& ={x}^{-2}dx.\hfill \end{array}]
 Bringing the negative sign outside the integral sign, the problem now reads,
 [image: \text{−}\displaystyle\int {e}^{u}du.]
 Next, change the limits of integration:
 [image: \begin{array}{}\\ u={(1)}^{-1}=1\hfill \\ u={(2)}^{-1}=\frac{1}{2}.\hfill \end{array}]
 Notice that now the limits begin with the larger number, meaning we must multiply by [image: −1]and interchange the limits.
 Thus,
 [image: \begin{array}{cc}\\ \text{−}{\displaystyle\int }_{1}^{1\text{/}2}{e}^{u}du\hfill & ={\displaystyle\int }_{1\text{/}2}^{1}{e}^{u}du\hfill \\ & ={e}^{u}{|}_{1\text{/}2}^{1}\hfill \\ & =e-{e}^{1\text{/}2}\hfill \\ & =e-\sqrt{e}.\hfill \end{array}]
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				Integrals Involving Logarithmic Functions
 Integrating functions of the form [image: f(x)={x}^{-1}] result in the absolute value of the natural log function, as shown in the following rule. Integral formulas for other logarithmic functions, such as [image: f(x)=\text{ln}x] and [image: f(x)={\text{log}}_{a}x,] are also included in the rule.
 integration formulas involving logarithmic functions
 The following formulas can be used to evaluate integrals involving logarithmic functions.
 [image: \begin{array}{ccc}\hfill \displaystyle\int {x}^{-1}dx& =\hfill & \text{ln}|x|+C\hfill \\ \hfill \displaystyle\int \text{ln}xdx& =\hfill & x\text{ln}x-x+C=x(\text{ln}x-1)+C\hfill \\ \hfill \displaystyle\int {\text{log}}_{a}xdx& =\hfill & \frac{x}{\text{ln}a}(\text{ln}x-1)+C\hfill \end{array}]
  Find the antiderivative of the function [image: \dfrac{3}{x-10}.]
 Show Solution 
 First factor the [image: 3] outside the integral symbol. Then use the [image: u^{-1}] rule. Thus,
 [image: \begin{array}{ll}{\displaystyle\int \frac{3}{x-10}dx}\hfill & =3{\displaystyle\int \frac{1}{x-10}dx}\hfill \\ & =3{\displaystyle\int \frac{du}{u}}\hfill \\ & =3\text{ln}|u|+C\hfill \\ & =3\text{ln}|x-10|+C,x\ne 10.\hfill \end{array}]
 [image: A graph of the function f(x) = 3 / (x – 10). There is an asymptote at x=10. The first segment is a decreasing concave down curve that approaches 0 as x goes to negative infinity and approaches negative infinity as x goes to 10. The second segment is a decreasing concave up curve that approaches infinity as x goes to 10 and approaches 0 as x approaches infinity.]Figure 3. The domain of this function is [image: x\ne 10.]   Find the antiderivative of [image: \dfrac{2{x}^{3}+3x}{{x}^{4}+3{x}^{2}}.]
 Show Solution This can be rewritten as [image: \displaystyle\int (2{x}^{3}+3x){({x}^{4}+3{x}^{2})}^{-1}dx.] 
 Use substitution. Let [image: u={x}^{4}+3{x}^{2},] then [image: du=4{x}^{3}+6x.] Alter du by factoring out the [image: 2]. 
 Thus,
 [image: \begin{array}{}\\ \hfill du& =\hfill & (4{x}^{3}+6x)dx\hfill \\ & =\hfill & 2(2{x}^{3}+3x)dx\hfill \\ \hfill \frac{1}{2}du& =\hfill & (2{x}^{3}+3x)dx.\hfill \end{array}]
  
 Rewrite the integrand in [image: u]:
 [image: \displaystyle\int (2{x}^{3}+3x){({x}^{4}+3{x}^{2})}^{-1}dx=\frac{1}{2}\displaystyle\int {u}^{-1}du.]
 Then we have
 [image: \begin{array}{ll}\frac{1}{2}{\displaystyle\int {u}^{-1}du}\hfill & =\frac{1}{2}\text{ln}|u|+C\hfill \\ & =\frac{1}{2}\text{ln}|{x}^{4}+3{x}^{2}|+C.\hfill \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=8mW2bG6HoPE%3Fcontrols%3D0%26start%3D162%26end%3D270%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “5.6.2” here (opens in new window).
  Find the antiderivative of the log function [image: {\text{log}}_{2}x.]
 Show Solution 
 Follow the format in the formula listed in the rule on integration formulas involving logarithmic functions. Based on this format, we have
 [image: \displaystyle\int {\text{log}}_{2}xdx=\frac{x}{\text{ln}2}(\text{ln}x-1)+C.]
  The example below is a definite integral of a trigonometric function. With trigonometric functions, we often have to apply a trigonometric property or an identity before we can move forward. Finding the right form of the integrand is usually the key to a smooth integration.
 Find the definite integral of [image: {\displaystyle\int }_{0}^{\pi \text{/}2}\frac{ \sin x}{1+ \cos x}dx.]
 Show Solution 
 We need substitution to evaluate this problem. Let [image: u=1+ \cos x,,] so [image: du=\text{−} \sin xdx.] Rewrite the integral in terms of [image: u], changing the limits of integration as well. Thus,
 [image: \begin{array}{c}u=1+ \cos (0)=2\hfill \\ u=1+ \cos (\frac{\pi }{2})=1\hfill \end{array}]
 Then
 [image: \begin{array}{cc}{\displaystyle\int} _{0}^{\pi \text{/}2}\dfrac{ \sin x}{1+ \cos x}\hfill & =\text{−}{\displaystyle\int }_{2}^{1}{u}^{-1}du\hfill  \\ & ={\displaystyle\int }_{1}^{2}{u}^{-1}du\hfill \\ & ={\text{ln}|u||}_{1}^{2}\hfill \\ & =\left[\text{ln}2-\text{ln}1\right]\hfill \\ & =\text{ln}2\hfill \end{array}]
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				 	Perform integrations on functions that include exponential terms
 	Solve integrals that feature logarithmic functions
 
  Exponential and Logarithmic Integrals in the Real World
 In this apply-it task, we’ll explore how exponential and logarithmic integrals are used to solve real-world problems. From population growth to radioactive decay, from compound interest to sound intensity, these mathematical tools help us understand and predict various phenomena.
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				 	Calculate integrals that lead to inverse trigonometric function solutions
 
  In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions before.
 Recall that trigonometric functions are not one-to-one unless the domains are restricted.
  When working with inverses of trigonometric functions, we always need to be careful to take these restrictions into account. Also, we developed formulas for derivatives of inverse trigonometric functions. The formulas developed there give rise directly to integration formulas involving inverse trigonometric functions.
 Integrals Resulting in Inverse Trigonometric Functions
 Let us begin with the three formulas. Along with these formulas, we use substitution to evaluate the integrals. We prove the formula for the inverse sine integral.
 integration formulas resulting in inverse trigonometric Functions
 The following integration formulas yield inverse trigonometric functions:
 	[image: \displaystyle\int \frac{du}{\sqrt{{a}^{2}-{u}^{2}}}={ \sin }^{-1}\frac{u}{|a|}+C]
 
 	[image: \displaystyle\int \frac{du}{{a}^{2}+{u}^{2}}=\frac{1}{a}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}\frac{u}{a}+C]
 
 	[image: \displaystyle\int \frac{du}{u\sqrt{{u}^{2}-{a}^{2}}}=\frac{1}{|a|}\phantom{\rule{0.05em}{0ex}}{ \sec }^{-1}\frac{|u|}{a}+C]
 
 
  Proof
 
 Let [image: y={ \sin }^{-1}\dfrac{x}{a}.] Then [image: a \sin y=x.]
 Now let’s use implicit differentiation. We obtain,
 [image: \begin{array}{ccc}\hfill \frac{d}{dx}(a \sin y)& =\hfill & \frac{d}{dx}(x)\hfill \\ \\ \hfill a \cos y\frac{dy}{dx}& =\hfill & 1\hfill \\ \hfill \frac{dy}{dx}& =\hfill & \frac{1}{a \cos y}.\hfill \end{array}]
  
 For [image: -\frac{\pi }{2}\le y\le \frac{\pi }{2}, \cos y\ge 0.]
 Thus, applying the Pythagorean identity [image: { \sin }^{2}y+{ \cos }^{2}y=1,] we have [image: \cos y=\sqrt{1={ \sin }^{2}y}.]
 This gives,
 [image: \begin{array}{cc}\frac{1}{a \cos y}\hfill & =\frac{1}{a\sqrt{1-{ \sin }^{2}y}}\hfill \\ \\ & =\frac{1}{\sqrt{{a}^{2}-{a}^{2}{ \sin }^{2}y}}\hfill \\ & =\frac{1}{\sqrt{{a}^{2}-{x}^{2}}}.\hfill \end{array}]
 Then for [image: \text{−}a\le x\le a,] we have,
 [image: \displaystyle\int \frac{1}{\sqrt{{a}^{2}-{u}^{2}}}du={ \sin }^{-1}\left(\frac{u}{a}\right)+C.]
 [image: _\blacksquare]
  Evaluate the definite integral [image: {\displaystyle\int }_{0}^{\frac{1}{2}}\dfrac{dx}{\sqrt{1-{x}^{2}}}.]
 Show Solution 
 We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse trigonometric functions, and then evaluate the definite integral.
 We have,
 [image: \begin{array}{}\\ {\displaystyle\int }_{0}^{\frac{1}{2}}\dfrac{dx}{\sqrt{1-{x}^{2}}}\hfill & ={ \sin }^{-1}x{|}_{0}^{\frac{1}{2}}\hfill \\ & ={ \sin }^{-1}{\frac{1}{2}}-{ \sin }^{-1}0\hfill \\ & =\frac{\pi }{6}-0\hfill \\ & =\frac{\pi }{6}.\hfill \end{array}]
  Evaluate the integral [image: \displaystyle\int \frac{dx}{\sqrt{4-9{x}^{2}}}.]
 Show Solution Substitute [image: u=3x.] Then [image: du=3dx] and we have,
 [image: \displaystyle\int \frac{dx}{\sqrt{4-9{x}^{2}}}=\frac{1}{3}\displaystyle\int \frac{du}{\sqrt{4-{u}^{2}}}.]
 Applying the formula with [image: a=2,] we obtain,
 [image: \begin{array}{cc}{\displaystyle\int} \dfrac{dx}{\sqrt{4-9{x}^{2}}}\hfill & =\frac{1}{3}{\displaystyle\int} \dfrac{du}{\sqrt{4-{u}^{2}}}\hfill \\ & =\frac{1}{3}{ \sin }^{-1}\left(\frac{u}{2}\right)+C\hfill \\ & =\frac{1}{3}{ \sin }^{-1}\left(\frac{3x}{2}\right)+C.\hfill \end{array}]
 
 
  Evaluate the definite integral [image: {\displaystyle\int }_{0}^{\sqrt{3}\text{/}2}\dfrac{du}{\sqrt{1-{u}^{2}}}.]
 Show Solution 
 The format of the problem matches the inverse sine formula. Thus,
 [image: \begin{array}{}\\ {\displaystyle\int }_{0}^{\sqrt{3}\text{/}2}\dfrac{du}{\sqrt{1-{u}^{2}}}\hfill & ={ \sin }^{-1}u{|}_{0}^{\sqrt{3}\text{/}2}\hfill \\ & =\left[{ \sin }^{-1}(\frac{\sqrt{3}}{2})\right]-\left[{ \sin }^{-1}(0)\right]\hfill \\ & =\frac{\pi }{3}.\hfill \end{array}]
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				Integrals Resulting in Other Inverse Trigonometric Functions 
 There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use. The only difference is whether the integrand is positive or negative.
 Rather than memorizing three more formulas, if the integrand is negative, simply factor out [image: −1] and evaluate the integral using one of the formulas already provided.
  Find an antiderivative of [image: \displaystyle\int \frac{1}{1+4{x}^{2}}dx.]
 Show Solution 
 Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse trigonometric functions, the integrand looks similar to the formula for [image: { \tan }^{-1}u+C.]
 So we use substitution, letting [image: u=2x,] then [image: du=2dx] and [image: \frac{1}{2}du=dx.]
 Then, we have,
 [image: \frac{1}{2}\displaystyle\int \frac{1}{1+{u}^{2}}du=\frac{1}{2}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}u+C=\frac{1}{2}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}(2x)+C.]
 
  Find the antiderivative of [image: \displaystyle\int \frac{1}{9+{x}^{2}}dx.]
 
 Show Solution 
 Apply the formula with [image: a=3.] Then,
 [image: \displaystyle\int \frac{dx}{9+{x}^{2}}=\frac{1}{3}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}\left(\frac{x}{3}\right)+C]
 
 
 
  Evaluate the definite integral [image: {\displaystyle\int }_{\sqrt{3}\text{/}3}^{\sqrt{3}}\dfrac{dx}{1+{x}^{2}}.]
 Show Solution 
 Use the formula for the inverse tangent. We have,
 [image: \begin{array}{} \\ {\displaystyle\int }_{\sqrt{3}\text{/}3}^{\sqrt{3}}\dfrac{dx}{1+{x}^{2}}\hfill & ={ \tan }^{-1}x{|}_{\sqrt{3}\text{/}3}^{\sqrt{3}}\hfill \\ & =\left[{ \tan }^{-1}(\sqrt{3})\right]-\left[{ \tan }^{-1}\left(\frac{\sqrt{3}}{3}\right)\right]\hfill \\ & =\frac{\pi }{6}.\hfill \end{array}]
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				 	Calculate integrals that lead to inverse trigonometric function solutions
 
  Exploring Integrals with Inverse Trigonometric Functions
 In this activity, we will explore the use of inverse trigonometric functions to solve integrals. These exercises will help you understand how to recognize and apply the formulas for integrals that match the forms of inverse sine, tangent, and secant functions. By practicing both indefinite and definite integrals, you will become more comfortable with identifying the appropriate substitution and integration techniques.
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				 	Understand that while all differentiable functions can be derived in a straightforward formula, not all functions can be integrated into a simple antiderivative
 	Calculate bounds for the area calculations under curves when direct integration methods aren’t applicable
 	Explain how estimating the bounds of an integral affects the accuracy of the approximation
 
  Approximating Integrals
 At this point on our calculus journey, we have developed the tools to find the derivative function of any differentiable function. Take, for example, the following function.
 [image: f(x)=\left[\ln\left(\tan^2\left(\frac{1}{x^{2}+3\sqrt{x}}\right)\right)\cos^{-1}\left(\frac{3x^{2}+5x-1}{22x+1}\right)+10x^{3^{x^{2}}}\right]^{e^{\sin(x^{3.2})}}]
 Finding the derivative of this function would take multiple pages using the Chain Rule, Quotient Rule, Product Rule, Sum Rule, and derivative formulas. By cutting some corners and letting Wolfram|Alpha find the derivative function for us, we see that it is:
 [image: Solution for the derivation of the given function above. The details of the final equation are not important, just that it is very long and extremely complex.]
 Don’t worry—we won’t be asked to do anything quite that crazy by hand. But the point is that for any differentiable function we are given, we can apply the tools in our calculus toolbelt to find the closed-form expression of its derivative function.
 However, integration is not always straightforward. There are many functions which are integrable but have no antiderivative in terms of standard elementary functions we’ve seen so far.
 Consider:
 [image: g(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}]
 If we were asked to compute the definite integral [image: \displaystyle\int _{0}^{1} g(x)dx], the graphical area of which is shown in the figure below, could we use the Fundamental Theorem of Calculus, Part 2?
 Try this on your own for a moment. Can you find an antiderivative of [image: g(x)] in terms of elementary functions?
 [image: Graph of a function that is a curve, peak at y-axis 0.4 and shaded under the curve from x=0 to x=1, to the x-axis.]
 If your conclusion is “no,” then you are correct. While the function looks simple, it does not have an antiderivative in terms of elementary functions.
  In Calculus II, we will learn additional techniques to find antiderivatives and indefinite integrals, such as integration by parts and partial fraction decomposition. However, even these methods cannot help us with the function [image: g(x)].
 Finding an antiderivative of [image: g(x)] requires introducing special functions that are themselves defined in terms of integrals. This makes the process too complicated to apply the Fundamental Theorem of Calculus, Part 2, directly. (If you’re curious, you can look up the error function [image: \text{erf}(x)].
 So, what can we do to find [image: \displaystyle\int _{0}^{1} g(x)dx] if we cannot find an antiderivative of [image: g(x)] in terms of elementary functions? We approximate the definite integral!
 Remember, earlier in this module, we learned about using Riemann Sums to approximate the area under a curve. This method may not give us an exact answer but can get us very close when we’ve exhausted other tools. There are also tricks in mathematics that make approximations extremely useful.
 Let’s use a left-endpoint Riemann Sum to approximate [image: \displaystyle\int _{0}^{1} g(x)dx] where [image: g(x)] is defined as above. If we split the interval [image: [0,1]] into [image: n] subintervals of length [image: \frac{1}{n}], then the left-endpoint Riemann sum is:
 [image: L_{n}={\displaystyle\sum _{i=1}^{n}} g\left(\frac{i-1}{n}\right)\cdot\frac{1}{n}].
 If we choose [image: n=10], then our approximation would be:
 [image: {\displaystyle\int _{0}^{1}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx\approx L_{10}={\displaystyle\sum_{i=1}^{10}}\left[\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(i-1/10)^{2}}\cdot\frac{1}{10}\right]\approx0.349].
 Graphically, this left-endpoint sum with [image: 10] subintervals looks as follows.
 [image: Curved function on graph, peak at y=0.4, rectangles are highlighted every increment of 0.1 along the x-axis using the left y-value to approximate the area under the curve. Bound from x=0 to x=1.]
 If we tell someone, “We have an approximation for [image: \displaystyle\int _{0}^{1} g(x)dx], and it is [image: 0.349]!” they might ask, “That’s great, but how close is your approximation to the true value? How large could your error be?” This is where the concept of bounds comes in handy.
 Instead of just giving a single approximation, we can provide upper and lower bounds for the true value. This gives more information because it tells us an interval within which the true value lies. If we choose a value from this interval as our approximation, we can also determine the maximum possible error.
 To find these bounds, we use the concepts of upper sums and lower sums.
 An upper sum uses the maximum function value on each subinterval, giving a weak over-approximation of the true area. A lower sum uses the minimum function value on each subinterval, giving a weak under-approximation of the true area.
  Therefore, we can state:
 [image: \text{Lower Sum}\le\text{True Value}\le\text{Upper Sum}].
 In our example, [image: g(x)=\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}] is decreasing over the interval [image: [0,1]]. Therefore, left endpoints of subintervals give maximum function values, making left-endpoint Riemann sums upper sums. Right endpoints give minimum function values, making right-endpoint Riemann sums lower sums.
 A right-endpoint Riemann Sum to approximate [image: \displaystyle\int _{0}^{1} g(x)dx] with [image: n] subintervals is:
 [image: R_{n}={\displaystyle\sum _{i=1}^{n}} g\left(\frac{i}{n}\right)\cdot\frac{1}{n}]
 With [image: n=10], our right-endpoint approximation is:
 [image: {\displaystyle\int _{0}^{1}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx\approx R_{10}={\displaystyle\sum_{i=1}^{10}}\left[\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(i/10)^{2}}\cdot\frac{1}{10}\right]\approx0.333].
 Graphically, this right-endpoint sum with [image: 10] subintervals looks as follows.
 [image: Curved function on graph, peak at y=0.4, rectangles are highlighted every increment of 0.1 along the x-axis using the right y-value to approximate the area under the curve. Bound from x=0 to x=1.]
 Now we have an upper sum [image: L_{10}] and a lower sum [image: R_{10}], meaning we can state:
 [image: R_{10}\le\displaystyle\int _{0}^{1} g(x)dx\le L_{10}].
 Therefore,
 [image: 0.333\le{\displaystyle\int _{0}^{1}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx\le 0.349].
 Another way to express this is that the true value of [image: {\displaystyle\int _{0}^{1}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx] must lie in the interval [image: [0.333, 0.349]]. If we choose a value from that interval for our approximation, what is the maximum possible error from the true value?
 Suppose we choose the midpoint of the interval [image: [0.333,0.349]], which is:
 [image: \text{midpoint }=\frac{0.333+0.349}{2}=0.341].
 Since the true value lies within [image: [0.333,0.349]], the maximum distance our approximation could be from [image: {\displaystyle\int _{0}^{1}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx] is the distance from the midpoint to the endpoints of the interval. Let [image: \varepsilon (x)] be the maximum error that could be associated with the approximation [image: x]. Then,
 [image: \varepsilon(0.341)=0.349-0.341=0.341-0.333=0.008].
 In words, our approximation [image: 0.341] could be at most [image: 0.008] away from the true value of from the true value of [image: {\displaystyle\int _{0}^{1}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx].
 There is no specific reason we chose [image: n=10] for the number of subintervals. As we choose larger and larger [image: n], the interval for our approximation would become smaller, as would the maximum error. Computers can perform these calculations efficiently for very large [image: n], often necessary when computing a definite integral for a function with no antiderivative in terms of elementary functions.
 Consider the function [image: f(x)=\sqrt{1-x^{4}}]. Can you find [image: \displaystyle\int _{-1}^{0} f(x)dx] using the Fundamental Theorem of Calculus, Part 2? If not, provide an upper bound and a lower bound for the true value of the definite integral. If you were to choose a single value from that interval to use as an approximation, what is the maximum error that could be associated with that approximation?
 
 Show Answer 
 Finding an antiderivative for [image: f(x) = \sqrt{1 - x^4}] in terms of elementary functions is not straightforward. Thus, we cannot directly apply the Fundamental Theorem of Calculus, Part 2.
 Since we cannot find an antiderivative, we will approximate the definite integral using Riemann sums and provide an upper and lower bound for the true value of the integral.
 We are approximating the integral over the interval [image: [-1, 0]]. Let’s split this interval into [image: n] equal subintervals.
 For simplicity, let [image: n = 10].
 For the left-endpoint sum: 
 [image: L_{n} = \sum_{i=1}^{n} f\left(a + (i-1)\Delta x\right) \Delta x]
 For the right-endpoint sum:
 [image: R_{n} = \sum_{i=1}^{n} f\left(a + i\Delta x\right) \Delta x]
 Where [image: \Delta x = \frac{b-a}{n} = \frac{0 - (-1)}{10} = 0.1].
 So the left-endpoint Riemann sum is:
 [image: L_{10} = \sum_{i=1}^{10} \sqrt{1 - \left(-1 + (i-1) \cdot 0.1\right)^4} \cdot 0.1]
 And the right-endpoint Riemann sum is:
 [image: R_{10} = \sum_{i=1}^{10} \sqrt{1 - \left(-1 + i \cdot 0.1\right)^4} \cdot 0.1]
 Calculating these sums:
 [image: L_{10} \approx 0.360] [image: R_{10} \approx 0.332]
 Establishing the bounds:
 [image: R_{10} \leq \int_{-1}^{0} \sqrt{1 - x^4} , dx \leq L_{10}]
 So,
 [image: 0.332 \leq \int_{-1}^{0} \sqrt{1 - x^4} , dx \leq 0.360]
 Let’s choose the midpoint of the interval [image: [0.332, 0.360]]:
 [image: \text{midpoint} = \frac{0.332 + 0.360}{2} = 0.346]
 The maximum possible error would be the distance from the midpoint to either endpoint:
 [image: \varepsilon(0.346) = 0.360 - 0.346 = 0.346 - 0.332 = 0.014]
 Thus, the maximum error associated with the approximation [image: 0.346] is [image: 0.014].
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				 	Understand that while all differentiable functions can be derived in a straightforward formula, not all functions can be integrated into a simple antiderivative
 	Calculate bounds for the area calculations under curves when direct integration methods aren’t applicable
 	Explain how estimating the bounds of an integral affects the accuracy of the approximation
 
  Approximating Integrals
 In calculus, we often encounter functions that are difficult or impossible to integrate using standard techniques. While we have a robust set of tools for finding derivatives of complex functions, integration sometimes requires us to use approximation methods. One such method is the Riemann Sum, which allows us to approximate the area under a curve by summing up the areas of multiple rectangles.
 For example, consider the function [image: g(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}]. While it is simple in form, it does not have an antiderivative expressible in terms of elementary functions. To approximate the definite integral [image: \int_0^1 g(x) \, dx], we can use a Riemann Sum. By dividing the interval [image: [0,1]] into subintervals and calculating the sum of the areas of the rectangles, we can find an approximate value for the integral.
 We can further refine our approximation by calculating both left-endpoint and right-endpoint Riemann Sums. The left-endpoint sum tends to overestimate the integral, while the right-endpoint sum underestimates it. By combining these estimates, we can provide upper and lower bounds for the true value of the integral, offering a clearer picture of its range. This method of approximation is especially useful when dealing with integrals of functions without elementary antiderivatives, ensuring we can still make accurate and meaningful calculations.
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				 	Identify the shapes you get from cutting through 3D objects and what 3D shapes are made by spinning flat shapes
 
  Grasping the concepts of cross sections and rotational solids is fundamental in visualizing and understanding the structure of three-dimensional objects. This topic bridges two-dimensional geometry and three-dimensional forms, providing insights into how shapes transform through different perspectives and manipulations.
 Identifying Cross Sections of 3D Figures
 A cross section is the intersection of a three-dimensional figure with a plane. Analyzing cross sections involves slicing through a 3D object and observing the 2D shape that results from this intersection. The shape of the cross section depends on the orientation of the cutting plane relative to the 3D figure.
 Here’s how you can identify cross sections in different 3D figures:
 	Cubes and Rectangular Prisms: When you slice a cube or rectangular prism with a plane parallel to one of its faces, the cross section is a rectangle or a square. A diagonal cut through the cube can yield a triangular or hexagonal cross section, depending on the angle and the dimensions of the cube.
 [image: Three green cubes with blue planes intersecting them. The first cube is intersected by a horizontal plane, resulting in a square cross-section. The second cube is intersected by an inclined plane, producing a rectangular cross-section. The third cube is intersected by a vertical plane, creating a triangular cross-section.]

 	Cylinders: Slicing a cylinder with a plane parallel to its base produces a circular cross section. If the plane is perpendicular to the base, the cross section is a rectangle. An angled cut through the cylinder can result in an elliptical cross section.
 [image: Three green cylinders with blue planes intersecting them. The first cylinder is intersected by a horizontal plane, resulting in a circular cross-section. The second cylinder is intersected by a vertical plane, producing a rectangular cross-section. The third cylinder is intersected by an inclined plane, creating an elliptical cross-section.]

 	Cones: A horizontal slice of a cone results in a circle. If the slice is parallel but not aligned with the base, it forms an ellipse. A vertical cut through the cone’s vertex produces a triangular cross section.
 [image: Three green cones with blue planes intersecting them. The first cone is intersected by a horizontal plane, resulting in a circular cross-section. The second cone is intersected by a vertical plane, producing a triangular cross-section. The third cone is intersected by an inclined plane, creating an elliptical cross-section.]

 	Spheres: Any plane that cuts through a sphere will always result in a circular cross section.
 [image: Three green spheres with blue planes intersecting them. The first sphere is intersected by a horizontal plane, resulting in a circular cross-section. The second sphere is intersected by a vertical plane, producing a circular cross-section. The third sphere is intersected by an inclined plane, creating another circular cross-section.]

 
 cross sections of 3D figures
 A cross section is the intersection of a plane with a 3D object. The shape of the cross section depends critically on the geometry of the 3D object and the orientation of the cutting plane.
 	Common Examples:
 	Cubes and Rectangular Prisms: Parallel cuts produce rectangles or squares, while diagonal cuts can yield triangles or hexagons.
 	Cylinders: Cuts parallel to the base result in circles; perpendicular cuts create rectangles, and angled cuts produce ellipses.
 	Cones: Horizontal slices produce circles, slices parallel but off-center yield ellipses, and vertical cuts through the vertex create triangles.
 	Spheres: Any cut through a sphere results in a circle, regardless of the angle or position of the plane.
 
 
 
  How-To: Determining the Cross Section of a Solid
 	Select the Solid and the Plane: Choose the 3D solid you want to examine, and decide the orientation of the slicing plane. This could be parallel, perpendicular, or at an angle to the base or another prominent feature of the solid.
 	Visualize the Intersection: Imagine or sketch how the plane cuts through the solid. Consider the symmetry and shape of the solid to predict the shape of the intersection.
 	Identify the Shape: Based on the orientation of the plane and the nature of the solid, determine the shape of the cross section. Use geometric properties and previous knowledge of common solids like cylinders, cones, and prisms.
 
  Identify the cross section that is created in the following scenarios:
 	A cylinder with a radius of [image: 3] units and a height of [image: 10] units is cut along a plane parallel to its base, [image: 4] units from the top.
 	A cone with a base radius of [image: 5] units and a height of [image: 12] units is cut horizontally [image: 3] units down from the apex.
 	A sphere with a diameter of [image: 10] units is cut through the center.
 
 Show Answer 	The plane parallel to the base of the cylinder creates a circular cross section. Since the plane does not tilt, the shape remains a perfect circle matching the base.
 	A horizontal slice of a cone, when not at the base, creates a circular cross section. The closer the cut is to the apex, the smaller the circle.
 	Any plane that cuts through the center of a sphere creates a circular cross section. The diameter of the circle will be equal to the diameter of the sphere.
 
   [ohm_question hide_question_numbers=1]288439[/ohm_question]
  Understanding these cross sections helps in visualizing the internal and external geometries of complex objects, which is crucial in fields such as engineering, architecture, and biology.
 Recognizing Solids Formed by Rotating 2D Shapes
 Rotational solids are formed when a two-dimensional shape is revolved around an axis. This method is commonly used in both theoretical mathematics and practical applications like engineering and design. Common examples include:
 	Rotating a Rectangle: If you rotate a rectangle around one of its sides, you create a cylinder. Rotating it around an axis that bisects the rectangle lengthwise results in a different type of cylindrical shape where the diameters vary.
 	Rotating a Triangle: Rotating a right triangle about one of its legs forms a cone. If the rotation is around the hypotenuse, the resulting shape is more complex, typically a sort of truncated cone.
 	Rotating a Circle: Rotating a circle around its diameter yields a sphere, which is a fundamental shape in both natural and manufactured objects.
 	Rotating a Semicircle: When a semicircle rotates around its diameter, the resulting solid is a sphere; if rotated around its base, the solid is a hemisphere.
 
 rotational solids
 Rotational solids are a three-dimensional figure obtained by rotating a two-dimensional shape around an axis that lies in the same plane as the shape.
  A revolving door is a practical example of a solid of revolution. These doors, often used in buildings for temperature control and to minimize air leakage, feature multiple panels that rotate around a central shaft. As each panel moves, it traces a cylindrical path, showing how rotating a rectangular panel around a vertical axis creates a cylindrical volume.
 [image: A close-up view of a revolving door. The door is divided into four compartments by metallic frames.]
 How-To: Determining the Shape Formed by Rotation
 	Identify the 2D Shape: Begin by recognizing the shape that will be rotated. Common shapes include rectangles, triangles, circles, and semicircles.
 	Determine the Axis of Rotation: Note whether the shape rotates around a horizontal or vertical axis, or along one of its edges or through its center.
 	Visualize the Rotation: Imagine the 2D shape spinning along the chosen axis. The path traced by the shape’s outer edges forms the surface of the new solid.
 	Predict the Solid’s Shape: Based on the rotation, predict the resulting solid’s shape: 	Rectangle rotating around its length forms a cylinder.
 	Triangle rotating around a leg forms a cone.
 	Circle rotating around its diameter forms a sphere.
 
 
 
  Determine the rotational solid formed in the following scenarios:
 	A rectangle of dimensions [image: 4] units by [image: 3] units is rotated around its longer side
 	A right triangle with legs of [image: 3] units and [image: 4] units is rotated around its shorter leg. 
 	A semicircle with a radius of [image: 5] units is rotated around its diameter.
 
 Show Answer 	Rotating the rectangle around its longer side forms a cylindrical solid, where the height is [image: 4] units (the length of the longer side) and the diameter of the base is [image: 6] units (twice the shorter side).
 	The rotation of the right triangle around its shorter leg ([image: 3] units) forms a cone. The height of the cone is [image: 3] units, and the radius of the base is [image: 4] units.
 	Rotating the semicircle around its diameter forms a sphere with a diameter of [image: 10] units, as the semicircle’s radius traces out the full sphere during rotation.
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				 	Find out if and where two graphs cross each other
 
  Determine Where Two Functions Intersect
 Understanding where two functions intersect is a fundamental concept in algebra and calculus. This process can reveal key insights into the relationship between the functions and is crucial for graph analysis and solving system of equations.
 To find where two functions intersect, the key is to understand that the intersection points are where the outputs of both functions are equal. This involves setting the equations of the functions equal to one another and solving for the variables involved. The solutions to these equations represent the coordinates of the points where the graphs of the functions intersect.
 intersection of functions
 The intersection of functions refers to the set of points where the graphs of two or more functions meet or cross each other. This occurs when the output values of the functions are equal at the same input value.
 To determine where two functions intersect, set their equations equal to each other and solve for the variable. This process finds the exact points where the graphs of the functions meet.
  Consider finding the intersection of the linear function [image: f(x) = 2x+3] and the quadratic function [image: g(x)=x^2+x+1].
 We start by setting the equations equal to one another.
 [image: 2x+3=x^2+x+1]
 Next we rearrange the equation to isolate [image: x] to one side and set the equation equal to zero.
 [image: 0=x^2-x-2]
 We can solve for [image: x] by factoring.
 [image: (x-2)(x+1)=0]
 [image: x = 2 \text{ and } x=-1]
 For [image: x=2], substituting back into [image: f(x)] gives [image: y=7]. For [image: x=-1], [image: y=1].
 Thus, the interaction points are [image: (2,7)] and [image: (-1,1)].
  How to: Find Intersection Points
 	Set Equations Equal: Align the functions such that [image: f(x)=g(x)]. This step equates the two functions’ outputs at their intersection points.
 	Rearrange the Equation: Simplify the equation to isolate terms involving [image: x] on one side. This often involves subtracting one side of the equation from the other.
 	Solve for [image: x]: Use algebraic methods such as factoring, applying the quadratic formula, or computational tools to find the value(s) of [image: x] where the functions intersect.
 	Find Corresponding [image: y] Values: Substitute the [image: x] values back into either original function to find the corresponding [image: y] values for each intersection point.
 
  Find the points of intersection of the functions [image: y=x+2] and [image: y=x^2+3x+2].
 Show Solution 
 Set the two functions equal to each other.
 So, we have:
 [image: x+2=x^2+3x+2]
 [image: 0=x^2+2x]
 [image: x^2+2x=0]
 [image: x(x+2)=0]
 Setting [image: x=0] gives us an intersection point at [image: x=0]. To find the corresponding [image: y]-value of the point, let [image: x=0] in either function equation: [image: y=x+2=0+2=2].
 Setting [image: x+2=0] gives us an intersection point at [image: x=-2]. To find the corresponding [image: y]-value of the point, let [image: x=-2] in either function equation: [image: y=x+2=-2+2=0].
 Notice that graphically, we can see that the line and the parabola intersect at the points [image: (0,2)] and [image: (-2,0)].
 [image: The graph of a parabola and line intersecting at (-2,0) and (0,2)]
   Find the points of intersection of the functions [image: y=x-2] and [image: y=2x^2-4x+1].
 Show Solution 
 [image: (1,-1)] and [image: (\dfrac{3}{2}, -\dfrac{1}{2})]
   [ohm_question hide_question_numbers=1]287923[/ohm_question]
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				 	Work with expressions that include square roots and raising numbers to powers.
 
  Manipulating Expressions Involving Square Roots and Powers
 Manipulating expressions involving square roots and powers is a fundamental skill necessary for understanding more advanced calculus topics, such as integration and differentiation. Understanding how to manipulate square roots and powers allows you to simplify expressions and solve equations effectively. Some key ways to simplify these expressions are:
 	The power rule for exponents: [image: (a^m)^n = a^{mn}]
 	The product rule for exponents: [image: a^m \cdot a^n = a^{m+n}]
 	The quotient rule for exponents: [image: \frac{a^m}{a^n} = a^{m-n}]
 	Simplifying square roots:[image: \sqrt{a} \cdot \sqrt{b} = \sqrt{ab}]
 
 The Power Rule for Exponents
 Another word for an exponent is power. You have likely seen or heard an example such as [image: 3^5] can be described as [image: 3] raised to the [image: 5]th power. In this section, we will further expand our capabilities with exponents. We will learn what to do when a term with a power is raised to another power, what to do when two numbers or variables are multiplied and both are raised to an exponent, and what to do when numbers or variables that are divided are raised to a power. We will begin by raising powers to powers.
 the power rule for exponents
 For any positive number [image: x] and integers [image: a] and [image: b]: [image: \left(x^{a}\right)^{b}=x^{a\cdot{b}}].
 
  [ohm_question hide_question_numbers=1]287140[/ohm_question] Raise a Product to a Power
 Raising a product to a power is a fundamental operation in algebra that demonstrates how exponents interact with multiplication. This operation is widely used across various mathematical disciplines, including geometry, where it might be used to calculate the volume of shapes, and in finance, where it can be used to calculate compounded interest over multiple periods.
 The rule simplifies the process of working with powers of products. Instead of multiplying the base numbers repeatedly, we apply the exponent to each factor individually. This is based on the distributive property of exponents over multiplication.
 a product raised to a power
 For any nonzero numbers [image: a] and [image: b] and any integer [image: x], [image: \left(ab\right)^{x}=a^{x}\cdot{b^{x}}].
 
  Simplify the following: [image: \left(2yz\right)^{6}] Show Solution Apply the exponent to each number in the product.[image: 2^{6}y^{6}z^{6}]
 Answer: [image: \left(2yz\right)^{6}=64y^{6}z^{6}]
  If the variable has an exponent with it, use the Power Rule: multiply the exponents.
 Simplify the following:[image: \left(−7a^{4}b\right)^{2}] Show Solution Apply the exponent [image: 2] to each factor within the parentheses.[image: \left(−7\right)^{2}\left(a^{4}\right)^{2}\left(b\right)^{2}]Square the coefficient and use the Power Rule to square [image: \left(a^{4}\right)^{2}].
 [image: 49a^{4\cdot2}b^{2}]
 Simplify.
 [image: 49a^{8}b^{2}]
  
 Answer: [image: \left(-7a^{4}b\right)^{2}=49a^{8}b^{2}]
   The Product Rule for Exponents
 The Product Rule for Exponents is one of the essential rules in algebra that simplifies the process of working with powers. This rule is pivotal when dealing with exponential expressions, particularly when multiplying them. In essence, it tells us that when we multiply two exponents with the same base, we can simply add the exponents to get the new power of the base.
 This rule is extremely useful in various mathematical and real-world applications, such as calculating compound interest, understanding scientific notation, or solving problems in physics and engineering. By using the Product Rule, we can manage and simplify complex expressions without the need for lengthy multiplication.
 the product rule for exponents
 For any number [image: x] and any integers [image: a] and [image: b], [image: \left(x^{a}\right)\left(x^{b}\right) = x^{a+b}].
  
 To multiply exponential terms with the same base, add the exponents.
 
  [image: Caution]Caution! When you are reading mathematical rules, it is important to pay attention to the conditions on the rule. For example, when using the product rule, you may only apply it when the terms being multiplied have the same base and the exponents are integers. Conditions on mathematical rules are often given before the rule is stated, as in this example it says “For any number [image: x] and any integers [image: a] and [image: b].”
 Simplify the following: [image: (a^{3})(a^{7})]
 Show Solution The base of both exponents is [image: a], so the product rule applies.
 [image: \left(a^{3}\right)\left(a^{7}\right)]
 Add the exponents with a common base.
 [image: a^{3+7}]
  
 Answer: [image: \left(a^{3}\right)\left(a^{7}\right) = a^{10}]
   When multiplying more complicated terms, multiply the coefficients and then multiply the variables.
 Simplify the following: [image: 5a^{4}\cdot7a^{6}]
 Show Solution Multiply the coefficients.
 [image: 35\cdot{a}^{4}\cdot{a}^{6}]
 The base of both exponents is [image: a], so the product rule applies. Add the exponents.
 [image: 35\cdot{a}^{4+6}]
 Add the exponents with a common base.
 [image: 35\cdot{a}^{10}]
  
 Answer: [image: 5a^{4}\cdot7a^{6}=35a^{10}]
   [ohm_question hide_question_numbers=1]287141[/ohm_question] The Quotient (Division) Rule for Exponents
 The Quotient Rule for Exponents is as crucial as the Product Rule and serves as its counterpart for division. This rule assists in simplifying expressions where we have exponential terms with the same base being divided. It states that when you divide exponents with the same base, you can subtract the exponents.
 This rule has significant practical applications, especially in fields that involve calculations of rates of change, decay, or growth when they are decreasing, such as in the case of depreciation in finance or radioactive decay in physics.
 the quotient (division) rule for exponents
 For any non-zero number [image: x] and any integers [image: a] and [image: b]:
 [image: \displaystyle \frac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}}]
 To divide exponential terms with the same base, subtract the exponents.
 
  Evaluate the following:[image: \displaystyle \frac{{{4}^{9}}}{{{4}^{4}}}] Show Solution These two exponents have the same base, [image: 4]. According to the Quotient Rule, you can subtract the power in the denominator from the power in the numerator.
 [image: \displaystyle {{4}^{9-4}}]
  
 [image: \displaystyle \frac{{{4}^{9}}}{{{4}^{4}}}=4^{5}]
   When dividing terms that also contain coefficients, divide the coefficients and then divide variable powers with the same base by subtracting the exponents.
 Simplify the following:[image: \displaystyle \frac{12{{x}^{4}}}{2x}] Show Solution Separate into numerical and variable factors.
 [image: \displaystyle \left( \frac{12}{2} \right)\left( \frac{{{x}^{4}}}{x} \right)]
 Since the bases of the exponents are the same, you can apply the Quotient Rule. Divide the coefficients and subtract the exponents of matching variables.
 [image: \displaystyle 6\left( {{x}^{4-1}} \right)]
  
 [image: \displaystyle \frac{12{{x}^{4}}}{2x}]=[image: \displaystyle 6{{x}^{3}}]
   [ohm_question hide_question_numbers=1]287143[/ohm_question] Simplifying Square Roots and Expressing Them in Lowest Terms
 To simplify a square root means that we rewrite the square root as a rational number times the square root of a number that has no perfect square factors. The act of changing a square root into such a form is simplifying the square root.
 The number inside the square root symbol is referred to as the radicand. So in the expression [image: \sqrt{a}] the number [image: a] is referred to as the radicand.
  Before discussing how to simplify a square root, we need to introduce a rule about square roots.
 the product rule for square roots
 The square root of a product of numbers equals the product of the square roots of those number.
 Given that [image: a] and [image: b] are nonnegative real numbers,
 [image: \sqrt{a \times {b}}=\sqrt{a} \times \sqrt{b}]

  Using this formula, we can factor an integer inside a square root into a perfect square times another integer. Then the square root can be applied to the perfect square, leaving an integer times the square root of another integer. If the number remaining under the square root has no perfect square factors, then we’ve simplified the square root into its lowest terms.
 A perfect square is an integer that can be expressed as the square of another integer. For example, [image: 16], [image: 25], and [image: 36] are perfect squares because they are [image: 4^2], [image: 5^2], and [image: 6^2], respectively.
  How to: To simplify a square root the lowest terms when [image: n] is an integer
 	Step 1: Determine the largest perfect square factor of [image: n], which we denote [image: a^2].
 	Step 2: Factor [image: n] into [image: a^2×b].
 	Step 3: Apply [image: \sqrt{a^2 \times b} =\sqrt{a^2} \times \sqrt{b}].
 	Step 4: Write [image: \sqrt{n}] in its simplified form, [image: a\sqrt{b}].
 
  Simplify [image: \sqrt{180}] and express in lowest terms. 
 Show Solution Begin by finding the largest perfect square that is a factor of [image: 180]. We can do this by writing out the factor pairs of [image: 180]:
 [image: 1 \times 180, \enspace 2 \times 90, \enspace 3 \times 60, \enspace 4 \times 45, \enspace 5 \times 36, \enspace 6 \times 30, \enspace 9 \times 20, \enspace 10 \times 18, \enspace 12 \times 15]
 Looking at the list of factors, the perfect squares are [image: 4], [image: 9], and [image: 36]. The largest is [image: 36], so we factor the into [image: 36×5=6^2×5]. In the formula, [image: a=6] and [image: b=5].
 Apply [image: \sqrt{a^2 \times b}=\sqrt{a^2} \times \sqrt{b}].
 [image: \sqrt{6^2 \times 5}=\sqrt{6^2} \times \sqrt{5}]
 The simplified form of [image: \sqrt{180}] is [image: 6\sqrt{5}]. 
   Simplify [image: \sqrt{330}] and express in lowest terms.
 Show Solution Begin by finding the largest perfect square that is a factor of [image: 330]. We can do this by writing out the factor pairs of [image: 330]:
 [image: 1 \times 330, \enspace 2 \times 165, \enspace 3 \times 110, \enspace 5 \times 66, \enspace 6 \times 55, \enspace 10 \times 33, \enspace 11 \times 30, \enspace 15 \times 22]
 Looking at the list of factors, there are no perfect squares other than [image: 1], which means [image: \sqrt{330}] is already expressed in lowest terms.
   [ohm_question hide_question_numbers=1]287142[/ohm_question]
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				 	Calculate the area between two curves by integrating with respect to [image: x]
 	Calculate the area of a compound region
 	Calculate the area between two curves by integrating with respect to [image: y]
 	Determine the most effective variable, [image: x] or [image: y], for integration based on the curves’ orientation
 
  Area of a Region between Two Curves
 We have developed the concept of the definite integral to calculate the area below a curve on a given interval. Now, we will expand that idea to calculate the area of more complex regions.
 Let [image: f(x)] and [image: g(x)] be continuous functions over an interval [image: \left[a,b\right]] such that [image: f(x)\ge g(x)] on [image: \left[a,b\right].] We want to find the area between the graphs of the functions.
 [image: This figure is a graph in the first quadrant. There are two curves on the graph. The higher curve is labeled “f(x)” and the lower curve is labeled “g(x)”. There are two boundaries on the x-axis labeled a and b. There is shaded area between the two curves bounded by lines at x=a and x=b.]Figure 1. The area between the graphs of two functions, [image: f(x)] and [image: g(x),] on the interval [image: \left[a,b\right].] As we did before, we are going to partition the interval on the [image: x]-axis and approximate the area between the graphs of the functions with rectangles.
 For [image: i=0,1,2\text{,…},n,] let [image: P=\left\{{x}_{i}\right\}] be a regular partition of [image: \left[a,b\right].] Then, for [image: i=1,2\text{,…},n,] choose a point [image: {x}_{i}^{*}\in \left[{x}_{i-1},{x}_{i}\right],] and on each interval [image: \left[{x}_{i-1},{x}_{i}\right]] construct a rectangle that extends vertically from [image: g({x}_{i}^{*})] to [image: f({x}_{i}^{*}).].
 [image: This figure has three graphs. The first graph has two curves, one over the other. In between the curves is a rectangle. The top of the rectangle is on the upper curve labeled “f(x*)” and the bottom of the rectangle is on the lower curve and labeled “g(x*)”. The second graph, labeled “(a)”, has two curves on the graph. The higher curve is labeled “f(x)” and the lower curve is labeled “g(x)”. There are two boundaries on the x-axis labeled a and b. There is shaded area between the two curves bounded by lines at x=a and x=b. The third graph, labeled “(b)” has two curves one over the other. The first curve is labeled “f(x*)” and the lower curve is labeled “g(x*)”. There is a shaded rectangle between the two. The width of the rectangle is labeled as “delta x”.]Figure 2. (a)We can approximate the area between the graphs of two functions, [image: f(x)] and [image: g(x),] with rectangles. (b) The area of a typical rectangle goes from one curve to the other. The height of each individual rectangle is [image: f({x}_{i}^{*})-g({x}_{i}^{*})] and the width of each rectangle is [image: \text{Δ}x.] Adding the areas of all the rectangles, we see that the area between the curves is approximated by:
 [image: A\approx\displaystyle\sum_{i=1}^{n} \left[f({x}_{i}^{*})-g({x}_{i}^{*})\right]\text{Δ}x.]
 This is a Riemann sum, so we take the limit as [image: n\to \infty] and we get:
 [image: A=\underset{n\to \infty }{\text{lim}}\displaystyle\sum_{i=1}^{n} \left[f({x}_{i}^{*})-g({x}_{i}^{*})\right]\text{Δ}x={\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx.]
 These findings are summarized in the following theorem.
 finding the area between two curves
 Let [image: f(x)] and [image: g(x)] be continuous functions such that [image: f(x)\ge g(x)] over an interval [image: \left[a,b\right].]
  
 Let [image: R] denote the region bounded above by the graph of [image: f(x),] below by the graph of [image: g(x),] and on the left and right by the lines [image: x=a] and [image: x=b,] respectively.
  
 Then, the area of [image: R] is given by:
 [image: A={\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx]
  Use this calculator to learn more about the areas between two curves.
  If [image: R] is the region bounded above by the graph of the function [image: f(x)=x+4] and below by the graph of the function [image: g(x)=3-\frac{x}{2}] over the interval [image: \left[1,4\right],] find the area of region [image: R.]
 Show Solution 
 The region is depicted in the following figure.
 [image: This figure is has two linear graphs in the first quadrant. They are the functions f(x) = x+4 and g(x)= 3-x/2. In between these lines is a shaded region, bounded above by f(x) and below by g(x). The shaded area is between x=1 and x=4.]Figure 3. A region between two curves is shown where one curve is always greater than the other. We have:
 [image: \begin{array}{cc}\hfill A& ={\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx\hfill \\ & ={\displaystyle\int }_{1}^{4}\left[(x+4)-(3-\frac{x}{2})\right]dx={\displaystyle\int }_{1}^{4}\left[\frac{3x}{2}+1\right]dx\hfill \\ & ={\left[\frac{3{x}^{2}}{4}+x\right]|}_{1}^{4}=(16-\frac{7}{4})=\frac{57}{4}.\hfill \end{array}]
 The area of the region is [image: \frac{57}{4}{\text{units}}^{2}.]
   In the last example, we defined the interval of interest as part of the problem statement. Quite often, though, we want to define our interval of interest based on where the graphs of the two functions intersect. This is illustrated in the following example.
 If [image: R] is the region bounded above by the graph of the function [image: f(x)=9-{(\frac{x}{2})}^{2}] and below by the graph of the function [image: g(x)=6-x,] find the area of region [image: R.]
 Show Solution 
 The region is depicted in the following figure.
 [image: This figure is has two graphs in the first quadrant. They are the functions f(x) = 9-(x/2)^2 and g(x)= 6-x. In between these graphs, an upside down parabola and a line, is a shaded region, bounded above by f(x) and below by g(x).]Figure 4. This graph shows the region below the graph of [image: f(x)] and above the graph of [image: g(x).] We first need to compute where the graphs of the functions intersect. Setting [image: f(x)=g(x),] we get:
 [image: \begin{array}{ccc}\hfill f(x)& =\hfill & g(x)\hfill \\ \\ \hfill 9-{(\frac{x}{2})}^{2}& =\hfill & 6-x\hfill \\ \hfill 9-\frac{{x}^{2}}{4}& =\hfill & 6-x\hfill \\ \hfill 36-{x}^{2}& =\hfill & 24-4x\hfill \\ \hfill {x}^{2}-4x-12& =\hfill & 0\hfill \\ \hfill (x-6)(x+2)& =\hfill & 0.\hfill \end{array}]
 The graphs of the functions intersect when [image: x=6] or [image: x=-2,] so we want to integrate from [image: -2] to [image: 6].
 Since [image: f(x)\ge g(x)] for [image: -2\le x\le 6,] we obtain:
 [image: \begin{array}{cc}\hfill A& ={\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx\hfill \\ & ={\displaystyle\int }_{-2}^{6}\left[9-{(\frac{x}{2})}^{2}-(6-x)\right]dx={\displaystyle\int }_{-2}^{6}\left[3-\frac{{x}^{2}}{4}+x\right]dx\hfill \\ & ={\left[3x-\frac{{x}^{3}}{12}+\frac{{x}^{2}}{2}\right]|}_{-2}^{6}=\frac{64}{3}.\hfill \end{array}]
 The area of the region is [image: \frac{64}{3}] units2.
   [ohm_question]288440[/ohm_question]
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				Areas of Compound Regions
 So far, we have required [image: f(x)\ge g(x)] over the entire interval of interest, but what if we want to look at regions bounded by the graphs of functions that cross one another? In that case, we modify the process we just developed by using the absolute value function.
 finding the area of a region between curves that cross
 Let [image: f(x)] and [image: g(x)] be continuous functions over an interval [image: \left[a,b\right].] Let [image: R] denote the region between the graphs of [image: f(x)] and [image: g(x),] and be bounded on the left and right by the lines [image: x=a] and [image: x=b,] respectively. Then, the area of [image: R] is given by:
 [image: A={\displaystyle\int }_{a}^{b}|f(x)-g(x)|dx]
  In practice, applying this theorem requires us to break up the interval [image: \left[a,b\right]] and evaluate several integrals, depending on which of the function values is greater over a given part of the interval. We study this process in the following example.
 If [image: R] is the region between the graphs of the functions [image: f(x)= \sin x] and [image: g(x)= \cos x] over the interval [image: \left[0,\pi \right],] find the area of region [image: R.]
 Show Solution 
 The region is depicted in the following figure.
 [image: This figure is has two graphs. They are the functions f(x) = sinx and g(x)= cosx. They are both periodic functions that resemble waves. There are two shaded areas between the graphs. The first shaded area is labeled “R1” and has g(x) above f(x). This region begins at the y-axis and stops where the curves intersect. The second region is labeled “R2” and begins at the intersection with f(x) above g(x). The shaded region stops at x=pi.]Figure 5. The region between two curves can be broken into two sub-regions. The graphs of the functions intersect at [image: x=\pi \text{/}4.]
 For [image: x\in \left[0,\pi \text{/}4\right],] [image: \cos x\ge \sin x,] so:
 [image: |f(x)-g(x)|=| \sin x- \cos x|= \cos x- \sin x]
 On the other hand, for [image: x\in \left[\pi \text{/}4,\pi \right],] [image: \sin x\ge \cos x,] so:
 [image: |f(x)-g(x)|=| \sin x- \cos x|= \sin x- \cos x]
 Then:
 [image: \begin{array}{cc}\hfill A& ={\displaystyle\int }_{a}^{b}|f(x)-g(x)|dx\hfill \\ & ={\displaystyle\int }_{0}^{\pi }| \sin x- \cos x|dx={\displaystyle\int }_{0}^{\pi \text{/}4}( \cos x- \sin x)dx+{\displaystyle\int }_{\pi \text{/}4}^{\pi }( \sin x- \cos x)dx\hfill \\ & ={\left[ \sin x+ \cos x\right]|}_{0}^{\pi \text{/}4}+{\left[\text{−} \cos x- \sin x\right]|}_{\pi \text{/}4}^{\pi }\hfill \\ & =(\sqrt{2}-1)+(1+\sqrt{2})=2\sqrt{2}.\hfill \end{array}]
 The area of the region is [image: 2\sqrt{2}] units2.
   Consider the region depicted in the following figure. Find the area of [image: R.]
 [image: This figure is has two graphs in the first quadrant. They are the functions f(x) = squareroot of x and g(x)= 3/2 – x/2. In between these graphs is a shaded region, bounded to the left by f(x) and to the right by g(x). All of which is above the x-axis. The shaded area is between x=0 and x=3.]Figure 7. 
 Hint The two curves intersect at [image: x=1.]
 Show Solution 
 [image: \frac{5}{3}] units2
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=cm88bTFvRU4%3Fcontrols%3D0%26start%3D1269%26end%3D1353%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.1 Area Between Curves” here (opens in new window).
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				Regions Defined with Respect to [image: y]
 In the previous example, we had to evaluate two separate integrals to calculate the area of the region. However, there is another approach that requires only one integral. What if we treat the curves as functions of [image: y,] instead of as functions of [image: x?]
 Review the last example.
 Consider the region depicted in the following figure. Find the area of [image: R.]
 [image: This figure is has two graphs in the first quadrant. They are the functions f(x) = squareroot of x and g(x)= 3/2 – x/2. In between these graphs is a shaded region, bounded to the left by f(x) and to the right by g(x). All of which is above the x-axis. The shaded area is between x=0 and x=3.]Figure 7.  Note that the left graph, shown in red, is represented by the function [image: y=f(x)={x}^{2}.] We could just as easily solve this for [image: x] and represent the curve by the function [image: x=v(y)=\sqrt{y}.] However, based on the graph, it is clear we are interested in the positive square root. 
 Similarly, the right graph is represented by the function [image: y=g(x)=2-x,] but could just as easily be represented by the function [image: x=u(y)=2-y.]
 When the graphs are represented as functions of [image: y,] we see the region is bounded on the left by the graph of one function and on the right by the graph of the other function. Therefore, if we integrate with respect to [image: y,] we need to evaluate only one integral.
 Let’s develop a formula for this type of integration.
 Let [image: u(y)] and [image: v(y)] be continuous functions over an interval [image: \left[c,d\right]] such that [image: u(y)\ge v(y)] for all [image: y\in \left[c,d\right].] We want to find the area between the graphs of the functions, as shown in the following figure.
 [image: This figure is has two graphs in the first quadrant. They are the functions v(y) and u(y). In between these graphs is a shaded region, bounded to the left by v(y) and to the right by u(y). The region is labeled R. The shaded area is between the horizontal boundaries of y=c and y=d.]Figure 8. We can find the area between the graphs of two functions, [image: u(y)] and [image: v(y).] This time, we are going to partition the interval on the [image: y\text{-axis}] and use horizontal rectangles to approximate the area between the functions. So, for [image: i=0,1,2\text{,…},n,] let [image: Q=\left\{{y}_{i}\right\}] be a regular partition of [image: \left[c,d\right].] Then, for [image: i=1,2\text{,…},n,] choose a point [image: {y}_{i}^{*}\in \left[{y}_{i-1},{y}_{i}\right],] then over each interval [image: \left[{y}_{i-1},{y}_{i}\right]] construct a rectangle that extends horizontally from [image: v({y}_{i}^{*})] to [image: u({y}_{i}^{*}).] 
 [image: This figure is has three graphs. The first figure has two curves. They are the functions v(y*) and u(y*). In between these curves is a horizontal rectangle. The second figure labeled “(a)”, is a shaded region, bounded to the left by v(y) and to the right by u(y). The shaded area is between the horizontal boundaries of y=c and y=d. This shaded area is broken into rectangles between the curves. The third figure, labeled “(b)”, is the two curves v(y*) and u(y*). In between the curves is a horizontal rectangle with width delta y.]Figure 9. (a) Approximating the area between the graphs of two functions, [image: u(y)] and [image: v(y),] with rectangles. (b) The area of a typical rectangle. The height of each individual rectangle is [image: \text{Δ}y] and the width of each rectangle is [image: u({y}_{i}^{*})-v({y}_{i}^{*}).] Adding the areas of all the rectangles, we see that the area between the curves is approximated by:
 [image: A\approx \underset{i=1}{\overset{n}{\text{∑}}}\left[u({y}_{i}^{*})-v({y}_{i}^{*})\right]\text{Δ}y.]
 This is a Riemann sum, so we take the limit as [image: n\to \infty ,] and we get:
 [image: A=\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}\left[u({y}_{i}^{*})-v({y}_{i}^{*})\right]\text{Δ}y={\displaystyle\int }_{c}^{d}\left[u(y)-v(y)\right]dy.]
 These findings are summarized in the following theorem.
 finding the area between two curves, integrating along the [image: y]-axis
 Let [image: u(y)] and [image: v(y)] be continuous functions such that [image: u(y)\ge v(y)] for all [image: y\in \left[c,d\right].]
  
 Let [image: R] denote the region bounded on the right by the graph of [image: u(y),] on the left by the graph of [image: v(y),] and above and below by the lines [image: y=d] and [image: y=c,] respectively.
  
 Then, the area of [image: R] is given by:
 [image: A={\displaystyle\int }_{c}^{d}\left[u(y)-v(y)\right]dy.]
  Back to our previous example, let’s integrate with respect to [image: y]. Let [image: R] be the region depicted in the following figure. Find the area of [image: R] by integrating with respect to [image: y.]
 [image: This figure is has two graphs in the first quadrant. They are the functions f(x) = squareroot of x and g(x)= 3/2 – x/2. In between these graphs is a shaded region, bounded to the left by f(x) and to the right by g(x). All of which is above the x-axis. The shaded area is between x=0 and x=3.]Figure 11. Show Solution 
 [image: \frac{5}{3}] units2
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=cm88bTFvRU4%3Fcontrols%3D0%26start%3D1588%26end%3D1707%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.1 Area Between Curves” here (opens in new window).
  Let [image: R] be the region depicted in the figure below. Find the area of [image: R] by integrating with respect to [image: y.]
 [image: This figure is has two graphs in the first quadrant. They are the functions f(x) = x^2 and g(x)= 2-x. In between these graphs is a shaded region, bounded to the left by f(x) and to the right by g(x). All of which is above the x-axis. The region is labeled R. The shaded area is between x=0 and x=2.]Figure 10. The area of region [image: R] can be calculated using one integral only when the curves are treated as functions of [image: y.] 
 Show Solution 
 We must first express the graphs as functions of [image: y.] As we saw at the beginning of this section, the curve on the left can be represented by the function [image: x=v(y)=\sqrt{y},] and the curve on the right can be represented by the function [image: x=u(y)=2-y.]
 Now we have to determine the limits of integration.
 The region is bounded below by the [image: x]-axis, so the lower limit of integration is [image: y=0.] The upper limit of integration is determined by the point where the two graphs intersect, which is the point [image: (1,1),] so the upper limit of integration is [image: y=1.]
 Thus, we have [image: \left[c,d\right]=\left[0,1\right].]
 Calculating the area of the region, we get:
 [image: \begin{array}{cc}\hfill A& ={\displaystyle\int }_{c}^{d}\left[u(y)-v(y)\right]dy\hfill \\ & ={\displaystyle\int }_{0}^{1}\left[(2-y)-\sqrt{y}\right]dy={\left[2y-\frac{{y}^{2}}{2}-\frac{2}{3}{y}^{3\text{/}2}\right]|}_{0}^{1}\hfill \\ & =\frac{5}{6}.\hfill \end{array}]
 The area of the region is [image: \frac{5}{6}] units2.
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				 	Calculate the area between two curves by integrating with respect to [image: x]
 	Calculate the area of a compound region
 	Calculate the area between two curves by integrating with respect to [image: y]
 	Determine the most effective variable, [image: x] or [image: y], for integration based on the curves’ orientation
 
  Sydney Michelle McLaughlin-Levrone and Femke Bol are track and field athletes who both hold world records and compete in sprint events.
 [image: On the left, McLaughlin-Levrone competing at the 2022 World Athletics Championships, running on a track with a focused expression. On the right, Bol smiling and holding her gold medal for the 400m hurdles at the 2023 World Championships in Budapest."]
  
 Suppose they were to run a long distance race rather than a sprint. In a sprint, runners accelerate quickly and maintain a very high velocity for a relatively short distance, whereas in a long distance race, endurance is key, and so runners must take a different approach to velocity and acceleration.
 [ohm_question hide_question_numbers=1]288024[/ohm_question]
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		Determining Volumes by Slicing: Learn It 1

								

	
				 	Find the volume of a solid by using the slicing method
 	Find the volume of a solid by using the disk method
 	Compute the volume of a hollow solid of revolution by using the washer technique
 
  Volume and the Slicing Method
 Just as area measures a two-dimensional region, volume measures a three-dimensional solid. Most of us have computed volumes of solids using basic geometric formulas. For example, the volume of a rectangular solid can be computed by multiplying length, width, and height:
 [image: V=lwh.]
 Below are some other common volume formulas:
 	Sphere: [image: (V=\frac{4}{3}\pi {r}^{3}),]
 	Cone: [image: (V=\frac{1}{3}\pi {r}^{2}h),]
 	Pyramid: [image: (V=\frac{1}{3}Ah)].
 
 Although some of these formulas were derived using geometry alone, all these formulas can be obtained by using integration.
 Notice we did not give the formula for calculating the volume of a cylinder. To explore cylinders in this broader sense, we first need to define some terminology.  Although we typically think of a cylinder as having a circular base (like a soup can or a metal rod), in mathematics, the word “cylinder” has a more general meaning. 
 We define the cross-section of a solid to be the intersection of a plane with the solid. A cylinder is defined as any solid that can be generated by translating a plane region along a line perpendicular to the region, called the axis of the cylinder. Thus, all cross-sections perpendicular to the axis of a cylinder are identical. The solid shown in the figure below is an example of a cylinder with a non-circular base.
 [image: This graphic has two figures. The first figure is half of a cylinder, on the flat portion. The cylinder has a line through the center labeled “x”. Vertically cutting through the cylinder, perpendicular to the line is a plane. The second figure is a two dimensional cross section of the cylinder intersecting with the plane. It is a semi-circle.]Figure 1. Each cross-section of a particular cylinder is identical to the others. To calculate the volume of a cylinder, we multiply the area of the cross-section by the height of the cylinder:
 [image: V=A·h.]
 In the case of a right circular cylinder (such as a soup can), this becomes:
 [image: V=\pi {r}^{2}h.]
 If a solid does not have a constant cross-section (and it is not one of the other basic solids), we may not have a formula for its volume. In this case, we can use a definite integral to calculate the volume of the solid. We do this by slicing the solid into pieces, estimating the volume of each slice, and then adding those estimated volumes together. The slices should all be parallel to one another, and when we put all the slices together, we should get the whole solid.
 Consider, the solid [image: S] shown below, extending along the [image: x\text{-axis}\text{.}]
 [image: This figure is a graph of a 3-dimensional solid. It has one edge along the x-axis. The x-axis is part of the 2-dimensional coordinate system with the y-axis labeled. The edge of the solid along the x-axis starts at a point labeled “a” and stops at a point labeled “b”.]Figure 2. A solid with a varying cross-section. We want to divide [image: S] into slices perpendicular to the [image: x\text{-axis}\text{.}]
 As we see later in the chapter, there may be times when we want to slice the solid in some other direction—say, with slices perpendicular to the [image: y]-axis. The decision of which way to slice the solid is very important. If we make the wrong choice, the computations can get quite messy. Later in the chapter, we examine some of these situations in detail and look at how to decide which way to slice the solid. For the purposes of this section, however, we use slices perpendicular to the [image: x\text{-axis}\text{.}]
 Because the cross-sectional area is not constant, we let [image: A(x)] represent the area of the cross-section at point [image: x.]
 Now let [image: P=\left\{{x}_{0},{x}_{1}\text{…},{X}_{n}\right\}] be a regular partition of [image: \left[a,b\right],] and for [image: i=1,2\text{,…}n,] let [image: {S}_{i}] represent the slice of [image: S] stretching from [image: {x}_{i-1}\text{ to }{x}_{i}.]
 The following figure shows the sliced solid with [image: n=3.]
 [image: This figure is a graph of a 3-dimensional solid. It has one edge along the x-axis. The x-axis is part of the 2-dimensional coordinate system with the y-axis labeled. The edge of the solid along the x-axis starts at a point labeled “a=xsub0”. The solid is divided up into smaller solids with slices at xsub1, xsub2, and stops at a point labeled “b=xsub3”. These smaller solids are labeled Ssub1, Ssub2, and Ssub3. They are also shaded.]Figure 3. The solid [image: S] has been divided into three slices perpendicular to the [image: x\text{-axis}.] Finally, for [image: i=1,2\text{,…}n,] let [image: {x}_{i}^{*}] be an arbitrary point in [image: \left[{x}_{i-1},{x}_{i}\right].]
 Then the volume of slice [image: {S}_{i}] can be estimated by:
 [image: V({S}_{i})\approx A({x}_{i}^{*})\text{Δ}x.]
 Adding these approximations together, we see the volume of the entire solid [image: S] can be approximated by:
 [image: V(S)\approx \underset{i=1}{\overset{n}{\text{∑}}}A({x}_{i}^{*})\text{Δ}x]
 By now, we can recognize this as a Riemann sum, and our next step is to take the limit as [image: n\to \infty .]
 Then we have:
 [image: V(S)=\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}A({x}_{i}^{*})\text{Δ}x=\underset{a}{\overset{b}{\displaystyle\int }}A(x)dx]
  The technique we have just described is called the slicing method.
 slicing method
 To calculate the volume of a solid with a varying cross-section, we use the slicing method.
  
 This involves:
 	Slicing the solid into thin pieces perpendicular to a chosen axis (e.g., the [image: x]-axis).
 	Estimating the volume of each slice by calculating the area of the cross-section and multiplying by the thickness of the slice.
 	Summing the volumes of all slices to approximate the total volume of the solid.
 	Taking the limit as the number of slices approaches infinity to get the exact volume using a definite integral.
 
  To apply it, we use the following strategy.
 Problem-Solving Strategy: Finding Volumes by the Slicing Method
 	Examine the solid and determine the shape of a cross-section of the solid. It is often helpful to draw a picture if one is not provided.
 	Determine a formula for the area of the cross-section.
 	Integrate the area formula over the appropriate interval to get the volume.
 
  Recall that in this section, we assume the slices are perpendicular to the [image: x\text{-axis}\text{.}] Therefore, the area formula is in terms of [image: x] and the limits of integration lie on the [image: x\text{-axis}\text{.}] However, the problem-solving strategy shown here is valid regardless of how we choose to slice the solid.
  We know from geometry that the formula for the volume of a pyramid is [image: V=\frac{1}{3}Ah.] If the pyramid has a square base, this becomes [image: V=\frac{1}{3}{a}^{2}h,] where [image: a] denotes the length of one side of the base. Use the slicing method to derive this formula.
 Show Solution 
 We want to apply the slicing method to a pyramid with a square base. To set up the integral, consider the pyramid shown in Figure 4, oriented along the [image: x\text{-axis}\text{.}]
 [image: This figure has two graphs. The first graph, labeled “a”, is a pyramid on its side. The x-axis goes through the middle of the pyramid. The point of the top of the pyramid is at the origin of the x y coordinate system. The base of the pyramid is shaded and labeled “a”. Inside of the pyramid is a shaded rectangle labeled “s”. The distance from the y-axis to the base of the pyramid is labeled “h”. the distance the rectangle inside of the pyramid to the y-axis is labeled “x”. The second figure is a cross section of the pyramid with the x and y axes labeled. The cross section is a triangle with one side labeled “a”, perpendicular to the x-axis. The distance a is from the y-axis is h. There is another perpendicular line to the x-axis inside of the triangle. It is labeled “s”. It is x units from the y-axis.]Figure 4. (a) A pyramid with a square base is oriented along the x-axis. (b) A two-dimensional view of the pyramid is seen from the side. We first want to determine the shape of a cross-section of the pyramid. We are know the base is a square, so the cross-sections are squares as well (step 1). Now we want to determine a formula for the area of one of these cross-sectional squares. Looking at Figure 4(b), and using a proportion, since these are similar triangles, we have
 [image: \frac{s}{a}=\frac{x}{h}]   or   [image: s=\frac{ax}{h}]
 Therefore, the area of one of the cross-sectional squares is
 [image: A(x)={s}^{2}={(\frac{ax}{h})}^{2}]  (step [image: 2])
 Then we find the volume of the pyramid by integrating from [image: 0\text{ to }h] (step [image: 3)\text{:}]
 [image: \begin{array}{cc}\hfill V& =\underset{0}{\overset{h}{\displaystyle\int }}A(x)dx\hfill \\ & =\underset{0}{\overset{h}{\displaystyle\int }}{(\frac{ax}{h})}^{2}dx=\frac{{a}^{2}}{{h}^{2}}\underset{0}{\overset{h}{\displaystyle\int }}{x}^{2}dx\hfill \\ & ={\left[\frac{{a}^{2}}{{h}^{2}}(\frac{1}{3}{x}^{3})\right]|}_{0}^{h}=\frac{1}{3}{a}^{2}h.\hfill \end{array}]
 This is the formula we were looking for.
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				Solids of Revolution and the Slicing Method
 If a region in a plane is revolved around a line in that plane, the resulting solid is called a solid of revolution.
 [image: This figure has three graphs. The first graph, labeled “a” is a region in the x y plane. The region is created by a curve above the x-axis and the x-axis. The second graph, labeled “b” is the same region as in “a”, but it shows the region beginning to rotate around the x-axis. The third graph, labeled “c” is the solid formed by rotating the region from “a” completely around the x-axis, forming a solid.]Figure 5. (a) This is the region that is revolved around the x-axis. (b) As the region begins to revolve around the axis, it sweeps out a solid of revolution. (c) This is the solid that results when the revolution is complete. Solids of revolution are common in mechanical applications, such as machine parts produced by a lathe. We spend the rest of this section looking at solids of this type.
 The next example uses the slicing method to calculate the volume of a solid of revolution.
 Use the slicing method to find the volume of the solid of revolution bounded by the graphs of [image: f(x)={x}^{2}-4x+5,x=1,\text{ and }x=4,] and rotated about the [image: x\text{-axis}\text{.}]
 Show Solution 
 Using the problem-solving strategy, we first sketch the graph of the quadratic function over the interval [image: \left[1,4\right]] as shown in the following figure.
 [image: This figure is a graph of the parabola f(x)=x^2-4x+5. The parabola is the top of a shaded region above the x-axis. The region is bounded to the left by a line at x=1 and to the right by a line at x=4.]Figure 6. A region used to produce a solid of revolution. Next, revolve the region around the [image: x]-axis, as shown in the following figure.
 [image: This figure has two graphs of the parabola f(x)=x^2-4x+5. The parabola is the top of a shaded region above the x-axis. The region is bounded to the left by a line at x=1 and to the right by a line at x=4. The first graph has a shaded solid below the parabola. This solid has been formed by rotating the parabola around the x-axis. The second graph is the same as the first, with the solid being rotated to show the solid.]Figure 7. Two views, (a) and (b), of the solid of revolution produced by revolving the region in (Figure) about the [image: x\text{-axis}\text{.}] Since the solid was formed by revolving the region around the [image: x\text{-axis,}] the cross-sections are circles (step 1). The area of the cross-section, then, is the area of a circle, and the radius of the circle is given by [image: f(x).]
 Use the formula for the area of the circle:
 [image: A(x)=\pi {r}^{2}=\pi {\left[f(x)\right]}^{2}=\pi {({x}^{2}-4x+5)}^{2}]  (step 2)
 The volume, then, is (step 3):
 [image: \begin{array}{cc}\hfill V& =\underset{a}{\overset{h}{\displaystyle\int }}A(x)dx\hfill \\ & ={\displaystyle\int }_{1}^{4}\pi {({x}^{2}-4x+5)}^{2}dx=\pi {\displaystyle\int }_{1}^{4}({x}^{4}-8{x}^{3}+26{x}^{2}-40x+25)dx\hfill \\ & ={\pi (\frac{{x}^{5}}{5}-2{x}^{4}+\frac{26{x}^{3}}{3}-20{x}^{2}+25x)|}_{1}^{4}=\frac{78}{5}\pi .\hfill \end{array}]
 The volume is [image: \frac{78\pi}{5}.]
   Use the method of slicing to find the volume of the solid of revolution formed by revolving the region between the graph of the function [image: f(x)=\frac{1}{x}] and the [image: x\text{-axis}] over the interval [image: \left[1,2\right]] around the [image: x\text{-axis}\text{.}] See the following figure.
 [image: This figure has two graphs. The first graph is the curve f(x)=1/x. It is a decreasing curve, above the x-axis in the first quadrant. The graph has a shaded region under the curve between x=1 and x=2. The second graph is the curve f(x)=1/x in the first quadrant. Also, underneath this graph, there is a solid between x=1 and x=2 that has been formed by rotating the region from the first graph around the x-axis.]Figure 8. Show Solution 
 [image: \frac{\pi }{2}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=7dG21yfKXHg%3Fcontrols%3D0%26start%3D495%26end%3D605%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.2 Determining Volumes by Slicing” here (opens in new window).
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				The Disk Method
 When we use the slicing method with solids of revolution, it is often called the disk method because, for solids of revolution, the slices used to over approximate the volume of the solid are disks.
 To see this, consider the solid of revolution generated by revolving the region between the graph of the function [image: f(x)={(x-1)}^{2}+1] and the [image: x\text{-axis}] over the interval [image: \left[-1,3\right]] around the [image: x\text{-axis}\text{.}] 
 [image: This figure has four graphs. The first graph, labeled “a” is a parabola f(x)=(x-1)^2+1. The curve is above the x-axis and intersects the y-axis at y=2. Under the curve in the first quadrant is a vertical rectangle starting at the x-axis and stopping at the curve. The second graph, labeled “b” is the same parabola as in the first graph. The rectangle under the parabola from the first graph has been rotated around the x-axis forming a solid disk. The third graph labeled “c” is the same parabola as the first graph. There is a shaded region bounded above by the parabola, to the left by the line x=-1 and to the right by the line x=3, and below by the x-axis. The fourth graph labeled “d” is the same parabola as the first graph. The region from the third graph has been revolved around the x-axis to form a solid.]Figure 9. (a) A thin rectangle for approximating the area under a curve. (b) A representative disk formed by revolving the rectangle about the [image: x\text{-axis}\text{.}] (c) The region under the curve is revolved about the [image: x\text{-axis},] resulting in (d) the solid of revolution. We already used the formal Riemann sum development of the volume formula when we developed the slicing method. We know that
 [image: V={\displaystyle\int }_{a}^{b}A(x)dx]
 The only difference with the disk method is that we know the formula for the cross-sectional area ahead of time; it is the area of a circle. 
 the disk method
 Let [image: f(x)] be continuous and nonnegative.
  
 Define [image: R] as the region bounded above by the graph of [image: f(x),] below by the [image: x\text{-axis,}] on the left by the line [image: x=a,] and on the right by the line [image: x=b.]
  
 Then, the volume of the solid of revolution formed by revolving [image: R] around the [image: x\text{-axis}] is given by:
 [image: V={\displaystyle\int }_{a}^{b}\pi {\left[f(x)\right]}^{2}dx.]
  Returning to our example, the volume is given by:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{a}^{b}\pi {\left[f(x)\right]}^{2}dx\hfill \\ & ={\displaystyle\int }_{-1}^{3}\pi {\left[{(x-1)}^{2}+1\right]}^{2}dx=\pi {\displaystyle\int }_{-1}^{3}{\left[{(x-1)}^{4}+2{(x-1)}^{2}+1\right]}^{2}dx\hfill \\ & =\pi {\left[\frac{1}{5}{(x-1)}^{5}+\frac{2}{3}{(x-1)}^{3}+x\right]|}_{-1}^{3}=\pi \left[(\frac{32}{5}+\frac{16}{3}+3)-(-\frac{32}{5}-\frac{16}{3}-1)\right]=\frac{412\pi }{15}{\text{units}}^{3}.\hfill \end{array}]
  
 Use the disk method to find the volume of the solid of revolution generated by rotating the region between the graph of [image: f(x)=\sqrt{x}] and the [image: x\text{-axis}] over the interval [image: \left[1,4\right]] around the [image: x\text{-axis}\text{.}]
 Show Solution 
 The graphs of the function and the solid of revolution are shown in the following figure.
 [image: This figure has two graphs. The first graph labeled “a” is the curve f(x) = squareroot(x). It is an increasing curve above the x-axis. The curve is in the first quadrant. Under the curve is a region bounded by x=1 and x=4. The bottom of the region is the x-axis. The second graph labeled “b” is the same curve as the first graph. The solid region from the first graph has been rotated around the x-axis to form a solid region.]Figure 10. (a) The function [image: f(x)=\sqrt{x}] over the interval [image: \left[1,4\right].] (b) The solid of revolution obtained by revolving the region under the graph of [image: f(x)] about the [image: x\text{-axis}.] We have
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{a}^{b}\pi {\left[f(x)\right]}^{2}dx\hfill \\ & ={\displaystyle\int }_{1}^{4}\pi {\left[\sqrt{x}\right]}^{2}dx=\pi {\displaystyle\int }_{1}^{4}xdx\hfill \\ & ={\frac{\pi }{2}{x}^{2}|}_{1}^{4}=\frac{15\pi }{2}.\hfill \end{array}]
 The volume is [image: \frac{(15\pi )}{2}] units3.
   So far, our examples have all concerned regions revolved around the [image: x\text{-axis,}] but we can generate a solid of revolution by revolving a plane region around any horizontal or vertical line.
 the disk method for solids of revolution around the [image: y]-axis
 Let [image: g(y)] be continuous and nonnegative.
  
 Define [image: Q] as the region bounded on the right by the graph of [image: g(y),] on the left by the [image: y\text{-axis,}] below by the line [image: y=c,] and above by the line [image: y=d.]
  
 Then, the volume of the solid of revolution formed by revolving [image: Q] around the [image: y\text{-axis}] is given by:
 [image: V={\displaystyle\int }_{c}^{d}\pi {\left[g(y)\right]}^{2}dy.]
  In the next example, we look at a solid of revolution that has been generated by revolving a region around the [image: y\text{-axis}\text{.}] The mechanics of the disk method are nearly the same as when the [image: x\text{-axis}] is the axis of revolution, but we express the function in terms of [image: y] and we integrate with respect to [image: y] as well. 
 Let [image: R] be the region bounded by the graph of [image: g(y)=\sqrt{4-y}] and the [image: y\text{-axis}] over the [image: y\text{-axis}] interval [image: \left[0,4\right].] Use the disk method to find the volume of the solid of revolution generated by rotating [image: R] around the [image: y\text{-axis}\text{.}]
 Show Solution 
 Figure 11 shows the function and a representative disk that can be used to estimate the volume. Notice that since we are revolving the function around the [image: y\text{-axis,}] the disks are horizontal, rather than vertical.
 [image: This figure has two graphs. The first graph labeled “a” is the curve g(y) = squareroot(4-y). It is a decreasing curve starting on the y-axis at y=4. Between the curve and the y-axis is a horizontal rectangle. The rectangle starts at the y-axis and stops at the curve. The second graph labeled “b” is the same curve as the first graph. The rectangle from the first graph has been rotated around the y-axis to form a horizontal disk.]Figure 11. (a) Shown is a thin rectangle between the curve of the function [image: g(y)=\sqrt{4-y}] and the [image: y\text{-axis}\text{.}] (b) The rectangle forms a representative disk after revolution around the [image: y\text{-axis}\text{.}] The region to be revolved and the full solid of revolution are depicted in the following figure.
 [image: This figure has two graphs. The first graph labeled “a” is the curve g(y) = squareroot(4-y). It is a decreasing curve starting on the y-axis at y=4. The region formed by the x-axis, the y-axis, and the curve is shaded. This region is in the first quadrant. The second graph labeled “b” is the same curve as the first graph. The region from the first graph has been rotated around the y-axis to form a solid.]Figure 12. (a) The region to the left of the function [image: g(y)=\sqrt{4-y}] over the [image: y\text{-axis}] interval [image: \left[0,4\right].] (b) The solid of revolution formed by revolving the region about the [image: y\text{-axis}\text{.}] To find the volume, we integrate with respect to [image: y.] We obtain
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{c}^{d}\pi {\left[g(y)\right]}^{2}dy\hfill \\ & ={\displaystyle\int }_{0}^{4}\pi {\left[\sqrt{4-y}\right]}^{2}dy=\pi {\displaystyle\int }_{0}^{4}(4-y)dy\hfill \\ & ={\pi \left[4y-\frac{{y}^{2}}{2}\right]|}_{0}^{4}=8\pi .\hfill \end{array}]
  
 The volume is [image: 8\pi] units3.
   [ohm_question hide_question_numbers=1]20075[/ohm_question]
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				The Washer Method
 Some solids of revolution have cavities in the middle; they are not solid all the way to the axis of revolution. This can happen because of the shape of the region of revolution with respect to the axis. Cavities also arise when the region of revolution is defined between the graphs of two functions or [image: x]-axis or [image: y]-axis is selected for revolution.
 When the solid of revolution has a cavity, the slices used to approximate the volume are not disks but washers (disks with holes in the center).
 For example, consider the region bounded above by the graph of the function [image: f(x)=\sqrt{x}] and below by the graph of the function [image: g(x)=1] over the interval [image: \left[1,4\right].] When this region is revolved around the [image: x\text{-axis,}] the result is a solid with a cavity in the middle, and the slices are washers. 
 [image: This figure has four graphs. The first graph is labeled “a” and has the two functions f(x)=squareroot(x) and g(x)=1 graphed in the first quadrant. f(x) is an increasing curve starting at the origin and g(x) is a horizontal line at y=1. The curves intersect at the ordered pair (1,1). In between the curves is a shaded rectangle with the bottom on g(x) and the top at f(x). The second graph labeled “b” is the same two curves as the first graph. The shaded rectangle between the curves from the first graph has been rotated around the x-axis to form an open disk or washer. The third graph labeled “a” has the same two curves as the first graph. There is a shaded region between the two curves between where they intersect and a line at x=4. The fourth graph is the same two curves as the first with the region from the third graph rotated around the x-axis forming a solid region with a hollow center. The hollow center is represented on the graph with broken horizontal lines at y=1 and y=-1.]Figure 13. (a) A thin rectangle in the region between two curves. (b) A representative disk formed by revolving the rectangle about the [image: x\text{-axis}.] (c) The region between the curves over the given interval. (d) The resulting solid of revolution. The cross-sectional area, then, is the area of the outer circle less the area of the inner circle. In this case,
 [image: A(x)=\pi {(\sqrt{x})}^{2}-\pi {(1)}^{2}=\pi (x-1).]
 Then the volume of the solid is:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{a}^{b}A(x)dx\hfill \\ & ={\displaystyle\int }_{1}^{4}\pi (x-1)dx={\pi \left[\frac{{x}^{2}}{2}-x\right]|}_{1}^{4}=\frac{9}{2}\pi {\text{units}}^{3}.\hfill \end{array}]
 Generalizing this process gives the washer method.
 the washer method
 Suppose [image: f(x)] and [image: g(x)] are continuous, nonnegative functions such that [image: f(x)\ge g(x)] over [image: \left[a,b\right].]
  
 Let [image: R] denote the region bounded above by the graph of [image: f(x),] below by the graph of [image: g(x),] on the left by the line [image: x=a,] and on the right by the line [image: x=b.]
  
 Then, the volume of the solid of revolution formed by revolving [image: R] around the [image: x\text{-axis}] is given by:
 [image: V={\displaystyle\int }_{a}^{b}\pi \left[{(f(x))}^{2}-{(g(x))}^{2}\right]dx.]
  Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of [image: f(x)=x] and below by the graph of [image: g(x)=\frac{1}{x}] over the interval [image: \left[1,4\right]] around the [image: x\text{-axis}\text{.}]
 Show Solution 
 The graphs of the functions and the solid of revolution are shown in the following figure.
 [image: This figure has two graphs. The first graph is labeled “a” and has the two curves f(x)=x and g(x)=1/x. They are graphed only in the first quadrant. f(x) is a diagonal line starting at the origin and g(x) is a decreasing curve with the y-axis as a vertical asymptote and the x-axis as a horizontal asymptote. The graphs intersect at (1,1). There is a shaded region between the graphs, bounded to the right by a line at x=4. The second graph is the same two curves. There is a solid formed by rotating the shaded region from the first graph around the x-axis.]Figure 14. (a) The region between the graphs of the functions [image: f(x)=x] and [image: g(x)=\frac{1}{x}] over the interval [image: \left[1,4\right].] (b) Revolving the region about the [image: x\text{-axis}] generates a solid of revolution with a cavity in the middle. We have:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{a}^{b}\pi \left[{(f(x))}^{2}-{(g(x))}^{2}\right]dx\hfill \\ & =\pi {\displaystyle\int }_{1}^{4}\left[{x}^{2}-{(\frac{1}{x})}^{2}\right]dx\text{}={\pi \left[\frac{{x}^{3}}{3}+\frac{1}{x}\right]|}_{1}^{4}=\frac{81\pi }{4}{\text{units}}^{3}.\hfill \end{array}]
  As with the disk method, we can also apply the washer method to solids of revolution that result from revolving a region around the [image: y]-axis. In this case, the following rule applies.
 the washer method for solids of revolution around the [image: y]-axis
 Suppose [image: u(y)] and [image: v(y)] are continuous, nonnegative functions such that [image: v(y)\le u(y)] for [image: y\in \left[c,d\right].]
  
 Let [image: Q] denote the region bounded on the right by the graph of [image: u(y),] on the left by the graph of [image: v(y),] below by the line [image: y=c,] and above by the line [image: y=d.]
  
 Then, the volume of the solid of revolution formed by revolving [image: Q] around the [image: y\text{-axis}] is given by:
 [image: V={\displaystyle\int }_{c}^{d}\pi \left[{(u(y))}^{2}-{(v(y))}^{2}\right]dy]
  Rather than looking at an example of the washer method with the [image: y\text{-axis}] as the axis of revolution, we now consider an example in which the axis of revolution is a line other than one of the two coordinate axes. The same general method applies, but you may have to visualize just how to describe the cross-sectional area of the volume.
 An important thing to remember is that for both the disk and washer method, the rectangles (the radii of the cross-sectional circles) are always perpendicular to the axis of revolution.
  Find the volume of a solid of revolution formed by revolving the region bounded above by [image: f(x)=4-x] and below by the [image: x\text{-axis}] over the interval [image: \left[0,4\right]] around the line [image: y=-2.]
 Show Solution 
 The graph of the region and the solid of revolution are shown in the following figure.
 [image: This figure has two graphs. The first graph is labeled “a” and has the two curves f(x)=4-x and -2. There is a shaded region making a triangle bounded by the decreasing line f(x), the y-axis and the x-axis. The second graph is the same two curves. There is a solid formed by rotating the shaded region from the first graph around the line y=-2. There is a hollow cylinder inside of the solid represented by the lines y=-2 and y=-4.]Figure 15. (a) The region between the graph of the function [image: f(x)=4-x] and the [image: x\text{-axis}] over the interval [image: \left[0,4\right].] (b) Revolving the region about the line [image: y=-2] generates a solid of revolution with a cylindrical hole through its middle. We can’t apply the volume formula to this problem directly because the axis of revolution is not one of the coordinate axes. However, we still know that the area of the cross-section is the area of the outer circle less the area of the inner circle.
 Looking at the graph of the function, we see the radius of the outer circle is given by [image: f(x)+2,] which simplifies to:
 [image: f(x)+2=(4-x)+2=6-x.]
 The radius of the inner circle is [image: g(x)=2.] Therefore, we have:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{0}^{4}\pi \left[{(6-x)}^{2}-{(2)}^{2}\right]dx\hfill \\ & =\pi {\displaystyle\int }_{0}^{4}({x}^{2}-12x+32)dx\text{}={\pi \left[\frac{{x}^{3}}{3}-6{x}^{2}+32x\right]|}_{0}^{4}=\frac{160\pi }{3}{\text{units}}^{3}.\hfill \end{array}]
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				 	Find the volume of a solid by using the slicing method
 	Find the volume of a solid by using the disk method
 	Compute the volume of a hollow solid of revolution by using the washer technique
 
  3D Printing Martian Habitats: Calculating Volumes for Extraterrestrial Structures
 In 2019, NASA held Phase 3 of its 3D-Printed Habitat Challenge, where competitors created scale models of habitats that could be used on the moon or Mars. AI SpaceFactory won the competition with their design called Marsha, shown below. The habitat is designed to be 3D printed using a mixture of basalt fiber extracted from Martian rock and renewable bioplastic processed from plants grown on Mars.
 [image: This image depicts a Mars colony scene with two tall, conical, ribbed structures resembling modern habitats. In the foreground, astronauts in spacesuits are interacting with a small white rover and a modular living unit. The landscape is barren and rocky, characteristic of the Martian surface, with a hazy sky in the background.]Photo from https://spacefactory.ai/marsha [ohm_question hide_question_numbers=1]287929[/ohm_question]
  [ohm_question hide_question_numbers=1]287930[/ohm_question]
  Sources:
 https://www.space.com/nasa-3d-printed-habitat-competition-winners.html
 https://www.space.com/38944-nasa-3d-printed-habitat-challenge-submissions.html
 https://spacefactory.ai/marsha
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				 	Determine the volume of a solid formed by rotating a region around an axis using cylindrical shells
 	Evaluate the benefits and limitations of different methods (disk, washer, cylindrical shells) for calculating volumes
 
  Cylindrical Shells Method
 Let’s explore the final method for finding the volume of a solid of revolution—the method of cylindrical shells. This method can be used on the same types of solids as the disk or washer method; however, we integrate along the coordinate axis parallel to the axis of revolution. This ability to choose which variable of integration to use can be a significant advantage with more complicated functions. Additionally, the specific geometry of the solid sometimes makes the method of using cylindrical shells more appealing than the washer method.
 Again, we are working with a solid of revolution. We define a region [image: R,] bounded above by the graph of a function [image: y=f(x),] below by the [image: x]-axis, and on the left and right by the lines [image: x=a] and [image: x=b,] respectively, as shown in Figure 1(a). We then revolve this region around the [image: y]-axis, as shown in Figure 1(b). 
 [image: This figure has two graphs. The first graph is labeled “a” and is an increasing curve in the first quadrant. The curve is labeled “y=f(x)”. The curve starts on the y-axis at y=a. Under the curve, above the x-axis is a shaded region labeled “R”. The shaded region is bounded on the right by the line x=b. The second graph is a three dimensional solid. It has been created by rotating the shaded region from “a” around the y-axis.]Figure 1. (a) A region bounded by the graph of a function of [image: x.] (b) The solid of revolution formed when the region is revolved around the [image: y\text{-axis}\text{.}] Note that this is different from what we have done before. Previously, regions defined in terms of functions of [image: x] were revolved around the [image: x]-axis or a line parallel to it.
  Next, as we have done many times before, partition the interval [image: \left[a,b\right]] using a regular partition, [image: P=\left\{{x}_{0},{x}_{1}\text{,…},{x}_{n}\right\}] and, for [image: i=1,2\text{,…},n,] choose a point [image: {x}_{i}^{*}\in \left[{x}_{i-1},{x}_{i}\right].]
 Then, construct a rectangle over the interval [image: \left[{x}_{i-1},{x}_{i}\right]] of height [image: f({x}_{i}^{*})] and width [image: \text{Δ}x.] 
 When that rectangle is revolved around the [image: y]-axis, instead of a disk or a washer, we get a cylindrical shell, as shown in the following figure.
 [image: This figure has two images. The first is a cylindrical shell, hollow in the middle. It has a vertical axis in the center. There is also a curve that meets the top of the cylinder. The second image is a set of concentric cylinders, one inside of the other forming a nesting of cylinders.]Figure 2. (a) A representative rectangle. (b) When this rectangle is revolved around the [image: y\text{-axis},] the result is a cylindrical shell. (c) When we put all the shells together, we get an approximation of the original solid. To calculate the volume of this shell, consider the following.
 [image: This figure is a graph in the first quadrant. The curve is increasing and labeled “y=f(x)”. The curve starts on the y-axis at f(x*). Below the curve is a shaded rectangle. The rectangle starts on the x-axis. The width of the rectangle is delta x. The two sides of the rectangle are labeled “xsub(i-1)” and “xsubi”.]Figure 3. Calculating the volume of the shell. Notice that the rectangle we are using is parallel to the axis of revolution (y axis), not perpendicular like the disk and washer method. This could be very useful, particularly for [image: y]-axis revolutions.
 The shell is a cylinder, so its volume is the cross-sectional area multiplied by the height of the cylinder. The cross-sections are annuli (ring-shaped regions—essentially, circles with a hole in the center), with outer radius [image: {x}_{i}] and inner radius [image: {x}_{i-1}.]
 Thus, the cross-sectional area is [image: \pi {x}_{i}^{2}-\pi {x}_{i-1}^{2}.] The height of the cylinder is [image: f({x}_{i}^{*}).]
 Then the volume of the shell is:
 [image: \begin{array}{cc}\hfill {V}_{\text{shell}}& =f({x}_{i}^{*})(\pi {x}_{i}^{2}-\pi {x}_{i-1}^{2})\hfill \\ & =\pi f({x}_{i}^{*})({x}_{i}^{2}-{x}_{i-1}^{2})\hfill \\ & =\pi f({x}_{i}^{*})({x}_{i}+{x}_{i-1})({x}_{i}-{x}_{i-1})\hfill \\ & =2\pi f({x}_{i}^{*})(\frac{{x}_{i}+{x}_{i-1}}{2})({x}_{i}-{x}_{i-1}).\hfill \end{array}]
 Note that [image: {x}_{i}-{x}_{i-1}=\text{Δ}x,] so we have:
 [image: {V}_{\text{shell}}=2\pi f({x}_{i}^{*})(\frac{{x}_{i}+{x}_{i-1}}{2})\text{Δ}x]
 Furthermore, [image: \frac{{x}_{i}+{x}_{i-1}}{2}] is both the midpoint of the interval [image: \left[{x}_{i-1},{x}_{i}\right]] and the average radius of the shell, and we can approximate this by [image: {x}_{i}^{*}.]
 We then have:
 [image: {V}_{\text{shell}}\approx 2\pi f({x}_{i}^{*}){x}_{i}^{*}\text{Δ}x]
 Another way to think of this is to think of making a vertical cut in the shell and then opening it up to form a flat plate (Figure 4).
 [image: This figure has two images. The first is labeled “a” and is of a hollow cylinder around the y-axis. On the front of this cylinder is a vertical line labeled “cut line”. The height of the cylinder is “y=f(x)”. The second figure is labeled “b” and is a shaded rectangular block. The height of the rectangle is “f(x*), the width of the rectangle is “2pix*”, and the thickness of the rectangle is “delta x”.]Figure 4. (a) Make a vertical cut in a representative shell. (b) Open the shell up to form a flat plate. In reality, the outer radius of the shell is greater than the inner radius, and hence the back edge of the plate would be slightly longer than the front edge of the plate. However, we can approximate the flattened shell by a flat plate of height [image: f({x}_{i}^{*}),] width [image: 2\pi {x}_{i}^{*},] and thickness [image: \text{Δ}x] (Figure 4).
 The volume of the shell, then, is approximately the volume of the flat plate. Multiplying the height, width, and depth of the plate, we get:
 [image: {V}_{\text{shell}}\approx f({x}_{i}^{*})(2\pi {x}_{i}^{*})\text{Δ}x,]
 which is the same formula we had before.
 To calculate the volume of the entire solid, we then add the volumes of all the shells and obtain:
 [image: V\approx \underset{i=1}{\overset{n}{\text{∑}}}(2\pi {x}_{i}^{*}f({x}_{i}^{*})\text{Δ}x)]
 Here we have another Riemann sum, this time for the function [image: 2\pi xf(x).] Taking the limit as [image: n\to \infty] gives us:
 [image: V=\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}(2\pi {x}_{i}^{*}f({x}_{i}^{*})\text{Δ}x)={\displaystyle\int }_{a}^{b}(2\pi xf(x))dx]
 This leads to the following rule for the method of cylindrical shells.
 the method of cylindrical shells
 Let [image: f(x)] be continuous and nonnegative.
  
 Define [image: R] as the region bounded above by the graph of [image: f(x),] below by the [image: x\text{-axis},] on the left by the line [image: x=a,] and on the right by the line [image: x=b.]
  
 Then the volume of the solid of revolution formed by revolving [image: R] around the [image: y]-axis is given by:
 [image: V={\displaystyle\int }_{a}^{b}(2\pi xf(x))dx]
  Define [image: R] as the region bounded above by the graph of [image: f(x)=1\text{/}x] and below by the [image: x\text{-axis}] over the interval [image: \left[1,3\right].] Find the volume of the solid of revolution formed by revolving [image: R] around the [image: y\text{-axis}.]
 Show Solution 
 First we must graph the region [image: R] and the associated solid of revolution, as shown in the following figure.
 [image: This figure has three images. The first is a solid that has been formed by rotating the curve y=1/x about the y-axis. The solid begins on the x-axis and stops where y=1. The second image is labeled “a” and is the graph of y=1/x in the first quadrant. Under the curve is a shaded region labeled “R”. The region is bounded by the curve, the x-axis, to the left at x=1 and to the right at x=3. The third image is labeled “b” and is half of the solid formed by rotating the shaded region about the y-axis.]Figure 5. (a) The region [image: R] under the graph of [image: f(x)=1\text{/}x] over the interval [image: \left[1,3\right].] (b) The solid of revolution generated by revolving [image: R] about the [image: y\text{-axis}.] Then the volume of the solid is given by:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{a}^{b}(2\pi xf(x))dx\hfill \\ & ={\displaystyle\int }_{1}^{3}(2\pi x(\frac{1}{x}))dx\hfill \\ & ={\displaystyle\int }_{1}^{3}2\pi dx={2\pi x|}_{1}^{3}=4\pi {\text{units}}^{3}\text{.}\hfill \end{array}]
  Define [image: R] as the region bounded above by the graph of [image: f(x)=2x-{x}^{2}] and below by the [image: x\text{-axis}] over the interval [image: \left[0,2\right].] Find the volume of the solid of revolution formed by revolving [image: R] around the [image: y\text{-axis}.]
 Show Solution 
 First graph the region [image: R] and the associated solid of revolution, as shown in the following figure.
 [image: This figure has two graphs. The first graph is labeled “a” and is the curve f(x)=2x-x^2. It is an upside down parabola intersecting the x-axis at the origin ant at x=2. Under the curve the region in the first quadrant is shaded and is labeled “R”. The second figure is a graph of the same curve. On the graph is a solid that is formed by rotation the region from “a” about the y-axis.]Figure 6. (a) The region [image: R] under the graph of [image: f(x)=2x-{x}^{2}] over the interval [image: \left[0,2\right].] (b) The volume of revolution obtained by revolving [image: R] about the [image: y\text{-axis}.] Then the volume of the solid is given by:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{a}^{b}(2\pi xf(x))dx\hfill \\ & ={\displaystyle\int }_{0}^{2}(2\pi x(2x-{x}^{2}))dx=2\pi {\displaystyle\int }_{0}^{2}(2{x}^{2}-{x}^{3})dx\hfill \\ & ={2\pi \left[\frac{2{x}^{3}}{3}-\frac{{x}^{4}}{4}\right]|}_{0}^{2}=\frac{8\pi }{3}{\text{units}}^{3}\text{.}\hfill \end{array}]
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				Cylindrical Shells Method Cont.
 As with the disk method and the washer method, we can use the method of cylindrical shells with solids of revolution, revolved around the [image: x\text{-axis},] when we want to integrate with respect to [image: y.]
 the method of cylindrical shells for solids of revolution around the [image: x]-axis
 Let [image: g(y)] be continuous and nonnegative.
  
 Define [image: Q] as the region bounded on the right by the graph of [image: g(y),] on the left by the [image: y\text{-axis},] below by the line [image: y=c,] and above by the line [image: y=d.]
  
 Then, the volume of the solid of revolution formed by revolving [image: Q] around the [image: x\text{-axis}] is given by:
 [image: V={\displaystyle\int }_{c}^{d}(2\pi yg(y))dy]
  Define [image: Q] as the region bounded on the right by the graph of [image: g(y)=2\sqrt{y}] and on the left by the [image: y\text{-axis}] for [image: y\in \left[0,4\right].] Find the volume of the solid of revolution formed by revolving [image: Q] around the [image: x]-axis.
 Show Solution 
 First, we need to graph the region [image: Q] and the associated solid of revolution, as shown in the following figure.
 [image: This figure has two graphs. The first graph is labeled “a” and is the curve g(y)=2squareroot(y). It is an increasing curve in the first quadrant beginning at the origin. Between the y-axis and the curve, there is a shaded region labeled “Q”. The shaded region is bounded above by the line y=4. The second graph is the same curve in “a” and labeled “b”. It also has a solid region that has been formed by rotating the curve in “a” about the x-axis. The solid starts at the y-axis and stops at x=4.]Figure 7. (a) The region [image: Q] to the left of the function [image: g(y)] over the interval [image: \left[0,4\right].] (b) The solid of revolution generated by revolving [image: Q] around the [image: x\text{-axis}.] Label the shaded region [image: Q.] Then the volume of the solid is given by:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{c}^{d}(2\pi yg(y))dy\hfill \\ & ={\displaystyle\int }_{0}^{4}(2\pi y(2\sqrt{y}))dy=4\pi {\displaystyle\int }_{0}^{4}{y}^{3\text{/}2}dy\hfill \\ & ={4\pi \left[\frac{2{y}^{5\text{/}2}}{5}\right]|}_{0}^{4}=\frac{256\pi }{5}{\text{units}}^{3}\text{.}\hfill \end{array}]
  For the next example, we look at a solid of revolution for which the graph of a function is revolved around a line other than one of the two coordinate axes. To set this up, we need to revisit the development of the method of cylindrical shells.
 Recall that we found the volume of one of the shells to be given by:
 [image: \begin{array}{cc}\hfill {V}_{\text{shell}}& =f({x}_{i}^{*})(\pi {x}_{i}^{2}-\pi {x}_{i-1}^{2})\hfill \\ & =\pi f({x}_{i}^{*})({x}_{i}^{2}-{x}_{i-1}^{2})\hfill \\ & =\pi f({x}_{i}^{*})({x}_{i}+{x}_{i-1})({x}_{i}-{x}_{i-1})\hfill \\ & =2\pi f({x}_{i}^{*})(\frac{{x}_{i}+{x}_{i-1}}{2})({x}_{i}-{x}_{i-1}).\hfill \end{array}]
 This was based on a shell with an outer radius of [image: {x}_{i}] and an inner radius of [image: {x}_{i-1}.] If, however, we rotate the region around a line other than the [image: y\text{-axis},] we have a different outer and inner radius. 
 Suppose, for example, that we rotate the region around the line [image: x=\text{−}k,] where [image: k] is some positive constant. Then, the outer radius of the shell is [image: {x}_{i}+k] and the inner radius of the shell is [image: {x}_{i-1}+k.] 
 Substituting these terms into the expression for volume, we see that when a plane region is rotated around the line [image: x=\text{−}k,] the volume of a shell is given by:
 [image: \begin{array}{cc}\hfill {V}_{\text{shell}}& =2\pi f({x}_{i}^{*})(\frac{({x}_{i}+k)+({x}_{i-1}+k)}{2})(({x}_{i}+k)-({x}_{i-1}+k))\hfill \\ & =2\pi f({x}_{i}^{*})((\frac{{x}_{i}+{x}_{i-2}}{2})+k)\text{Δ}x.\hfill \end{array}]
 As before, we notice that [image: \frac{{x}_{i}+{x}_{i-1}}{2}] is the midpoint of the interval [image: \left[{x}_{i-1},{x}_{i}\right]] and can be approximated by [image: {x}_{i}^{*}.] Then, the approximate volume of the shell is:
 [image: {V}_{\text{shell}}\approx 2\pi ({x}_{i}^{*}+k)f({x}_{i}^{*})\text{Δ}x]
 The remainder of the development proceeds as before, and we see that:
 [image: V={\displaystyle\int }_{a}^{b}(2\pi (x+k)f(x))dx]
 We could also rotate the region around other horizontal or vertical lines, such as a vertical line in the right half plane. In each case, the volume formula must be adjusted accordingly. Specifically, the [image: x\text{-term}] in the integral must be replaced with an expression representing the radius of a shell. To see how this works, consider the following example.
 Define [image: R] as the region bounded above by the graph of [image: f(x)=x] and below by the [image: x\text{-axis}] over the interval [image: \left[1,2\right].] Find the volume of the solid of revolution formed by revolving [image: R] around the line [image: x=-1.]
 Show Solution 
 First, graph the region [image: R] and the associated solid of revolution, as shown in the following figure.
 [image: This figure has two graphs. The first graph is labeled “a” and is the line f(x)=x, a diagonal line through the origin. There is a shaded region above the x-axis under the line labeled “R”. This region is bounded to the left by the line x=1 and to the right by the line x=2. There is also the vertical line x=-1 on the graph. The second figure has the same graphs as “a” and is labeled “b”. Also on the graph is a solid formed by rotating the region “R” from the first graph about the line x=-1.]Figure 8. (a) The region [image: R] between the graph of [image: f(x)] and the [image: x\text{-axis}] over the interval [image: \left[1,2\right].] (b) The solid of revolution generated by revolving [image: R] around the line [image: x=-1.] Note that the radius of a shell is given by [image: x+1.] Then the volume of the solid is given by:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{1}^{2}(2\pi (x+1)f(x))dx\hfill \\ & ={\displaystyle\int }_{1}^{2}(2\pi (x+1)x)dx=2\pi {\displaystyle\int }_{1}^{2}({x}^{2}+x)dx\hfill \\ & ={2\pi \left[\frac{{x}^{3}}{3}+\frac{{x}^{2}}{2}\right]|}_{1}^{2}=\frac{23\pi }{3}{\text{units}}^{3}\text{.}\hfill \end{array}]
  For our final example, let’s look at the volume of a solid of revolution for which the region of revolution is bounded by the graphs of two functions.
 Define [image: R] as the region bounded above by the graph of the function [image: f(x)=\sqrt{x}] and below by the graph of the function [image: g(x)=\frac{1}{x}] over the interval [image: \left[1,4\right].] Find the volume of the solid of revolution generated by revolving [image: R] around the [image: y\text{-axis}.]
 Show Solution 
 First, graph the region [image: R] and the associated solid of revolution, as shown in the following figure.
 [image: This figure has two graphs. The first graph is labeled “a” and has two curves. The curves are the graphs of f(x)=squareroot(x) and g(x)=1/x. In the first quadrant the curves intersect at (1,1). In between the curves in the first quadrant there is a shaded region labeled “R”, bounded to the right by the line x=4. The second graph is labeled “b” and is the same as the graphs in “a”. Also on this graph is a solid that has been formed by rotating the region “R” from the figure “a” about the y-axis.]Figure 9. (a) The region [image: R] between the graph of [image: f(x)] and the graph of [image: g(x)] over the interval [image: \left[1,4\right].] (b) The solid of revolution generated by revolving [image: R] around the [image: y\text{-axis}.] Note that the axis of revolution is the [image: y\text{-axis},] so the radius of a shell is given simply by [image: x.] We don’t need to make any adjustments to the [image: x]-term of our integrand. The height of a shell, though, is given by [image: f(x)-g(x),] so in this case we need to adjust the [image: f(x)] term of the integrand.
 Then the volume of the solid is given by:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{1}^{4}(2\pi x(f(x)-g(x)))dx\hfill \\ & ={\displaystyle\int }_{1}^{4}(2\pi x(\sqrt{x}-\frac{1}{x}))dx=2\pi {\displaystyle\int }_{1}^{4}({x}^{3\text{/}2}-1)dx\hfill \\ & ={2\pi \left[\frac{2{x}^{5\text{/}2}}{5}-x\right]|}_{1}^{4}=\frac{94\pi }{5}{\text{units}}^{3}.\hfill \end{array}]
  [ohm_question hide_question_numbers=1]288441[/ohm_question]
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				Comparing Methods for Volume Calculation
 We have studied several methods for finding the volume of a solid of revolution, but how do we know which method to use? It often comes down to a choice of which integral is easiest to evaluate.
 The figure below describes the different approaches for solids of revolution around the [image: x\text{-axis}.] It’s up to you to develop the analogous table for solids of revolution around the [image: y\text{-axis}.]
 [image: This figure is a table comparing the different methods for finding volumes of solids of revolution. The columns in the table are labeled “comparison”, “disk method”, “washer method”, and “shell method”. The rows are labeled “volume formula”, “solid”, “interval to partition”, “rectangles”, “typical region”, and “rectangle”. In the disk method column, the formula is given as the definite integral from a to b of pi times [f(x)]^2. The solid has no cavity in the center, the partition is [a,b], rectangles are vertical, and the typical region is a shaded region above the x-axis and below the curve of f(x). In the washer method column, the formula is given as the definite integral from a to b of pi times [f(x)]^2-[g(x)]^2. The solid has a cavity in the center, the partition is [a,b], rectangles are vertical, and the typical region is a shaded region above the curve of g(x) and below the curve of f(x). In the shell method column, the formula is given as the definite integral from c to d of 2pi times yg(y). The solid is with or without a cavity in the center, the partition is [c,d] rectangles are horizontal, and the typical region is a shaded region above the x-axis and below the curve of g(y).]Figure 10. Let’s take a look at a couple of additional problems and decide on the best approach to take for solving them.
 The tips below can help you decide the best method:
 	Axis of Revolution 	Method 	Variable 	Description 
 	[image: x]-axis 	Disk/washer 	[image: dx] 	Use when revolving around the [image: x]-axis and integrating with respect to [image: x]. The rectangles are perpendicular to the [image: x]-axis. 
 	Shell 	[image: dy] 	Use when revolving around the [image: x]-axis and integrating with respect to [image: y]. The rectangles are parallel to the [image: x]-axis. 
 	[image: y]-axis 	Disk/washer 	[image: dy] 	Use when revolving around the [image: y]-axis and integrating with respect to [image: y]. The rectangles are perpendicular to the [image: y]-axis. 
 	Shell 	[image: dx] 	Use when revolving around the [image: y]-axis and integrating with respect to [image: x]. The rectangles are parallel to the [image: y]-axis. 
  
 Most times, functions are presented in terms of [image: x]. If possible, keeping things in terms of [image: x] is beneficial.
 Generally speaking, for an [image: x]-axis revolution, a disk/washer method will allow us to avoid rewriting the equation in terms of [image: y]. For a [image: y]-axis revolution, the shell method will allow us the same advantage.
 Using this information, try to draw your rectangles in terms of [image: dx], if possible. If this requires you to separate the area, try the [image: dy] method!
  For each of the following problems, select the best method to find the volume of a solid of revolution generated by revolving the given region around the [image: x\text{-axis},] and set up the integral to find the volume (do not evaluate the integral).
 	The region bounded by the graphs of [image: y=x,] [image: y=2-x,] and the [image: x\text{-axis}.]
 	The region bounded by the graphs of [image: y=4x-{x}^{2}] and the [image: x\text{-axis}.]
 
 Show Solution 
 	First, sketch the region and the solid of revolution as shown. [image: This figure has two graphs. The first graph is labeled “a” and has two lines y=x and y=2-x drawn in the first quadrant. The lines intersect at (1,1) and form a triangle above the x-axis. The region that is the triangle is shaded. The second graph is labeled “b” and is the same graphs as “a”. The shaded triangular region in “a” has been rotated around the x-axis to form a solid on the second graph.]Figure 11. (a) The region [image: R] bounded by two lines and the [image: x\text{-axis}.] (b) The solid of revolution generated by revolving [image: R] about the [image: x\text{-axis}.] 
  
 Looking at the region, if we want to integrate with respect to [image: x,] we would have to break the integral into two pieces, because we have different functions bounding the region over [image: \left[0,1\right]] and [image: \left[1,2\right].]
 In this case, using the disk method, we would have:
 [image: V={\displaystyle\int }_{0}^{1}(\pi {x}^{2})dx+{\displaystyle\int }_{1}^{2}(\pi {(2-x)}^{2})dx.]
 If we used the shell method instead, we would use functions of [image: y] to represent the curves, producing:
 [image: \begin{array}{cc}\hfill V& ={\displaystyle\int }_{0}^{1}(2\pi y\left[(2-y)-y\right])dy\hfill \\ & ={\displaystyle\int }_{0}^{1}(2\pi y\left[2-2y\right])dy.\hfill \end{array}]
 Neither of these integrals is particularly onerous, but since the shell method requires only one integral, and the integrand requires less simplification, we should probably go with the shell method in this case.
 
 	First, sketch the region and the solid of revolution as shown. [image: This figure has two graphs. The first graph is labeled “a” and is the curve y=4x-x^2. It is an upside down parabola intersecting the x-axis at the origin and at x=4. The region above the x-axis and below the curve is shaded and labeled “R”. The second graph labeled “b” is the same as in “a”. On this graph the shaded region “R” has been rotated around the x-axis to form a solid.]Figure 12. (a) The region [image: R] between the curve and the [image: x\text{-axis}.] (b) The solid of revolution generated by revolving [image: R] about the [image: x\text{-axis}.] 
  
 Looking at the region, it would be problematic to define a horizontal rectangle; the region is bounded on the left and right by the same function. Therefore, we can dismiss the method of shells. The solid has no cavity in the middle, so we can use the method of disks. Then:
 [image: V={\displaystyle\int }_{0}^{4}\pi {(4x-{x}^{2})}^{2}dx.]
 
 
  
  Select the best method to find the volume of a solid of revolution generated by revolving the given region around the [image: x\text{-axis},] and set up the integral to find the volume (do not evaluate the integral): the region bounded by the graphs of [image: y=2-{x}^{2}] and [image: y={x}^{2}.]
 
 Hint Sketch the region and use the last example to decide which integral is easiest to evaluate.
 Show Solution 
 Use the method of washers
 [image: V={\displaystyle\int }_{-1}^{1}\pi \left[{(2-{x}^{2})}^{2}-{({x}^{2})}^{2}\right]dx]
  
 
  
  Watch the following video to see the worked solution to the two examples above.
 https://youtube.com/watch?v=3Rq70sJECwQ%3Fcontrols%3D0%26start%3D1551%26end%3D1827%26autoplay%3D0
 Closed Captioning and Transcript Information for Video For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.3 Volumes of Revolution: Cylindrical Shells” here (opens in new window).
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				 	Determine the volume of a solid formed by rotating a region around an axis using cylindrical shells
 	Evaluate the benefits and limitations of different methods (disk, washer, cylindrical shells) for calculating volumes
 
  Volumes of Revolution
 https://youtube.com/watch?v=FJbzYl_trm0%3Fsi%3DbeV5AwEREcht-j1V
  https://youtube.com/watch?v=PdOkVlAGtGE%3Fsi%3DmYLU2287N9MxfLD4
  https://youtube.com/watch?v=D5NOQa6utCw%3Fsi%3DcdH5j-Nbw31XbDeW
  https://youtube.com/watch?v=aKbyZWGWgYA%3Fsi%3D3BK0qxiURSx4m2ps
  https://youtube.com/watch?v=fap2H4Khico%3Fsi%3D3xb8irU7OAXP5J3K
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				 	Calculate the length of a curve described by y=f(x) from one point to another
 	Find the length of a curve defined by x=g(y) from one point to another
 	Calculate the total surface area of a solid formed by rotating a curve around an axis
 
  Arc Lengths of Curves
 In this section, we use definite integrals to find the arc length of a curve. We can think of arc length as the distance you would travel if you were walking along the path of the curve.
 Many real-world applications involve arc length. If a rocket is launched along a parabolic path, we might want to know how far the rocket travels. Or, if a curve on a map represents a road, we might want to know how far we have to drive to reach our destination.
 Arc Length of the Curve [image: y] = [image: f]([image: x])
 In previous applications of integration, we required the function [image: f(x)] to be integrable, or at most continuous. However, for calculating arc length we have a more stringent requirement for [image: f(x).] Here, we require [image: f(x)] to be differentiable, and furthermore we require its derivative, [image: {f}^{\prime }(x),] to be continuous. Functions like this, which have continuous derivatives, are called smooth. 
 Let [image: f(x)] be a smooth function defined over [image: \left[a,b\right].] We want to calculate the length of the curve from the point [image: (a,f(a))] to the point [image: (b,f(b)).]
 We start by using line segments to approximate the length of the curve.
 For [image: i=0,1,2\text{,…},n,] let [image: P=\left\{{x}_{i}\right\}] be a regular partition of [image: \left[a,b\right].]
 Then, for [image: i=1,2\text{,…},n,] construct a line segment from the point [image: ({x}_{i-1},f({x}_{i-1}))] to the point [image: ({x}_{i},f({x}_{i})).] Although it might seem logical to use either horizontal or vertical line segments, we want our line segments to approximate the curve as closely as possible. The figure below depicts this construct for [image: n=5.]
 [image: This figure is a graph in the first quadrant. The curve increases and decreases. It is divided into parts at the points a=xsub0, xsub1, xsub2, xsub3, xsub4, and xsub5=b. Also, there are line segments between the points on the curve.]Figure 1. We can approximate the length of a curve by adding line segments. To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal distance over each interval.
 Because we have used a regular partition, the change in horizontal distance over each interval is given by [image: \text{Δ}x.] The change in vertical distance varies from interval to interval, though, so we use [image: \text{Δ}{y}_{i}=f({x}_{i})-f({x}_{i-1})] to represent the change in vertical distance over the interval [image: \left[{x}_{i-1},{x}_{i}\right],] as shown below Note that some (or all) [image: \text{Δ}{y}_{i}] may be negative.
 [image: This figure is a graph. It is a curve above the x-axis beginning at the point f(xsubi-1). The curve ends in the first quadrant at the point f(xsubi). Between the two points on the curve is a line segment. A right triangle is formed with this line segment as the hypotenuse, a horizontal segment with length delta x, and a vertical line segment with length delta y.]Figure 2. A representative line segment approximates the curve over the interval [image: \left[{x}_{i-1},{x}_{i}\right].] By the Pythagorean theorem, the length of the line segment is:
 [image: \sqrt{{(\text{Δ}x)}^{2}+{(\text{Δ}{y}_{i})}^{2}}.]
 We can also write this as:
 [image: \text{Δ}x\sqrt{1+{((\text{Δ}{y}_{i})\text{/}(\text{Δ}x))}^{2}}.]
 Now, by the Mean Value Theorem, there is a point [image: {x}_{i}^{*}\in \left[{x}_{i-1},{x}_{i}\right]] such that [image: {f}^{\prime }({x}_{i}^{*})=(\text{Δ}{y}_{i})\text{/}(\text{Δ}x).]
 Then the length of the line segment is given by:
 [image: \text{Δ}x\sqrt{1+{\left[{f}^{\prime }({x}_{i}^{*})\right]}^{2}}.]
 Adding up the lengths of all the line segments, we get:
 [image: \text{Arc Length}\approx \underset{i=1}{\overset{n}{\text{∑}}}\sqrt{1+{\left[{f}^{\prime }({x}_{i}^{*})\right]}^{2}}\text{Δ}x.]
 This is a Riemann sum. Taking the limit as [image: n\to \infty ,] we have:
 [image: \text{Arc Length}=\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}\sqrt{1+{\left[{f}^{\prime }({x}_{i}^{*})\right]}^{2}}\text{Δ}x={\displaystyle\int }_{a}^{b}\sqrt{1+{\left[{f}^{\prime }(x)\right]}^{2}}dx.]
  We summarize these findings in the following theorem.
 arc length for [image: y] = [image: f]([image: x])
 Let [image: f(x)] be a smooth function over the interval [image: \left[a,b\right].] Then the arc length of the portion of the graph of [image: f(x)] from the point [image: (a,f(a))] to the point [image: (b,f(b))] is given by:
 [image: \text{Arc Length}={\displaystyle\int }_{a}^{b}\sqrt{1+{\left[{f}^{\prime }(x)\right]}^{2}}dx.]
  Note that we are integrating an expression involving [image: {f}^{\prime }(x),] so we need to be sure [image: {f}^{\prime }(x)] is integrable. This is why we require [image: f(x)] to be smooth. The following example shows how to apply the theorem.
 Let [image: f(x)=2{x}^{3\text{/}2}.] Calculate the arc length of the graph of [image: f(x)] over the interval [image: \left[0,1\right].] Round the answer to three decimal places.
 Show Solution 
 We have [image: {f}^{\prime }(x)=3{x}^{1\text{/}2},] so [image: {\left[{f}^{\prime }(x)\right]}^{2}=9x.] Then, the arc length is
 [image: \begin{array}{cc}\hfill \text{Arc Length}& ={\displaystyle\int }_{a}^{b}\sqrt{1+{\left[{f}^{\prime }(x)\right]}^{2}}dx\hfill \\ & ={\displaystyle\int }_{0}^{1}\sqrt{1+9x}dx.\hfill \end{array}]
 Substitute [image: u=1+9x.] Then, [image: du=9dx.] When [image: x=0,] then [image: u=1,] and when [image: x=1,] then [image: u=10.] Thus,
 [image: \begin{array}{cc}\hfill \text{Arc Length}& ={\displaystyle\int }_{0}^{1}\sqrt{1+9x}dx\hfill \\ & =\frac{1}{9}{\displaystyle\int }_{0}^{1}\sqrt{1+9x}9dx=\dfrac{1}{9}{\displaystyle\int }_{1}^{10}\sqrt{u}du\hfill \\ & ={\dfrac{1}{9}·\frac{2}{3}{u}^{3\text{/}2}|}_{1}^{10}=\frac{2}{27}\left[10\sqrt{10}-1\right]\approx 2.268\text{ units}.\hfill \end{array}]
  Although it is nice to have a formula for calculating arc length, this particular theorem can generate expressions that are difficult to integrate. In some cases, we may have to use a computer or calculator to approximate the value of the integral.
 Let [image: f(x)={x}^{2}.] Calculate the arc length of the graph of [image: f(x)] over the interval [image: \left[1,3\right].]
 Show Solution 
 We have [image: {f}^{\prime }(x)=2x,] so [image: {\left[{f}^{\prime }(x)\right]}^{2}=4{x}^{2}.] Then the arc length is given by
 [image: \text{Arc Length}={\displaystyle\int }_{a}^{b}\sqrt{1+{\left[{f}^{\prime }(x)\right]}^{2}}dx={\displaystyle\int }_{1}^{3}\sqrt{1+4{x}^{2}}dx.]
 Using a computer to approximate the value of this integral, we get
 [image: {\displaystyle\int }_{1}^{3}\sqrt{1+4{x}^{2}}dx\approx 8.26815.]
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				Arc Lengths of Curves Cont.
 Arc Length of the Curve [image: x] = [image: g]([image: y])
 We have just seen how to approximate the length of a curve with line segments. If we want to find the arc length of the graph of a function of [image: y,] we can repeat the same process, except we partition the [image: y\text{-axis}] instead of the [image: x\text{-axis}.]
 The figure below shows a representative line segment.
 [image: This figure is a graph. It is a curve to the right of the y-axis beginning at the point g(ysubi-1). The curve ends in the first quadrant at the point g(ysubi). Between the two points on the curve is a line segment. A right triangle is formed with this line segment as the hypotenuse, a horizontal segment with length delta x, and a vertical line segment with length delta y.]Figure 3. A representative line segment over the interval [image: \left[{y}_{i-1},{y}_{i}\right].] The length of the line segment is [image: \sqrt{{(\text{Δ}y)}^{2}+{(\text{Δ}{x}_{i})}^{2}},] which can also be written as [image: \text{Δ}y\sqrt{1+{((\text{Δ}{x}_{i})\text{/}(\text{Δ}y))}^{2}}.] If we now follow the same development we did earlier, we get a formula for arc length of a function [image: x=g(y).]
 arc length for [image: x] = [image: g]([image: y])
 Let [image: g(y)] be a smooth function over an interval [image: \left[c,d\right].] Then, the arc length of the graph of [image: g(y)] from the point [image: (c,g(c))] to the point [image: (d,g(d))] is given by:
 [image: \text{Arc Length}={\displaystyle\int }_{c}^{d}\sqrt{1+{\left[{g}^{\prime }(y)\right]}^{2}}dy]
  Let [image: g(y)=3{y}^{3}.] Calculate the arc length of the graph of [image: g(y)] over the interval [image: \left[1,2\right].]
 Show Solution 
 We have [image: {g}^{\prime }(y)=9{y}^{2},] so [image: {\left[{g}^{\prime }(y)\right]}^{2}=81{y}^{4}.] Then the arc length is
 [image: \text{Arc Length}={\displaystyle\int }_{c}^{d}\sqrt{1+{\left[{g}^{\prime }(y)\right]}^{2}}dy={\displaystyle\int }_{1}^{2}\sqrt{1+81{y}^{4}}dy.]
 Using a computer to approximate the value of this integral, we obtain
 [image: {\displaystyle\int }_{1}^{2}\sqrt{1+81{y}^{4}}dy\approx 21.0277.]
  Let [image: g(y)=\frac{1}{y}.] Calculate the arc length of the graph of [image: g(y)] over the interval [image: \left[1,4\right].] Use a computer or calculator to approximate the value of the integral.
 Show Solution 
 [image: \text{Arc Length}=3.15018]
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				Area of a Surface of Revolution
 The concepts used to find the arc length of a curve can be extended to find the surface area of a surface of revolution. Surface area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the object is the sum of the areas of all its faces. For curved surfaces, the situation is a little more complex.
 Let [image: f(x)] be a nonnegative smooth function over the interval [image: [a, b]]. We wish to find the surface area of the surface of revolution created by revolving the graph of [image: y = f(x)] around the x-axis as shown in the following figure.
 [image: This figure has two graphs. The first graph is labeled “a” and is a curve in the first quadrant beginning at the y-axis. The curve is y=f(x). The second graph is labeled “b” and has the same curve y=f(x). There is also a solid surface formed by rotating the curve about the x-axis.]Figure 4. (a) A curve representing the function [image: f(x).] (b) The surface of revolution formed by revolving the graph of [image: f(x)] around the [image: x\text{-axis}.] As we have done many times before, we are going to partition the interval [image: \left[a,b\right]] and approximate the surface area by calculating the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier in this section.
 For [image: i=0,1,2\text{,…},n,] let [image: P=\left\{{x}_{i}\right\}] be a regular partition of [image: \left[a,b\right].] Then, for [image: i=1,2\text{,…},n,] construct a line segment from the point [image: ({x}_{i-1},f({x}_{i-1}))] to the point [image: ({x}_{i},f({x}_{i})).]
 Now, revolve these line segments around the [image: x\text{-axis}] to generate an approximation of the surface of revolution as shown in the following figure.
 [image: This figure has two graphs. The first graph is labeled “a” and is a curve in the first quadrant beginning at the y-axis. The curve is y=f(x). The area under the curve above the x-axis has been divided into regions with vertical lines. The second graph is labeled “b” and has the same curve y=f(x). There is also a solid surface formed by rotating the curve about the x-axis.]Figure 5. (a) Approximating [image: f(x)] with line segments. (b) The surface of revolution formed by revolving the line segments around the [image: x\text{-axis}.] Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones (think of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.
 To find the surface area of the band, we need to find the lateral surface area, [image: S,] of the frustum (the area of just the slanted outside surface of the frustum, not including the areas of the top or bottom faces).
 Let [image: {r}_{1}] and [image: {r}_{2}] be the radii of the wide end and the narrow end of the frustum, respectively, and let [image: l] be the slant height of the frustum as shown in the following figure.
 [image: This figure is a graph. It is a frustum of a cone above the x-axis with the y-axis in the center. The radius of the bottom of the frustum is rsub1 and the radius of the top is rsub2. The length of the side is labeled “l”.]Figure 6. A frustum of a cone can approximate a small part of surface area. We know the lateral surface area of a cone is given by:
 [image: \text{Lateral Surface Area}=\pi rs,]
 where [image: r] is the radius of the base of the cone and [image: s] is the slant height (see the following figure).
 [image: This figure is a cone. The cone has radius r, height h, and length of side s.]Figure 7. The lateral surface area of the cone is given by [image: \pi rs.] Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface area of the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (see the following figure).
 [image: This figure is a graph. It is a frustum of a cone. The radius of the bottom of the frustum is rsub1 and the radius of the top is rsub2. The length of the side is labeled “l”. There is also the top of a cone with broken lines above the frustum. It has length of side s.]Figure 8. Calculating the lateral surface area of a frustum of a cone. The cross-sections of the small cone and the large cone are similar triangles, so we see that:
 [image: \frac{{r}_{2}}{{r}_{1}}=\frac{s-l}{s}.]
 Solving for [image: s,] we get:
 [image: \begin{array}{ccc}\hfill \frac{{r}_{2}}{{r}_{1}}& =\hfill & \frac{s-l}{s}\hfill \\ \hfill {r}_{2}s& =\hfill & {r}_{1}(s-l)\hfill \\ \hfill {r}_{2}s& =\hfill & {r}_{1}s-{r}_{1}l\hfill \\ \hfill {r}_{1}l& =\hfill & {r}_{1}s-{r}_{2}s\hfill \\ \hfill {r}_{1}l& =\hfill & ({r}_{1}-{r}_{2})s\hfill \\ \hfill \frac{{r}_{1}l}{{r}_{1}-{r}_{2}}& =\hfill & s.\hfill \end{array}]
 Then the lateral surface area (SA) of the frustum is:
 [image: \begin{array}{cc}\hfill S& =\text{(Lateral SA of large cone)}-\text{(Lateral SA of small cone)}\hfill \\ & =\pi {r}_{1}s-\pi {r}_{2}(s-l)\hfill \\ & =\pi {r}_{1}(\frac{{r}_{1}l}{{r}_{1}-{r}_{2}})-\pi {r}_{2}(\frac{{r}_{1}l}{{r}_{1}-{r}_{2}}-l)\hfill \\ & =\frac{\pi {r}_{1}^{2}l}{{r}_{1}-{r}_{2}}-\frac{\pi {r}_{1}{r}_{2}l}{{r}_{1}-{r}_{2}}+\pi {r}_{2}l\hfill \\ & =\frac{\pi {r}_{1}^{2}l}{{r}_{1}-{r}_{2}}-\frac{\pi {r}_{1}{r}_{2}l}{{r}_{1}-{r}_{2}}+\frac{\pi {r}_{2}l({r}_{1}-{r}_{2})}{{r}_{1}-{r}_{2}}\hfill \\ & =\frac{\pi {r}_{1}^{2}l}{{r}_{1}-{r}_{2}}-\frac{\pi {r}_{1}{r}_{2}l}{{r}_{1}-{r}_{2}}+\frac{\pi {r}_{1}{r}_{2}l}{{r}_{1}-{r}_{2}}-\frac{\pi {r}_{2}{}^{2}l}{{r}_{1}-{r}_{2}}\hfill \\ & =\frac{\pi ({r}_{1}^{2}-{r}_{2}^{2})l}{{r}_{1}-{r}_{2}}=\frac{\pi ({r}_{1}-{r}_{2})({r}_{1}+{r}_{2})l}{{r}_{1}-{r}_{2}}=\pi ({r}_{1}+{r}_{2})l.\hfill \end{array}]
 Let’s now use this formula to calculate the surface area of each of the bands formed by revolving the line segments around the [image: x\text{-axis}\text{.}] A representative band is shown in the following figure.
 [image: This figure has two graphics. The first is a curve in the first quadrant. Around the x-axis is a frustum of a cone. The edge of the frustum is against the curve. The edge begins at f(xsubi-1) and ends at f(xsubi). The second image is the same curve with the same frustum. the height of the frustum is delta x and the curve is labeled y=f(x).]Figure 9. A representative band used for determining surface area. Note that the slant height of this frustum is just the length of the line segment used to generate it. So, applying the surface area formula, we have:
 [image: \begin{array}{cc}\hfill S& =\pi ({r}_{1}+{r}_{2})l\hfill \\ & =\pi (f({x}_{i-1})+f({x}_{i}))\sqrt{\text{Δ}{x}^{2}+{(\text{Δ}{y}_{i})}^{2}}\hfill \\ & =\pi (f({x}_{i-1})+f({x}_{i}))\text{Δ}x\sqrt{1+{(\frac{\text{Δ}{y}_{i}}{\text{Δ}x})}^{2}}.\hfill \end{array}]
 Now, as we did in the development of the arc length formula, we apply the Mean Value Theorem to select [image: {x}_{i}^{*}\in \left[{x}_{i-1},{x}_{i}\right]] such that [image: {f}^{\prime }({x}_{i}^{*})=\frac{(\text{Δ}{y}_{i})}{\text{Δ}x}.] This gives us:
 [image: S=\pi (f({x}_{i-1})+f({x}_{i}))\text{Δ}x\sqrt{1+{({f}^{\prime }({x}_{i}^{*}))}^{2}}.]
 Furthermore, since [image: f(x)] is continuous, by the Intermediate Value Theorem, there is a point [image: {x}_{i}^{**}\in \left[{x}_{i-1},{x}_{i}\right]] such that [image: f({x}_{i}^{**})=\left(\frac{1}{2}\right)\left[f({x}_{i-1})+f({x}_{i})\right],] so we get:
 [image: S=2\pi f({x}_{i}^{**})\text{Δ}x\sqrt{1+{({f}^{\prime }({x}_{i}^{*}))}^{2}}.]
 Then the approximate surface area of the whole surface of revolution is given by:
 [image: \text{Surface Area}\approx \displaystyle\sum_{i=1}^{n} 2\pi f({x}_{i}^{**})\text{Δ}x\sqrt{1+{({f}^{\prime }({x}_{i}^{*}))}^{2}}.]
 This almost looks like a Riemann sum, except we have functions evaluated at two different points, [image: {x}_{i}^{*}] and [image: {x}_{i}^{**},] over the interval [image: \left[{x}_{i-1},{x}_{i}\right].]
 Although we do not examine the details here, it turns out that because [image: f(x)] is smooth, if we let [image: n\to \infty ,] the limit works the same as a Riemann sum even with the two different evaluation points. This makes sense intuitively.
 Both [image: {x}_{i}^{*}] and [image: {x}_{i}^{**}] are in the interval [image: \left[{x}_{i-1},{x}_{i}\right],] so it makes sense that as [image: n\to \infty ,] both [image: {x}_{i}^{*}] and [image: {x}_{i}^{**}] approach [image: x.] Those of you who are interested in the details should consult an advanced calculus text.
 Taking the limit as [image: n\to \infty ,] we get:
 [image: \text{Surface Area}=\underset{n\to \infty }{\text{lim}} \displaystyle\sum_{i=1}^{n} 2\pi f({x}_{i}^{**})\text{Δ}x\sqrt{1+{({f}^{\prime }({x}_{i}^{*}))}^{2}}={\displaystyle\int }_{a}^{b}(2\pi f(x)\sqrt{1+{({f}^{\prime }(x))}^{2}})dx.]
  As with arc length, we can conduct a similar development for functions of [image: y] to get a formula for the surface area of surfaces of revolution about the [image: y\text{-axis}.] These findings are summarized in the following theorem.
 surface area of a surface of revolution
 Let [image: f(x)] be a nonnegative smooth function over the interval [image: \left[a,b\right].] Then, the surface area of the surface of revolution formed by revolving the graph of [image: f(x)] around the [image: x]-axis is given by:
 [image: \text{Surface Area}={\displaystyle\int }_{a}^{b}(2\pi f(x)\sqrt{1+{({f}^{\prime }(x))}^{2}})dx.]
  
 Similarly, let [image: g(y)] be a nonnegative smooth function over the interval [image: \left[c,d\right].] Then, the surface area of the surface of revolution formed by revolving the graph of [image: g(y)] around the [image: y\text{-axis}] is given by:
 [image: \text{Surface Area}={\displaystyle\int }_{c}^{d}(2\pi g(y)\sqrt{1+{({g}^{\prime }(y))}^{2}})dy.]
  Let [image: f(x)=\sqrt{x}] over the interval [image: \left[1,4\right].] Find the surface area of the surface generated by revolving the graph of [image: f(x)] around the [image: x\text{-axis}.] Round the answer to three decimal places.
 Show Solution 
 The graph of [image: f(x)] and the surface of rotation are shown in the following figure.
 [image: This figure has two graphs. The first is the curve f(x)=squareroot(x). The curve is increasing and begins at the origin. Also on the graph are the vertical lines x=1 and x=4. The second graph is the same function as the first graph. The region between f(x) and the x-axis, bounded by x=1 and x=4 has been rotated around the x-axis to form a surface.]Figure 10. (a) The graph of [image: f(x).] (b) The surface of revolution. We have [image: f(x)=\sqrt{x}.] Then, [image: {f}^{\prime }(x)=\frac{1}{(2\sqrt{x})}] and [image: {({f}^{\prime }(x))}^{2}=\frac{1}{(4x)}.] Then,
 [image: \begin{array}{cc}\hfill \text{Surface Area}& ={\displaystyle\int }_{a}^{b}(2\pi f(x)\sqrt{1+{({f}^{\prime }(x))}^{2}})dx\hfill \\ & ={\displaystyle\int }_{1}^{4}(2\pi \sqrt{x}\sqrt{1+\frac{1}{4x}})dx\hfill \\ & ={\displaystyle\int }_{1}^{4}(2\pi \sqrt{x+\frac{1}{4}})dx.\hfill \end{array}]
 Let [image: u=x+\frac{1}{4}.] Then, [image: du=dx.] When [image: x=1,] [image: u=\frac{5}{4},] and when [image: x=4,] [image: u=\frac{17}{4}.] This gives us:
 [image: \begin{array}{cc}\hfill {\displaystyle\int }_{0}^{1}(2\pi \sqrt{x+\frac{1}{4}})dx& ={\displaystyle\int }_{5\text{/}4}^{17\text{/}4}2\pi \sqrt{u}du\hfill \\ & =2\pi {\left[\frac{2}{3}{u}^{3\text{/}2}\right]|}_{5\text{/}4}^{17\text{/}4}=\frac{\pi }{6}\left[17\sqrt{17}-5\sqrt{5}\right]\approx 30.846.\hfill \end{array}]
  Let [image: f(x)=y=\sqrt[3]{3x}.] Consider the portion of the curve where [image: 0\le y\le 2.] Find the surface area of the surface generated by revolving the graph of [image: f(x)] around the [image: y\text{-axis}.]
 Show Solution 
 Notice that we are revolving the curve around the [image: y\text{-axis},] and the interval is in terms of [image: y,] so we want to rewrite the function as a function of [image: y]. We get [image: x=g(y)=\left(\frac{1}{3}\right){y}^{3}.] The graph of [image: g(y)] and the surface of rotation are shown in the following figure.
 [image: This figure has two graphs. The first is the curve g(y)=1/3y^3. The curve is increasing and begins at the origin. Also on the graph are the horizontal lines y=0 and y=2. The second graph is the same function as the first graph. The region between g(y) and the y-axis, bounded by y=0 and y=2 has been rotated around the y-axis to form a surface.]Figure 11. (a) The graph of [image: g(y).] (b) The surface of revolution. We have [image: g(y)=\left(\frac{1}{3}\right){y}^{3},] so [image: {g}^{\prime }(y)={y}^{2}] and [image: {({g}^{\prime }(y))}^{2}={y}^{4}.] Then:
 [image: \begin{array}{cc}\hfill \text{Surface Area}& ={\displaystyle\int }_{c}^{d}(2\pi g(y)\sqrt{1+{({g}^{\prime }(y))}^{2}})dy\hfill \\ & ={\displaystyle\int }_{0}^{2}(2\pi (\frac{1}{3}{y}^{3})\sqrt{1+{y}^{4}})dy\hfill \\ & =\frac{2\pi }{3}{\displaystyle\int }_{0}^{2}({y}^{3}\sqrt{1+{y}^{4}})dy.\hfill \end{array}]
 Let [image: u={y}^{4}+1.] Then [image: du=4{y}^{3}dy.] When [image: y=0,] [image: u=1,] and when [image: y=2,] [image: u=17.] Then:
 [image: \begin{array}{cc}\hfill \frac{2\pi }{3}{\displaystyle\int }_{0}^{2}({y}^{3}\sqrt{1+{y}^{4}})dy& =\frac{2\pi }{3}{\displaystyle\int }_{1}^{17}\frac{1}{4}\sqrt{u}du\hfill \\ & =\frac{\pi }{6}{\left[\frac{2}{3}{u}^{3\text{/}2}\right]|}_{1}^{17}=\frac{\pi }{9}\left[{(17)}^{3\text{/}2}-1\right]\approx 24.118.\hfill \end{array}]
  [ohm_question hide_question_numbers=1]15198[/ohm_question]
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		Arc Length of a Curve and Surface Area: Apply It

								

	
				 	Calculate the length of a curve described by y=f(x) from one point to another
 	Find the length of a curve defined by x=g(y) from one point to another
 	Calculate the total surface area of a solid formed by rotating a curve around an axis
 
  Calculating Arc Lengths and Surface Area in Various Scenarios
 In this apply-it task, we’ll explore how to calculate the arc lengths of different curves as well as surface area. We’ll work with functions expressed in terms of [image: x] and [image: y], applying the formulas we’ve learned to determine the length of curve segments. Remember, the key to solving these problems is setting up the correct integral based on how the function is expressed and the given interval.
 [ohm_question hide_question_numbers=1]288257[/ohm_question]
  [ohm_question hide_question_numbers=1]288258[/ohm_question]
  [ohm_question hide_question_numbers=1]288259[/ohm_question]
  [ohm_question hide_question_numbers=1]288260[/ohm_question]
  [ohm_question hide_question_numbers=1]220704[/ohm_question]
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		Physical Applications of Integration: Background You'll Need 1

								

	
				 	Understand and use direct variation to solve problems
 
  Direct variation describes a simple relationship between two variables where one variable is a constant multiple of the other. This concept is crucial in various physical applications, such as calculating mass from density functions and determining work done by variable forces.
 Write Direct Variation Equations
 A used-car company has just offered their best candidate, Nicole, a position in sales. The position offers 16% commission on her sales. Her earnings depend on the amount of her sales. For instance if she sells a vehicle for $4,600, she will earn $736. She wants to evaluate the offer, but she is not sure how. 
 In the example above, Nicole’s earnings can be found by multiplying her sales by her commission. The formula [image: e = 0.16s] tells us her earnings, [image: e], come from the product of 0.16, her commission, and the sale price of the vehicle, [image: s]. If we create a table, we observe that as the sales price increases, the earnings increase as well, which should be intuitive.
 	[image: s] (Sales Prices) 	[image: e = 0.16s] 	Interpretation 
  	$4,600 	[image: \begin{array}{rcl} e & = & 0.16(4,600) \\ & = & 736 \end{array}] 	A sale of a $4,600 vehicle results in $736 earnings. 
 	$9,200 	[image: \begin{array}{rcl} e & = & 0.16(9,200) \\ & = & 1,472 \end{array}] 	A sale of a $9,200 vehicle results in $1472 earnings. 
 	$18,400 	[image: \begin{array}{rcl} e & = & 0.16(18,400) \\ & = & 2,944 \end{array}] 	A sale of a $18,400 vehicle results in $2944 earnings. 
  
 Notice that earnings are a multiple of sales. As sales increase, earnings increase in a predictable way. Double the sales of the vehicle from $4,600 to $9,200, and we double the earnings from $736 to $1,472. As the input increases, the output increases as a multiple of the input. A relationship in which one quantity is a constant multiplied by another quantity is called direct variation. Each variable in this type of relationship varies directly with the other.
 The graph below represents the data for Nicole’s potential earnings. We say that earnings vary directly with the sales price of the car. The formula [image: y=k{x}^{n}] is used for direct variation. The value [image: k] is a nonzero constant greater than zero and is called the constant of variation. In this case, [image: k=0.16] and [image: n=1].
 [image: Graph of y=(0.16)x where the horizontal axis is labeled,]
 direct variation
 If [image: x] and [image: y] are related by an equation of the form
 [image: y=k{x}^{n}]
 then we say that the relationship is direct variation and [image: y] varies directly with the [image: n]th power of [image: x]. 
 In direct variation relationships, there is a nonzero constant ratio [image: k=\dfrac{y}{{x}^{n}}], where [image: k] is called the constant of variation, which help defines the relationship between the variables.
  How To: Given a description of a direct variation problem, solve for an unknown
 
 	Identify the input, [image: x], and the output, [image: y].
 	Determine the constant of variation. You may need to divide [image: y] by the specified power of [image: x] to determine the constant of variation.
 	Use the constant of variation to write an equation for the relationship.
 	Substitute known values into the equation to find the unknown.
 
  The quantity [image: y] varies directly with the cube of [image: x]. If [image: y=25] when [image: x=2], write the equation that represents this relationship. Then, find [image: y] when [image: x] is 6.
 Show Solution 
 The general formula for direct variation with a cube is [image: y=k{x}^{3}]. The constant can be found by dividing [image: y] by the cube of [image: x].
 [image: \begin{align} k&=\dfrac{y}{{x}^{3}} \\[1mm] &=\dfrac{25}{{2}^{3}}\\[1mm] &=\dfrac{25}{8}\end{align}]
 Now use the constant to write an equation that represents this relationship.
 [image: y=\dfrac{25}{8}{x}^{3}]
 Substitute [image: x=6] and solve for [image: y].
 [image: \begin{align}y&=\dfrac{25}{8}{\left(6\right)}^{3} \\[1mm] &=675\hfill \end{align}]
   The quantity [image: y] varies directly with the square of [image: y]. If [image: y=24] when [image: x=3], find [image: y] when [image: x] is 4.
 Show Solution 
 [image: \dfrac{128}{3}]
   [ohm_question hide_question_numbers=1]288442[/ohm_question]
  Watch this video to see a quick lesson about direct variation. You will see more worked examples.
 //plugin.3playmedia.com/show?mf=6454977&p3sdk_version=1.10.1&p=20361&pt=375&video_id=plFOq4JaEyI&video_target=tpm-plugin-ncnoy4d6-plFOq4JaEyI
 You can view the transcript for “Direct Variation Applications” here (opens in new window).
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		Physical Applications of Integration: Background You'll Need 2

								

	
				 	Use geometric formulas to find the volume, area, and perimeter of shapes in real-life problems
 
  Understanding how to apply geometric formulas is essential for solving practical problems you will encounter in calculus and everyday life. These skills are particularly useful in various physical applications such as determining the mass of objects, calculating work done by variable forces, and finding the hydrostatic force against submerged plates.
 Appling Geometric Formulas to Solve for Volume, Area, and Perimeter
 To effectively apply these geometric formulas, it’s essential to understand the components of each formula and how they relate to the shapes involved. By mastering these basic principles, you will be better equipped to solve a variety of practical problems in both academic and real-world contexts.
 essential geometric formulas
 To solve practical problems involving geometry, remember the key formulas:
 	Volume: 	Rectangular Prism: [image: V = l \times w \times h] 
 	Cylinder:  [image: V = \pi r^2 h] 
 	Sphere: V = [image: \frac{4}{3} \pi r^3] 
 
 
 	Area: 	Rectangle: [image: A = l \times w]
 	Triangle: [image: A = \frac{1}{2} b \times h] 
 	Circle: [image: A = \pi r^2]
 
 
 	Perimeter: 	Rectangle: [image: P = 2l + 2w]
 	Triangle: [image: P = a + b + c]
 	Circle (Circumference): [image: C = 2\pi r]
 
 
 
 Here, [image: l] stands for length, [image: w] for width, [image: h] for height, [image: r] for radius, [image: b] for base (in area of a triangle formula), [image: a], [image: b], and [image: c] for the sides of a triangle (in perimeter of a triangle formula), and [image: \pi] is the constant Pi (approximately [image: 3.14159]).
  
  How to: Solve Volume, Area, and Perimeter Problems 	Identify the shape: Determine whether you are working with a rectangle, triangle, circle, cylinder, etc.
 	Choose the appropriate formula: Select the formula that corresponds to the shape and the measurement you need to find (volume, area, or perimeter).
 	Substitute the given values: Plug in the values provided in the problem into the formula.
 	Solve the equation: Perform the calculations to find the answer.
 
  When working with geometry formulas, we recommend using the following problem-solving strategy when solving.
 Problem-Solving Strategy for Geometry Applications
 	Read the problem and make sure you understand all the words and ideas. Draw a figure and label it with the given information.
 	Identify what you are looking for.
 	Name what you are looking for and choose a variable to represent it.
 	Translate into an equation by writing the appropriate formula or model for the situation. Substitute in the given information.
 	Solve the equation using good algebra techniques.
 	Check the answer in the problem and make sure it makes sense.
 	Answer the question with a complete sentence.
 
  The length of a rectangular playground is [image: 32] meters and the width is [image: 20] meters. Find the
 	Perimeter of the rectangular playground
 	Area of the rectangular playground
 
 Show Solution 		Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A rectangle with the top and bottom labeled 32 m and the sides labeled 20 m] 
 	Step 2. Identify what you are looking for. 	the perimeter of a rectangle 
 	Step 3. Name. Choose a variable to represent it. 	Let [image: P] = the perimeter 
 	Step 4. Translate. Write the appropriate formula. Substitute. 	[image: The formula P = 2L + 2W. The formula is then written again with 32 substituted in for L and 20 substituted in for W] 
 	Step 5. Solve the equation. 	[image: P=64+40] [image: P=104] 
 	Step 6. Check. 	[image: p\stackrel{?}{=}104]
 [image: 20+32+20+32\stackrel{?}{=}104]
 [image: 104=104\checkmark]  
 	Step 7. Answer the question. 	The perimeter of the rectangle is [image: 104] meters. 
  
 
 		Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A rectangle with the top and bottom labeled 32 m and the sides labeled 20 m] 
 	Step 2. Identify what you are looking for. 	the area of a rectangle 
 	Step 3. Name. Choose a variable to represent it. 	Let A = the area 
 	Step 4. Translate. Write the appropriate formula. Substitute. 	[image: The formula A = L times W. The formula is then written again with 32 substituted in for L and 20 substituted in for W] 
 	Step 5. Solve the equation. 	[image: A=640] 
 	Step 6. Check. 	[image: A\stackrel{?}{=}640]
 [image: 32\cdot 20\stackrel{?}{=}640]
 [image: 640=640\checkmark]  
 	Step 7. Answer the question. 	The area of the rectangular playground
 is [image: 640] square meters. 
  
 
 
   [ohm_question hide_question_numbers=1]288443[/ohm_question]
  The perimeter of a triangular garden is [image: 24] feet. The lengths of two sides are [image: 4] feet and [image: 9] feet. How long is the third side?
 Show Solution 
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: An acute triangle with one side labeled 4 feet, the second side labeled 9 feet, and the third side labeled c. Beneath the triangle, it says P = 24 feet.] 
 	Step 2. Identify what you are looking for. 	length of the third side of a triangle 
 	Step 3. Name. Choose a variable to represent it. 	Let c = the third side 
 	Step 4.Translate.
 Write the appropriate formula.
 Substitute in the given information.
  	[image: The equation P = a + b + c. The equation is written again with 24 substituted in for P, 4 substituted in for a, and 9 substituted in for b.] 
 	Step 5. Solve the equation. 	[image: 24=13+c]
 [image: 11=c]  
 	Step 6. Check.
  	[image: P=a+b+c]
 [image: 24\stackrel{?}{=}4+9+11]
 [image: 24=24\checkmark]  
 	Step 7. Answer the question. 	The third side is [image: 11] feet long. 
  
   A circular sandbox has a radius of [image: 2.5] feet. Find the
 	Circumference of the sandbox
 	Area of the sandbox
 
 Show Solution 	1. Circumference of the sandbox 
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A circle with radius labeled as 2.5 feet] 
 	Step 2. Identify what you are looking for. 	the circumference of the circle 
 	Step 3. Name. Choose a variable to represent it. 	Let c = circumference of the circle 
 	Step 4. Translate. Write the appropriate formula Substitute 	[image: C=2\pi r] [image: C=2\pi \left(2.5\right)] 
 	Step 5. Solve the equation. 	[image: C\approx 2\left(3.14\right)\left(2.5\right)] [image: C\approx 15\text{ft}] 
 	Step 6. Check. Does this answer make sense? 	Yes. If we draw a square around the circle, its sides would be [image: 5] ft (twice the radius), so its perimeter would be [image: 20] ft. This is slightly more than the circle’s circumference, [image: 15.7] ft. [image: A circle in a red square. The circle's radius is shown as 2.5 feet and the sides of the square are each labeled as 5 feet.] 
 	Step 7. Answer the question. 	The circumference of the sandbox is [image: 15.7] feet. 
  
 	2. Area of the sandbox 
 	Step 1. Read the problem. Draw the figure and label it with the given information. 	[image: A circle with radius labeled as 2.5 feet] 
 	Step 2. Identify what you are looking for. 	the area of the circle 
 	Step 3. Name. Choose a variable to represent it. 	Let A = the area of the circle 
 	Step 4. Translate. Write the appropriate formula Substitute 	[image: A=\pi {r}^{2}] [image: A=\pi{\left(2.5\right)}^{2}] 
 	Step 5. Solve the equation. 	[image: A\approx \left(3.14\right){\left(2.5\right)}^{2}] [image: A\approx 19.625\text{ sq. ft}] 
 	Step 6. Check. Does this answer make sense? 	Yes. If we draw a square around the circle, its sides would be [image: 5] ft, as shown in part 1. So the area of the square would be [image: 25] sq. ft. This is slightly more than the circle’s area, [image: 19.625] sq. ft. 
 	Step 7. Answer the question. 	The area of the circle is [image: 19.625] square feet. 
  
   A small globe has a radius of [image: 6] centimeters. Find the volume of the globe. 
 [image: Image of globe]
 Show Solution 
 We will use the formula for calculating the volume of a sphere. In this case, [image: r=6].
 So, we have:
 [image: \begin{array}{l}V=\frac{4}{3}\pi r^3\\V=\frac{4}{3}\pi (6)^3\\V=\frac{4}{3}\pi (216)\\V=\frac{864}{3}\pi \\V=288\pi\\\\V=904.32 \text{ centimeters}^3\end{array}]
   [ohm_question hide_question_numbers=1]221901[/ohm_question]
  A rectangular fish tank has a length of [image: 14] inches, a height of [image: 17] inches, and a width of [image: 9] inches. Find its volume.
 Show Solution 
 We will use the formula for calculating the volume of a rectangular solid. In this case, [image: l=14], [image: h=17], and [image: w=9].
 So, we have:
 [image: \begin{array}{l}V=lwh\\V=(14)(9)(17)\\V=2142 \text{ inches}^3\end{array}]
   [ohm_question hide_question_numbers=1]221902[/ohm_question]
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				 	Recognize the fundamental concepts of reflection, rotation, and translation symmetry
 
  Symmetry
 Symmetry, in its simplest form, refers to a sense of harmonious and aesthetically pleasing proportionality and balance. It’s a principle that is deeply rooted in nature, mathematics, art, design, and architecture. The basic idea behind symmetry is that if you were to draw a line through an object, shape, or design, one side would be a mirror image of the other.
 [image: Two drawings of a tree are show, one with a line creating a symmetrical image and another with a line created an asymmetrical iamge]
  
 The line or plane that divides the shape, object or design into two equal and mirrored halves is called the axis of symmetry. This axis can be vertical, horizontal, or diagonal, depending on the orientation of the symmetrical shape.
 In visual arts, symmetry is used to create a sense of balance and harmony within a composition. Symmetrical compositions can be calming and stable, often conveying a sense of order and perfection.
 However, perfectly symmetrical compositions can also risk being seen as static or boring, which is why artists often balance symmetry with elements of asymmetry to create interest and dynamism. Breaking symmetry, while maintaining balance, can create visual interest and help guide the viewer’s eye to a focal point. This is often used in visual arts and design to create tension, emphasize certain elements, or convey movement and change.
 There are three primary types of symmetry – reflection, rotation, and translation symmetry – which are often used in different combinations to create aesthetically pleasing and balanced designs.
 reflection symmetry
 Reflection symmetry, also known as mirror or bilateral symmetry, occurs when one half of an image, shape or design is the mirror image of the other half. That is, one side reflects the other.
  
 [image: a set of four different shapes, three with reflection symmetry and one that is asymmetrical]Figures with the axes of symmetry drawn in. The figure with no axes is asymmetric.

  Reflection symmetry is common in architecture and design, as it imparts a sense of balance and harmony. Artists may also use it to create emphasis on a particular aspect of their work. For instance, think of a butterfly. The right wing is a mirror image of the left wing, hence it has reflection symmetry. In architecture, many buildings and structures – from the Taj Mahal to modern skyscrapers – feature reflection symmetry.
 rotation symmetry
 Rotation symmetry, or radial symmetry, happens when a design or image can be rotated around a central point and still appear the same. An object’s degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.
 
  [image: A triangular sign with three degrees of rotation symmetry]An example of three degrees of rotation symmetry. [image: A drawing with four degrees of rotational symmetry]An example of four degrees of rotation symmetry. [image: A drawing with five degrees of rotation symmetry]An example of five degrees of rotation symmetry. [image: A drawing with six degrees of rotational symmetry]An example of six degrees of rotation symmetry.  This type of symmetry is common in nature, such as in flowers and snowflakes, and is often used in design and art to create patterns that convey movement and dynamism.
 A designer is creating a circular tile pattern with sixfold rotation symmetry for a floor. If the radius of the circle is [image: 1.5] meters, calculate the area of one segment (slice) of the pattern.
 
 Show Answer The area of the whole circle is:
 [image: \begin{array}{rcl} A & = & \pi \times r^2 \\ & = & \pi \times 1.5^2 \\ & = & 2.25\pi \text{ square meters} \end{array}]
 Since the pattern has six segments, the area of one segment is:
 [image: \frac{2.25\pi}{6}=0.375\pi\approx 1.17 \text{ square meters}]
   translation symmetry
 Translation symmetry, also known as slide symmetry, involves an image or design being repeated in a straight line. It’s like moving, or translating, an object without changing its orientation.
  
 [image: Two identical shapes separated along a diagonal line]

  This type of symmetry is commonly used in wallpaper designs, textiles, and other works of art that involve repeated patterns.
 A wallpaper design features a pattern that repeats every [image: 0.4] meters horizontally and every [image: 0.5] meters vertically. Calculate the total number of patterns in a wall that is [image: 3] meters high and [image: 2.8] meters wide.
 
 Show Answer The number of horizontal repeats: 
 [image: \frac{2.8}{0.4}=7]
 The number of vertical repeats: 
 [image: \frac{3}{0.5}=6]
 Total number of patterns:
 [image: 7 \times 6 = 42]
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				 	Calculate the mass of linear and circular objects using their density distributions
 	Compute the work required in various situations, such as pumping fluids or moving objects along a path
 	Determine the force exerted by water on a vertical surface underwater
 
  Mass and Density
 Mass–Density Formula of a One-Dimensional Object
 We can use integration to calculate the mass of a thin rod based on a density function. Let’s consider a rod oriented along the [image: x]-axis from [image: x=a] to [image: x=b] (Figure 1). 
 [image: This figure has the x and y axes. On the x-axis is a cylinder, beginning at x=a and ending at x=b.]Figure 1. We can calculate the mass of a thin rod oriented along the [image: x\text{-axis}] by integrating its density function. Note that although we depict the rod with some thickness in the figures, for mathematical purposes we assume the rod is thin enough to be treated as a one-dimensional object.
  If the rod has constant density [image: \rho ,] given in terms of mass per unit length, then the mass of the rod is just the product of the density and the length of the rod: [image: (b-a)\rho .]
 If the density varies along the rod, we use a linear density function [image: \rho (x)]. Let [image: \rho (x)] be an integrable linear density function. Partition the interval [image: [a,b]] into [image: n] segments, each of width Δx.
 [image: This figure has the x and y axes. On the x-axis is a cylinder, beginning at x=a and ending at x=b. The cylinder has been divided into segments. One segment in the middle begins at xsub(i-1) and ends at xsubi.]Figure 2. A representative segment of the rod. The mass of a segment [image: [x_{i−1},x_{i}]] is:
 [image: {m}_{i}=\rho ({x}_{i}^{*})\text{Δ}x.]
 Summing these segments gives an approximation for the total mass:
 [image: m=\displaystyle\sum_{i=1}^{n} {m}_{i}\approx \displaystyle\sum_{i=1}^{n} \rho ({x}_{i}^{*})\text{Δ}x.]
 This is a Riemann sum. Taking the limit as [image: n\to \infty ,] we get an expression for the exact mass of the rod:
 [image: m=\underset{n\to \infty }{\text{lim}}\displaystyle\sum_{i=1}^{n} \rho ({x}_{i}^{*})\text{Δ}x={\displaystyle\int }_{a}^{b}\rho (x)dx.]
 We state this result in the following theorem.
 mass–density formula of a one-dimensional object
 Given a thin rod oriented along the [image: x\text{-axis}] over the interval [image: \left[a,b\right],] let [image: \rho (x)] denote a linear density function giving the density of the rod at a point [image: x] in the interval. Then the mass of the rod is given by
 [image: m={\displaystyle\int }_{a}^{b}\rho (x)dx]
  Consider a thin rod oriented on the [image: x]-axis over the interval [image: \left[\frac{\pi}{2},\pi \right].] If the density of the rod is given by [image: \rho (x)= \sin x,] what is the mass of the rod?
 Show Solution 
 Applying the mass-density formula directly, we have
 [image: m={\displaystyle\int }_{a}^{b}\rho (x)dx={\displaystyle\int }_{\pi \text{/}2}^{\pi } \sin xdx={\text{−} \cos x|}_{\pi \text{/}2}^{\pi }=1.]
 
  [ohm_question hide_question_numbers=1]158684[/ohm_question]
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				Mass and Density Cont.
 Mass–Density Formula of a Two-Dimensional Disk
 We now extend this concept to find the mass of a two-dimensional disk of radius [image: r.] As with the rod we looked at in the one-dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a two-dimensional object.
 We assume the density is given in terms of mass per unit area (called area density), and further assume the density varies only along the disk’s radius (called radial density). We orient the disk in the [image: xy]-plane, with the center at the origin. Then, the density of the disk can be treated as a function of [image: x,] denoted [image: \rho (x).] We assume [image: \rho (x)] is integrable.
 Just as we did with the one-dimensional rod, we need to partition the interval. Partition the interval [image: [0,r]] into [image: n] segments, each of width [image: Δx].
 [image: This figure has two images. The first is labeled “a” and is a circle with radius r. The center of the circle is labeled 0. The circle also has the positive x-axis beginning at 0, extending through the circle. The second figure is labeled “b”. It has two concentric circles with center at 0 and the x-axis extending out from 0. The concentric circles form a washer. The width of the washer is from xsub(i-1) to xsubi and is labeled delta x.]Figure 3. (a) A thin disk in the xy-plane. (b) A representative washer. We now approximate the density and area of the washer to calculate an approximate mass, [image: {m}_{i}.] Note that the area of the washer is given by
 [image: \begin{array}{cc}\hfill {A}_{i}& =\pi {({x}_{i})}^{2}-\pi {({x}_{i-1})}^{2}\hfill \\ & =\pi \left[{x}_{i}^{2}-{x}_{i-1}^{2}\right]\hfill \\ & =\pi ({x}_{i}+{x}_{i-1})({x}_{i}-{x}_{i-1})\hfill \\ & =\pi ({x}_{i}+{x}_{i-1})\text{Δ}x.\hfill \end{array}]
 You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we use [image: {x}_{i}^{*}\approx ({x}_{i}+{x}_{i-1})\text{/}2] to approximate the average radius of the washer. We obtain
 [image: {A}_{i}=\pi ({x}_{i}+{x}_{i-1})\text{Δ}x\approx 2\pi {x}_{i}^{*}\text{Δ}x.]
 Using [image: \rho ({x}_{i}^{*})] to approximate the density of the washer, we approximate the mass of the washer by
 [image: {m}_{i}\approx 2\pi {x}_{i}^{*}\rho ({x}_{i}^{*})\text{Δ}x.]
 Adding up the masses of the washers, we see the mass [image: m] of the entire disk is approximated by
 [image: m=\displaystyle\sum_{i=1}^{n} {m}_{i}\approx \displaystyle\sum_{i=1}^{n} 2\pi {x}_{i}^{*}\rho ({x}_{i}^{*})\text{Δ}x.]
 We again recognize this as a Riemann sum, and take the limit as [image: n\to \infty .] This gives us
 [image: m=\underset{n\to \infty }{\text{lim}} \displaystyle\sum_{i=1}^{n} 2\pi {x}_{i}^{*}\rho ({x}_{i}^{*})\text{Δ}x={\displaystyle\int }_{0}^{r}2\pi x\rho (x)dx.]
 We summarize these findings in the following theorem.
 mass–density formula of a two-dimensional disk
 Let [image: \rho (x)] be an integrable function representing the radial density of a disk of radius [image: r.] Then the mass of the disk is given by
 [image: m={\displaystyle\int }_{0}^{r}2\pi x\rho (x)dx]
  Let [image: \rho (x)=\sqrt{x}] represent the radial density of a disk. Calculate the mass of a disk of radius [image: 4].
 Show Solution Applying the formula, we find
 [image: \begin{array}{cc}\hfill m& ={\displaystyle\int }_{0}^{r}2\pi x\rho (x)dx\hfill \\ & ={\displaystyle\int }_{0}^{4}2\pi x\sqrt{x}dx=2\pi {\displaystyle\int }_{0}^{4}{x}^{3\text{/}2}dx\hfill \\ & =2\pi {\frac{2}{5}{x}^{5\text{/}2}|}_{0}^{4}=\frac{4\pi }{5}\left[32\right]=\frac{128\pi }{5}.\hfill \end{array}]
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				Work Done by a Force
 In physics, work is related to force, which is often intuitively defined as a push or pull on an object. When a force moves an object, we say the force does work on the object.
 In other words, work can be thought of as the amount of energy it takes to move an object.
  The unit of force is the newton ([image: N]), and work is measured in joules ([image: J]).
 When the force is constant, calculating work is straightforward.. According to physics, when we have a constant force, work can be expressed as the product of force and distance. It is rare, however, for a force to be constant. 
 However, when the force varies, we need to partition the interval [image: [a,b]] into [image: n] segments. For a variable force [image: F(x)], the work done over each subinterval can be approximated as:
 [image: {W}_{i}\approx F({x}_{i}^{*})({x}_{i}-{x}_{i-1})=F({x}_{i}^{*})\text{Δ}x.]
  
 Summing the work done over all segments gives:
 [image: W=\displaystyle\sum_{i=1}^{n} {W}_{i}\approx \displaystyle\sum_{i=1}^{n} F({x}_{i}^{*})\text{Δ}x.]
  
 Taking the limit as [image: n\to \infty], we get the exact value for work:
 [image: W=\underset{n\to \infty }{\text{lim}} \displaystyle\sum_{i=1}^{n} F({x}_{i}^{*})\text{Δ}x={\displaystyle\int }_{a}^{b}F(x)dx.]
  
 This integral provides the exact value of the work done by a varying force.
 work done by a variable force
 If a variable force [image: F(x)] moves an object in a positive direction along the [image: x]-axis from point [image: a] to point [image: b], then the work done on the object is
 [image: W={\displaystyle\int }_{a}^{b}F(x)dx]
 If the force is constant, the integral evaluates to [image: F·(b-a)=F·d.]
  Consider a block attached to a horizontal spring. The block moves back and forth as the spring stretches and compresses. Although in the real world we would have to account for the force of friction between the block and the surface on which it is resting, we ignore friction here and assume the block is resting on a frictionless surface. 
 When the spring is at its natural length (at rest), the system is said to be at equilibrium. In this state, the spring is neither elongated nor compressed, and in this equilibrium position the block does not move until some force is introduced. We orient the system such that [image: x=0] corresponds to the equilibrium position.
 [image: "This]
 Spring Behavior:
 	[image: x=0]: Equilibrium
 	[image: x<0]: Compressed
 	[image: x>o]: Stretched
 
 According to Hooke’s law, the force required to compress or stretch the spring is [image: F(x)=kx], where [image: k] is the spring constant. The constant [image: k] depends on the spring’s physical characteristics and is always positive. This information helps calculate the work done to compress or elongate the spring.
  Suppose it takes a force of [image: 10] N (in the negative direction) to compress a spring [image: 0.2] m from the equilibrium position. How much work is done to stretch the spring [image: 0.5] m from the equilibrium position?
 Show Solution 
 First find the spring constant, [image: k.] When [image: x=-0.2,] we know [image: F(x)=-10,] so
 [image: \begin{array}{ccc}\hfill F(x)& =\hfill & kx\hfill \\ \hfill -10& =\hfill & k(-0.2)\hfill \\ \hfill k& =\hfill & 50\hfill \end{array}]
 and [image: F(x)=50x.] Then, to calculate work, we integrate the force function, obtaining
 [image: W={\displaystyle\int }_{a}^{b}F(x)dx={\displaystyle\int }_{0}^{0.5}50xdx={25{x}^{2}|}_{0}^{0.5}=6.25.]
 The work done to stretch the spring is [image: 6.25] J.
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				Work Done in Pumping
 Consider the work done to pump water (or some other liquid) out of a tank. Pumping problems are a little more complicated than spring problems because many of the calculations depend on the tank’s shape and size. In addition, instead of being concerned about the work done to move a single mass, we are looking at the work done to move a volume of water, and it takes more work to move the water from the bottom of the tank than it does to move the water from the top of the tank.
 Assume a cylindrical tank of radius [image: 4] m and height [image: 10] m is filled to a depth of [image: 8] m. How much work does it take to pump all the water over the top edge of the tank?
 The first thing we need to do is define a frame of reference. We let [image: x] represent the vertical distance below the top of the tank. That is, we orient the [image: x\text{-axis}] vertically, with the origin at the top of the tank and the downward direction being positive.
 [image: This figure is a right circular cylinder that is vertical. It represents a tank of water. The radius of the cylinder is 4 m, the height of the cylinder is 10 m. The height of the water inside the cylinder is 8 m. There is also a horizontal line on top of the tank representing the x=0. A line is drawn vertical beside the cylinder with a downward arrow labeled x.]Figure 5. How much work is needed to empty a tank partially filled with water? Using this coordinate system, the water extends from [image: x=2] to [image: x=10.]
 Therefore, we partition the interval [image: \left[2,10\right]] and look at the work required to lift each individual “layer” of water.
 [image: This figure is a right circular cylinder representing a tank of water. Inside of the cylinder is a layer of water with thickness delta x. The thickness begins at xsub(i-1) and ends at xsubi.]Figure 6. A representative layer of water. In pumping problems, the force required to lift water to the top of the tank is equal to the weight of the water, overcoming gravity. Given that the weight-density of water is [image: 9800 N/m^3], or [image: 62.4 lb/ft^3].
 Calculating the volume of each layer gives us the weight. In this case, we have,
 [image: V=\pi {(4)}^{2}\text{Δ}x=16\pi \text{Δ}x]
 Then, the force needed to lift each layer is,
 [image: F=9800·16\pi \text{Δ}x=156,800\pi \text{Δ}x]
 Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the next example.
 Based on our choice of coordinate systems, we can use [image: {x}_{i}^{*}] as an approximation of the distance the layer must be lifted.
 Then the work to lift the [image: i\text{th}] layer of water [image: {W}_{i}] is approximately,
 [image: {W}_{i}\approx 156,800\pi {x}_{i}^{*}\text{Δ}x]
 Adding the work for each layer, we see the approximate work to empty the tank is given by
 [image: W=\underset{i=1}{\overset{n}{\text{∑}}}{W}_{i}\approx \underset{i=1}{\overset{n}{\text{∑}}}156,800\pi {x}_{i}^{*}\text{Δ}x]
 This is a Riemann sum, so taking the limit as [image: n\to \infty ,] we get
 [image: \begin{array}{cc}\hfill W& =\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}156,800\pi {x}_{i}^{*}\text{Δ}x\hfill \\ & =156,800\pi {\displaystyle\int }_{2}^{10}xdx\hfill \\ & =156,800\pi {\left[\frac{{x}^{2}}{2}\right]|}_{2}^{10}\hfill \\ & =7,526,400\pi\hfill \\ & \approx 23,644,883.\hfill \end{array}]
 The work required to empty the tank is approximately [image: 23,650,000 J].
  For pumping problems, the calculations vary depending on the shape of the tank or container.
 The following problem-solving strategy lays out a step-by-step process for solving pumping problems.
 Problem-Solving Strategy: Solving Pumping Problems
 	Sketch a picture of the tank and select an appropriate frame of reference.
 	Calculate the volume of a representative layer of water.
 	Multiply the volume by the weight-density of water to get the force.
 	Calculate the distance the layer of water must be lifted.
 	Multiply the force and distance to get an estimate of the work needed to lift the layer of water.
 	Sum the work required to lift all the layers. This expression is an estimate of the work required to pump out the desired amount of water, and it is in the form of a Riemann sum.
 	Take the limit as [image: n\to \infty] and evaluate the resulting integral to get the exact work required to pump out the desired amount of water.
 
  We now apply this problem-solving strategy in an example with a noncylindrical tank.
 Assume a tank in the shape of an inverted cone, with height [image: 12] ft and base radius [image: 4] ft. The tank is full to start with, and water is pumped over the upper edge of the tank until the height of the water remaining in the tank is [image: 4] ft.
 How much work is required to pump out that amount of water?
 Show Solution As we did in the example with the cylindrical tank, we orient the [image: x\text{-axis}] vertically, with the origin at the top of the tank and the downward direction being positive (step 1).
 [image: This figure is an upside-down cone. The cone has an axis through the center. The top of the cone on the axis is labeled x=0.]Figure 7. A water tank in the shape of an inverted cone. The tank starts out full and ends with [image: 4] ft of water left, so, based on our chosen frame of reference, we need to partition the interval [image: \left[0,8\right].] Then, for [image: i=0,1,2\text{,…},n,] let [image: P=\left\{{x}_{i}\right\}] be a regular partition of the interval [image: \left[0,8\right],] and for [image: i=1,2\text{,…},n,] choose an arbitrary point [image: {x}_{i}^{*}\in \left[{x}_{i-1},{x}_{i}\right].] We can approximate the volume of a layer by using a disk, then use similar triangles to find the radius of the disk (see the following figure).
 [image: This figure has two images. The first has the x-axis. Below the axis, on a slant is a line segment extending up to the x-axis. Beside the line segment is a horizontal right circular cylinder. The second image has a triangle. The right triangle mirrors the first image with the hypotenuse the line segment in the first image. The top of the triangle is 4 units. the length of the vertical side is 12 units. The vertical side is also divided into two parts; the first is xsubi, the second is 12-xsubi. It is divided at the level where the first image has the cylinder.]Figure 8. Using similar triangles to express the radius of a disk of water. From properties of similar triangles, we have
 [image: \begin{array}{ccc}\hfill \frac{{r}_{i}}{12-{x}_{i}^{*}}& =\hfill & \frac{4}{12}=\frac{1}{3}\hfill \\ \hfill 3{r}_{i}& =\hfill & 12-{x}_{i}^{*}\hfill \\ \hfill {r}_{i}& =\hfill & \frac{12-{x}_{i}^{*}}{3}\hfill \\ & =\hfill & 4-\frac{{x}_{i}^{*}}{3}.\hfill \end{array}]
 Then the volume of the disk is
 [image: {V}_{i}=\pi {(4-\frac{{x}_{i}^{*}}{3})}^{2}\text{Δ}x\text{(step 2).}]
 The weight-density of water is [image: 62.4 lb/ft^3], so the force needed to lift each layer is approximately
 [image: {F}_{i}\approx 62.4\pi {(4-\frac{{x}_{i}^{*}}{3})}^{2}\text{Δ}x\text{(step 3).}]
 Based on the diagram, the distance the water must be lifted is approximately [image: {x}_{i}^{*}] feet (step 4), so the approximate work needed to lift the layer is
 [image: {W}_{i}\approx 62.4\pi {x}_{i}^{*}{(4-\frac{{x}_{i}^{*}}{3})}^{2}\text{Δ}x\text{(step 5).}]
 Summing the work required to lift all the layers, we get an approximate value of the total work:
 [image: W=\underset{i=1}{\overset{n}{\text{∑}}}{W}_{i}\approx \underset{i=1}{\overset{n}{\text{∑}}}62.4\pi {x}_{i}^{*}{(4-\frac{{x}_{i}^{*}}{3})}^{2}\text{Δ}x\text{(step 6).}]
 Taking the limit as [image: n\to \infty ,] we obtain
 [image: \begin{array}{cc}\hfill W& =\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}62.4\pi {x}_{i}^{*}{(4-\frac{{x}_{i}^{*}}{3})}^{2}\text{Δ}x\hfill \\ & ={\displaystyle\int }_{0}^{8}62.4\pi x{(4-\frac{x}{3})}^{2}dx\hfill \\ & =62.4\pi {\displaystyle\int }_{0}^{8}x(16-\frac{8x}{3}+\frac{{x}^{2}}{9})dx=62.4\pi {\displaystyle\int }_{0}^{8}(16x-\frac{8{x}^{2}}{3}+\frac{{x}^{3}}{9})dx\hfill \\ & =62.4\pi {\left[8{x}^{2}-\frac{8{x}^{3}}{9}+\frac{{x}^{4}}{36}\right]|}_{0}^{8}=10,649.6\pi \approx 33,456.7\hfill \end{array}]
 It takes approximately [image: 33,450] ft-lb of work to empty the tank to the desired level.
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=jZAEKDiWkHA%3Fcontrols%3D0%26start%3D1355%26end%3D1691%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.5 Physical Applications” here (opens in new window)
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				Hydrostatic Force and Pressure
 Let’s examine the force and pressure exerted on an object submerged in a liquid. Force is measured in newtons (metric) or pounds (English), and pressure is force per unit area, measured in pascals (metric) or psi (English).
 Let’s begin with the simple case of a plate of area [image: A] submerged horizontally in water at a depth [image: s] (Figure 9). 
 [image: This image has a circular plate submerged in water. The plate is labeled A and the depth of the water is labeled s.]Figure 9. A plate submerged horizontally in water. The force exerted on the plate is simply the weight of the water above it, which is given by [image: F=\rho As,] where [image: \rho] is the weight density of water (weight per unit volume).
 To find the hydrostatic pressure—that is, the pressure exerted by water on a submerged object—we divide the force by the area. So the pressure is
 [image: p=\frac{F}{A}=\rho s.]
 By Pascal’s principle, the pressure at a given depth is the same in all directions, so it does not matter if the plate is submerged horizontally or vertically. So, as long as we know the depth, we know the pressure. We can apply Pascal’s principle to find the force exerted on surfaces, such as dams, that are oriented vertically.
 We cannot apply the formula [image: F=\rho As] directly, because the depth varies from point to point on a vertically oriented surface. So, as we have done many times before, we form a partition, a Riemann sum, and, ultimately, a definite integral to calculate the force.
 Suppose a thin plate is submerged in water. 
 [image: This image is the overhead view of a submerged circular plate. The x-axis is to the side of the plate. The plate’s diameter goes from x=a to x=b. There is a strip in the middle of the plate with thickness of delta x. On the axis this thickness begins at x=xsub(i-1) and ends at x=xsubi. The length of the strip in the plate is labeled w(csubi).]Figure 10. A thin plate submerged vertically in water. We choose our frame of reference such that the [image: x]-axis is oriented vertically, with [image: x=0] at the water’s surface. The depth at any point [image: x] is given by [image: s(x)=x]. The width of the plate at point [image: x] is denoted by [image: w(x)].
 We partition the interval [image: [a,b]] into [image: n] segments. For each segment, we calculate the force using a Riemann sum and ultimately integrate to find the total force on the submerged surface.
 To estimate the force on a representative segment of the submerged plate, we treat the segment as if it is at a constant depth [image: s({x}_{i}^{*})]. The force on each segment is given by:
 [image: {F}_{i}=\rho As=\rho \left[w({x}_{i}^{*})\text{Δ}x\right]s({x}_{i}^{*})]
 Adding the forces, we get an estimate for the force on the plate:
 [image: F\approx \underset{i=1}{\overset{n}{\text{∑}}}{F}_{i}=\underset{i=1}{\overset{n}{\text{∑}}}\rho \left[w({x}_{i}^{*})\text{Δ}x\right]s({x}_{i}^{*})]
 This is a Riemann sum, so taking the limit as [image: n→∞] gives us the exact force:
 [image: F=\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}\rho \left[w({x}_{i}^{*})\text{Δ}x\right]s({x}_{i}^{*})={\displaystyle\int }_{a}^{b}\rho w(x)s(x)dx]
 Evaluating this integral provides the total force on the plate.
  We summarize this in the following problem-solving strategy.
 Problem-Solving Strategy: Finding Hydrostatic Force
 	Sketch a picture and select an appropriate frame of reference. (Note that if we select a frame of reference other than the one used earlier, we may have to adjust the equation above accordingly.)
 	Determine the depth and width functions, [image: s(x)] and [image: w(x).]
 	Determine the weight-density of whatever liquid with which you are working. The weight-density of water is 62.4 lb/ft3, or 9800 N/m3.
 	Use the equation to calculate the total force.
 
  A water trough [image: 15] ft long has ends shaped like inverted isosceles triangles, with base [image: 8] ft and height [image: 3] ft. Find the force on one end of the trough if the trough is full of water.
 Show Solution [image: This figure has two images. The first is a water trough with rectangular sides. The length of the trough is 15 feet, the depth is 3 feet, and the width is 8 feet. The second image is a cross section of the trough. It is a triangle. The top has length of 8 feet and the sides have length 5 feet. The altitude is labeled with 3 feet.]Figure 11. (a) A water trough with a triangular cross-section. (b) Dimensions of one end of the water trough. Select a frame of reference with the [image: x\text{-axis}] oriented vertically and the downward direction being positive. Select the top of the trough as the point corresponding to [image: x=0] (step 1).
 The depth function, then, is [image: s(x)=x.] Using similar triangles, we see that [image: w(x)=8-(8\text{/}3)x] (step 2).
 Now, the weight density of water is [image: 62.4 lb/ft<span style="font-size: 13.3333px">^3</span>] (step 3), so applying the force equation from above, we obtain,
 [image: \begin{array}{cc}\hfill F& ={\displaystyle\int }_{a}^{b}\rho w(x)s(x)dx\hfill \\ & ={\displaystyle\int }_{0}^{3}62.4(8-\frac{8}{3}x)xdx=62.4{\displaystyle\int }_{0}^{3}(8x-\frac{8}{3}{x}^{2})dx\hfill \\ & =62.4{\left[4{x}^{2}-\frac{8}{9}{x}^{3}\right]|}_{0}^{3}=748.8.\hfill \end{array}]
 The water exerts a force of [image: 748.8] lb on the end of the trough (step 4).
   A water trough [image: 12] m long has ends shaped like inverted isosceles triangles, with base [image: 6] m and height [image: 4] m. Find the force on one end of the trough if the trough is full of water.
 Show Solution 
 [image: 156,800] N
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=jZAEKDiWkHA%3Fcontrols%3D0%26start%3D2006%26end%3D2135%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.5 Physical Applications” here (opens in new window).
  Understanding the principles of hydrostatic force and pressure is crucial in real-world applications, such as the design and construction of large structures like the Hoover Dam. The Hoover Dam holds back massive volumes of water, requiring precise calculations of pressure and force to ensure stability and safety.
 [image: Aerial view Hoover Dam]Aerial view Hoover Dam To learn more about Hoover Dam, visit this article published by the History Channel.
  [ohm_question hide_question_numbers=1]288447[/ohm_question]
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				 	Calculate the mass of linear and circular objects using their density distributions
 	Compute the work required in various situations, such as pumping fluids or moving objects along a path
 	Determine the force exerted by water on a vertical surface underwater
 
  Applying Integration to Real-World Problems: Mass, Density, and Work
 In this activity, we will explore the practical applications of integration in various real-world contexts. From calculating the total mass of objects with variable density to determining the work done by variable forces, integration provides a powerful tool for solving complex problems. These exercises will enhance your understanding of how integration is used in physics and engineering to solve practical problems.
 [ohm_question hide_question_numbers=1]288350[/ohm_question]
  [ohm_question hide_question_numbers=1]288351[/ohm_question]
  [ohm_question hide_question_numbers=1]288352[/ohm_question]
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				 	Find the balance point (center of mass) of straight objects and flat surfaces
 	Utilize a shape’s symmetry to find the centroid, or geometric center, of flat objects
 	Use Pappus’s theorem to calculate the volume of an object
 
  Center of Mass and Moments
 The basic idea of the center of mass is the notion of a balancing point. Many of us have seen performers who spin plates on the ends of sticks. The performers try to keep several of them spinning without allowing any of them to drop. If we look at a single plate (without spinning it), there is a sweet spot on the plate where it balances perfectly on the stick. If we put the stick anywhere other than that sweet spot, the plate does not balance and it falls to the ground. Mathematically, that sweet spot is called the center of mass of the plate.
 Center of Mass of Objects on a Line
 Let’s begin by looking at the center of mass in a one-dimensional context.
 Consider a long, thin wire or rod of negligible mass resting on a fulcrum, as shown in Figure 1(a). Now suppose we place objects having masses [image: {m}_{1}] and [image: {m}_{2}] at distances [image: {d}_{1}] and [image: {d}_{2}] from the fulcrum, respectively, as shown in Figure 1(b).
 [image: This figure has two images. The first image is a horizontal line on top of an equilateral triangle. It represents a rod on a fulcrum. The second image is the same as the first with two squares on the line. They are labeled msub1 and msub2. The distance from msub1 to the fulcrum is dsub1. The distance from msub2 to the fulcrum is dsub2.]Figure 1. (a) A thin rod rests on a fulcrum. (b) Masses are placed on the rod. The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different weights sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks down and the lighter child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances
  Applying this concept to the masses on the rod, we note that the masses balance each other if and only if [image: {m}_{1}{d}_{1}={m}_{2}{d}_{2}.]
 In the seesaw example, we balanced the system by moving the masses (children) with respect to the fulcrum. However, we are really interested in systems in which the masses are not allowed to move, and instead we balance the system by moving the fulcrum.
 Suppose we have two point masses, [image: {m}_{1}] and [image: {m}_{2},] located on a number line at points [image: {x}_{1}] and [image: {x}_{2},] respectively (Figure 2). The center of mass, [image: \overline{x},] is the point where the fulcrum should be placed to make the system balance.
 [image: This figure is an image of the x-axis. On the axis there is a point labeled x bar. Also on the axis there is a point xsub1 with a square above it. Inside of the square is the label msub1. There is also a point xsub2 on the axis. Above this point there is a square. Inside of the square is the label msub2.]Figure 2. The center of mass [image: \overline{x}] is the balance point of the system. Thus, we have
 [image: \begin{array}{ccc}\hfill {m}_{1}|{x}_{1}-\overline{x}|& =\hfill & {m}_{2}|{x}_{2}-\overline{x}|\hfill \\ \hfill {m}_{1}(\overline{x}-{x}_{1})& =\hfill & {m}_{2}({x}_{2}-\overline{x})\hfill \\ \hfill {m}_{1}\overline{x}-{m}_{1}{x}_{1}& =\hfill & {m}_{2}{x}_{2}-{m}_{2}\overline{x}\hfill \\ \hfill \overline{x}({m}_{1}+{m}_{2})& =\hfill & {m}_{1}{x}_{1}+{m}_{2}{x}_{2}\hfill \\ \hfill \overline{x}& =\hfill & \frac{{m}_{1}{x}_{1}+{m}_{2}{x}_{2}}{{m}_{1}+{m}_{2}}.\hfill \end{array}]
 The expression in the numerator, [image: {m}_{1}{x}_{1}+{m}_{2}{x}_{2},] is called the first moment of the system with respect to the origin. If the context is clear, we often drop the word “first” and just refer to this expression as the moment of the system.
 The expression in the denominator, [image: {m}_{1}+{m}_{2},] is the total mass of the system. Thus, the center of mass of the system is the point at which the total mass of the system could be concentrated without changing the moment.
 If there are more than two point masses, the center of mass is given by:
 [image: \overline{x}=\dfrac{\underset{i=1}{\overset{n}{\text{∑}}}{m}_{i}{x}_{i}}{\underset{i=1}{\overset{n}{\text{∑}}}{m}_{i}}]
 center of mass of objects on a line
 Let [image: {m}_{1},{m}_{2}\text{,…},{m}_{n}] be point masses placed on a number line at points [image: {x}_{1},{x}_{2}\text{,…},{x}_{n},] respectively, and let [image: m=\underset{i=1}{\overset{n}{\text{∑}}}{m}_{i}] denote the total mass of the system. Then, the moment of the system with respect to the origin is given by
 [image: M=\displaystyle\sum_{i=1}^{n} {m}_{i}{x}_{i}]
  
 and the center of mass of the system is given by
 [image: \overline{x}=\frac{M}{m}.]
  Suppose four point masses are placed on a number line as follows:
 [image: \begin{array}{cccc}{m}_{1}=30\text{kg,}\text{ placed a t}{x}_{1}=-2\text{m}\hfill & & & {m}_{2}=5\text{kg,}\text{ placed at }{x}_{2}=3\text{m}\hfill \\ {m}_{3}=10\text{kg,}\text{ placed at }{x}_{3}=6\text{m}\hfill & & & {m}_{4}=15\text{kg,}\text{ placed at }{x}_{4}=-3\text{m}.\hfill \end{array}]
  
 Find the moment of the system with respect to the origin and find the center of mass of the system.
 Show Solution First, we need to calculate the moment of the system:
 [image: \begin{array}{cc}\hfill M& = {\displaystyle\sum _{i=1}^{4}{m}_{i}{x}_{i}}\hfill \\ & =-60+15+60-45=-30.\hfill \end{array}]
 Now, to find the center of mass, we need the total mass of the system:
 [image: \begin{array}{cc}\hfill m& = {\displaystyle\sum _{i=1}^{4}{m}_{i}} \hfill \\ & =30+5+10+15=60\text{kg}\text{.}\hfill \end{array}]
 Then we have
 [image: \overline{x}=\frac{M}{m}=\frac{-30}{60}=-\frac{1}{2}.]
 The center of mass is located 1/2 m to the left of the origin.
   [ohm_question hide_question_numbers=1]223354[/ohm_question]
  Center of Mass of Objects in a Plane
 We can generalize this concept to find the center of mass of a system of point masses in a plane.
 Let [image: {m}_{1}] be a point mass located at point [image: ({x}_{1},{y}_{1})] in the plane. Then the moment [image: {M}_{x}] of the mass with respect to the [image: x]-axis is given by [image: {M}_{x}={m}_{1}{y}_{1}.] Similarly, the moment [image: {M}_{y}] with respect to the [image: y]-axis is given by [image: {M}_{y}={m}_{1}{x}_{1}.]
 Notice that the [image: x]-coordinate of the point is used to calculate the moment with respect to the [image: y]-axis, and vice versa. The reason is that the [image: x]-coordinate gives the distance from the point mass to the [image: y]-axis, and the [image: y]-coordinate gives the distance to the [image: x]-axis. [image: This figure has the x and y axes labeled. There is a point in the first quadrant at (xsub1, ysub1). This point is labeled msub1.]Figure 3. Point mass [image: {m}_{1}] is located at point [image: ({x}_{1},{y}_{1})] in the plane.  If we have several point masses in the [image: xy]-plane, we can use the moments with respect to the [image: x]– and [image: y]-axes to calculate the [image: x]– and [image: y]-coordinates of the center of mass of the system.
 center of mass of objects in a plane
 Let [image: {m}_{1},{m}_{2}\text{,…},{m}_{n}] be point masses located in the xy-plane at points [image: ({x}_{1},{y}_{1}),({x}_{2},{y}_{2})\text{,…},({x}_{n},{y}_{n}),] respectively, and let [image: m=\underset{i=1}{\overset{n}{\text{∑}}}{m}_{i}] denote the total mass of the system. Then the moments [image: {M}_{x}] and [image: {M}_{y}] of the system with respect to the [image: x]– and [image: y]-axes, respectively, are given by
 [image: {M}_{x}=\underset{i=1}{\overset{n}{\text{∑}}}{m}_{i}{y}_{i}\text{ and }{M}_{y}=\underset{i=1}{\overset{n}{\text{∑}}}{m}_{i}{x}_{i}.]
 Also, the coordinates of the center of mass [image: (\overline{x},\overline{y})] of the system are
 [image: \overline{x}=\frac{{M}_{y}}{m}\text{ and }\overline{y}=\frac{{M}_{x}}{m}.]
  Suppose three point masses are placed in the xy-plane as follows (assume coordinates are given in meters):
 [image: \begin{array}{c}{m}_{1}=2\text{kg, placed at}(-1,3),\hfill \\ {m}_{2}=6\text{kg, placed at}(1,1),\hfill \\ {m}_{3}=4\text{kg, placed at}(2,-2).\hfill \end{array}]
 Find the center of mass of the system.
 Show Solution First we calculate the total mass of the system:
 [image: m=\sum _{i=1}^{3}{m}_{i}=2+6+4=12\text{kg}\text{.}]
 Next we find the moments with respect to the [image: x]– and [image: y]-axes:
 [image: \begin{array}{}\\ \\ {M}_{y}=\sum _{i=1}^{3}{m}_{i}{x}_{i}=-2+6+8=12,\hfill \\ {M}_{x}=\sum _{i=1}^{3}{m}_{i}{y}_{i}=6+6-8=4.\hfill \end{array}]
 Then we have
 [image: \overline{x}=\frac{{M}_{y}}{m}=\frac{12}{12}=1\text{ and }\overline{y}=\frac{{M}_{x}}{m}=\frac{4}{12}=\frac{1}{3}.]
 The center of mass of the system is [image: (1,1\text{/}3),] in meters.
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				Center of Mass of Thin Plates
 We’ve examined point masses on a line and in a plane. Now, we look at systems where mass is distributed continuously across a thin sheet, called a lamina. We assume the lamina’s density is constant.
 Laminas are often two-dimensional regions in a plane, with the geometric center called its centroid. The center of mass of a lamina depends only on the shape, not the density. For a rectangular lamina, the center of mass is where the diagonals intersect, which follows the symmetry principle.
 the symmetry principle
 If a region [image: R] is symmetric about a line [image: l], then the centroid of [image: R] lies on [image: l].
  Let’s examine general laminas. Suppose we have a lamina bounded above by the graph of a continuous function [image: f(x),] below by the [image: x]-axis, and on the left and right by the lines [image: x=a] and [image: x=b,].
 [image: This image is a graph of y=f(x). It is in the first quadrant. Under the curve is a shaded region labeled “R”. The shaded region is bounded to the left at x=a and to the right at x=b.]Figure 4. A region in the plane representing a lamina. To find the center of mass, we need the total mass of the lamina. We divide the lamina into thin vertical strips, approximating each strip’s mass using the density [image: ρ]. The mass of the strip is given by [image: \rho f({x}_{i}^{*})\text{Δ}x.]
 [image: This figure is a graph of the curve labeled f(x). It is in the first quadrant. Under the curve and above the x-axis there is a vertical shaded rectangle. the height of the rectangle is labeled f(xsubi). Also, xsubi = f(xsubi/2).]Figure 5. A representative rectangle of the lamina. To get the approximate mass of the lamina, we add the masses of all the rectangles to get
 [image: m\approx \underset{i=1}{\overset{n}{\text{∑}}}\rho f({x}_{i}^{*})\text{Δ}x]
 This is a Riemann sum. Taking the limit as [image: n\to \infty] gives the exact mass of the lamina:
 [image: m=\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}\rho f({x}_{i}^{*})\text{Δ}x=\rho {\displaystyle\int }_{a}^{b}f(x)dx]
 Next, we calculate the moment of the lamina with respect to the x-axis. For each rectangle, the center of mass is at [image: x_{i}^{*}]. The moment with respect to the [image: x]-axis is given by:
 [image: {M}_{x}=\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}\rho \frac{{\left[f({x}_{i}^{*})\right]}^{2}}{2}\text{Δ}x=\rho {\displaystyle\int }_{a}^{b}\frac{{\left[f(x)\right]}^{2}}{2}dx.]
 Similarly, the moment with respect to the [image: y]-axis is:
 [image: {M}_{y}=\underset{n\to \infty }{\text{lim}}\underset{i=1}{\overset{n}{\text{∑}}}\rho {x}_{i}^{*}f({x}_{i}^{*})\text{Δ}x=\rho {\displaystyle\int }_{a}^{b}xf(x)dx]
 The coordinates of the center of mass are:
 [image: \overline{x}=\frac{{M}_{y}}{m} \text{ and }\overline{y}=\frac{{M}_{x}}{m}]
 If we look closely at the expressions for [image: {M}_{x},{M}_{y},\text{ and }m,] we notice that the constant [image: \rho] cancels out when [image: \overline{x}] and [image: \overline{y}] are calculated.
  We summarize these findings in the following theorem.
 center of mass of a thin plate in the [image: xy]-plane
 Let [image: R] denote a region bounded above by the graph of a continuous function [image: f(x),] below by the [image: x]-axis, and on the left and right by the lines [image: x=a] and [image: x=b,] respectively. Let [image: \rho] denote the density of the associated lamina. Then we can make the following statements:
 	The mass of the lamina is [image: m=\rho {\displaystyle\int }_{a}^{b}f(x)dx.]
 
 	The moments [image: {M}_{x}] and [image: {M}_{y}] of the lamina with respect to the [image: x]– and [image: y]-axes, respectively, are [image: {M}_{x}=\rho {\displaystyle\int }_{a}^{b}\frac{{\left[f(x)\right]}^{2}}{2}dx\text{ and }{M}_{y}=\rho {\displaystyle\int }_{a}^{b}xf(x)dx.]
 
 	The coordinates of the center of mass [image: (\overline{x},\overline{y})] are [image: \overline{x}=\frac{{M}_{y}}{m}\text{ and }\overline{y}=\frac{{M}_{x}}{m}.]
 
 
  In the next example, we use this theorem to find the center of mass of a lamina.
 Let R be the region bounded above by the graph of the function [image: f(x)=\sqrt{x}] and below by the [image: x]-axis over the interval [image: \left[0,4\right].] Find the centroid of the region.
 Show Solution The region is depicted in the following figure.
 [image: This figure is the graph of the curve f(x)=squareroot(x). It is an increasing curve in the first quadrant. Under the curve above the x-axis there is a shaded region. It starts at x=0 and is bounded to the right at x=4.]Figure 6. Finding the center of mass of a lamina. Since we are only asked for the centroid of the region, rather than the mass or moments of the associated lamina, we know the density constant [image: \rho] cancels out of the calculations eventually. Therefore, for the sake of convenience, let’s assume [image: \rho =1.]
 First, we need to calculate the total mass:
 [image: \begin{array}{cc}\hfill m& =\rho {\displaystyle\int }_{a}^{b}f(x)dx={\displaystyle\int }_{0}^{4}\sqrt{x}dx\hfill \\ & ={\frac{2}{3}{x}^{3\text{/}2}|}_{0}^{4}=\frac{2}{3}\left[8-0\right]=\frac{16}{3}.\hfill \end{array}]
 Next, we compute the moments:
 [image: \begin{array}{cc}\hfill {M}_{x}& =\rho {\displaystyle\int }_{a}^{b}\frac{{\left[f(x)\right]}^{2}}{2}dx\hfill \\ & ={\displaystyle\int }_{0}^{4}\frac{x}{2}dx={\frac{1}{4}{x}^{2}|}_{0}^{4}=4\hfill \end{array}]
 and
 [image: \begin{array}{cc}\hfill {M}_{y}& =\rho {\displaystyle\int }_{a}^{b}xf(x)dx\hfill \\ & ={\displaystyle\int }_{0}^{4}x\sqrt{x}dx={\displaystyle\int }_{0}^{4}{x}^{3\text{/}2}dx\hfill \\ & ={\frac{2}{5}{x}^{5\text{/}2}|}_{0}^{4}=\frac{2}{5}\left[32-0\right]=\frac{64}{5}.\hfill \end{array}]
 Thus, we have
 [image: \overline{x}=\frac{{M}_{y}}{m}=\frac{64\text{/}5}{16\text{/}3}=\frac{64}{5}·\frac{3}{16}=\frac{12}{5}\text{ and }\overline{y}=\frac{{M}_{x}}{y}=\frac{4}{16\text{/}3}=4·\frac{3}{16}=\frac{3}{4}.]
 The centroid of the region is [image: (12\text{/}5,3\text{/}4).]
   [ohm_question]5664[/ohm_question]
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				Center of Mass of a Region Bounded by Two Functions
 We can extend our approach to find centroids of more complex regions. Suppose our region is bounded above by the graph of a continuous function [image: f(x)] and below by a second continuous function [image: g(x)], as shown in the figure.
 [image: This figure is a graph of the first quadrant. It has two curves. They are labeled f(x) and g(x). f(x) is above g(x). In between the curves is a shaded region labeled “R”. The shaded region is bounded to the left by x=a and to the right by x=b.]Figure 7. A region between two functions. Again, we partition the interval [image: \left[a,b\right]] and construct rectangles. A representative rectangle is shown in the following figure.
 [image: This figure is a graph of the first quadrant. It has two curves. They are labeled f(x) and g(x). f(x) is above g(x). In between the curves is a shaded rectangle.]Figure 8. A representative rectangle of the region between two functions. The centroid of each rectangle is:
 [image: ({x}_{i}^{*},\frac{f({x}_{i}^{*})+g({x}_{i}^{*})}{2}).]
 In the development of the formulas for the mass of the lamina and the moment with respect to the [image: y]-axis, the height of each rectangle is [image: f(x)−g(x)]. For the [image: x]-axis moment, multiply the area by the distance of the centroid from the [image: x]-axis.
 Summarizing these findings, we arrive at the following theorem.
 center of mass of a lamina bounded by two functions
 Let [image: R] denote a region bounded above by the graph of a continuous function [image: f(x),] below by the graph of the continuous function [image: g(x),] and on the left and right by the lines [image: x=a] and [image: x=b,] respectively. Let [image: \rho] denote the density of the associated lamina. Then we can make the following statements:
 	The mass of the lamina is [image: m=\rho {\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx.]
 
 	The moments [image: {M}_{x}] and [image: {M}_{y}] of the lamina with respect to the [image: x]– and [image: y]-axes, respectively, are [image: {M}_{x}=\rho {\displaystyle\int }_{a}^{b}\frac{1}{2}({\left[f(x)\right]}^{2}-{\left[g(x)\right]}^{2})dx\text{ and }{M}_{y}=\rho {\displaystyle\int }_{a}^{b}x\left[f(x)-g(x)\right]dx.]
 
 	The coordinates of the center of mass [image: (\overline{x},\overline{y})] are [image: \overline{x}=\frac{{M}_{y}}{m}\text{ and }\overline{y}=\frac{{M}_{x}}{m}.]
 
 
  Let [image: R] be the region bounded above by the graph of the function [image: f(x)=1-{x}^{2}] and below by the graph of the function [image: g(x)=x-1.] Find the centroid of the region.
 Show Solution 
 The region is depicted in the following figure.
 [image: This figure is a graph. It has two curves. They are labeled f(x)=1-x^2 and g(x)=x-1. In between the curves is a shaded region. The shaded region is bounded to the left by x=a and to the right by x=b.]Figure 9. Finding the centroid of a region between two curves. The graphs of the functions intersect at [image: (-2,-3)] and [image: (1,0),] so we integrate from [image: −2] to [image: 1]. Once again, for the sake of convenience, assume [image: \rho =1.]
 First, we need to calculate the total mass:
 [image: \begin{array}{cc}\hfill m& =\rho {\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx\hfill \\ & ={\displaystyle\int }_{-2}^{1}\left[1-{x}^{2}-(x-1)\right]dx={\displaystyle\int }_{-2}^{1}(2-{x}^{2}-x)dx\hfill \\ & ={\left[2x-\frac{1}{3}{x}^{3}-\frac{1}{2}{x}^{2}\right]|}_{-2}^{1}=\left[2-\frac{1}{3}-\frac{1}{2}\right]-\left[-4+\frac{8}{3}-2\right]=\frac{9}{2}.\hfill \end{array}]
 Next, we compute the moments:
 [image: \begin{array}{cc}\hfill {M}_{x}& =\rho {\displaystyle\int }_{a}^{b}\frac{1}{2}({\left[f(x)\right]}^{2}-{\left[g(x)\right]}^{2})dx\hfill \\ & =\frac{1}{2}{\displaystyle\int }_{-2}^{1}({(1-{x}^{2})}^{2}-{(x-1)}^{2})dx=\frac{1}{2}{\displaystyle\int }_{-2}^{1}({x}^{4}-3{x}^{2}+2x)dx\hfill \\ & =\frac{1}{2}{\left[\frac{{x}^{5}}{5}-{x}^{3}+{x}^{2}\right]|}_{-2}^{1}=-\frac{27}{10}\hfill \end{array}]
 and
 [image: \begin{array}{cc}\hfill {M}_{y}& =\rho {\displaystyle\int }_{a}^{b}x\left[f(x)-g(x)\right]dx\hfill \\ & ={\displaystyle\int }_{-2}^{1}x\left[(1-{x}^{2})-(x-1)\right]dx={\displaystyle\int }_{-2}^{1}x\left[2-{x}^{2}-x\right]dx={\displaystyle\int }_{-2}^{1}(2x-{x}^{4}-{x}^{2})dx\hfill \\ & ={\left[{x}^{2}-\frac{{x}^{5}}{5}-\frac{{x}^{3}}{3}\right]|}_{-2}^{1}=-\frac{9}{4}.\hfill \end{array}]
 Therefore, we have
 [image: \overline{x}=\frac{{M}_{y}}{m}=-\frac{9}{4}·\frac{2}{9}=-\frac{1}{2}\text{ and }\overline{y}=\frac{{M}_{x}}{y}=-\frac{27}{10}·\frac{2}{9}=-\frac{3}{5}.]
 The centroid of the region is [image: (\text{−}(1\text{/}2),\text{−}(3\text{/}5)).]
   [ohm_question hide_question_numbers=1]288448[/ohm_question]
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				The Symmetry Principle
 We stated the symmetry principle earlier, when we were looking at the centroid of a rectangle. The symmetry principle can be a great help when finding centroids of regions that are symmetric. Consider the following example.
 Let [image: R] be the region bounded above by the graph of the function [image: f(x)=4-{x}^{2}] and below by the [image: x]-axis.
 Find the centroid of the region.
 Show Solution 
 The region is depicted in the following figure.
 [image: This figure is a graph of the function f(x)=4-x^2. It is an upside-down parabola. The region under the parabola above the x-axis is shaded. The curve intersects the x-axis at x=-2 and x=2.]Figure 10. We can use the symmetry principle to help find the centroid of a symmetric region. The region is symmetric with respect to the [image: y]-axis. Therefore, the [image: x]-coordinate of the centroid is zero. We need only calculate [image: \overline{y}.] Once again, for the sake of convenience, assume [image: \rho =1.]
 First, we calculate the total mass:
 [image: \begin{array}{cc}\hfill m& =\rho {\displaystyle\int }_{a}^{b}f(x)dx\hfill \\ & ={\displaystyle\int }_{-2}^{2}(4-{x}^{2})dx\hfill \\ & ={\left[4x-\frac{{x}^{3}}{3}\right]|}_{-2}^{2}=\frac{32}{3}.\hfill \end{array}]
 Next, we calculate the moments. We only need [image: {M}_{x}\text{:}]
 [image: \begin{array}{cc}\hfill {M}_{x}& =\rho {\displaystyle\int }_{a}^{b}\frac{{\left[f(x)\right]}^{2}}{2}dx\hfill \\ & =\frac{1}{2}{\displaystyle\int }_{-2}^{2}{\left[4-{x}^{2}\right]}^{2}dx=\frac{1}{2}{\displaystyle\int }_{-2}^{2}(16-8{x}^{2}+{x}^{4})dx\hfill \\ & =\frac{1}{2}{\left[\frac{{x}^{5}}{5}-\frac{8{x}^{3}}{3}+16x\right]|}_{-2}^{2}=\frac{256}{15}.\hfill \end{array}]
 Then we have
 [image: \overline{y}=\frac{{M}_{x}}{y}=\frac{256}{15}·\frac{3}{32}=\frac{8}{5}.]
 The centroid of the region is [image: (0,8\text{/}5).]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=-XKii-JZrqw%3Fcontrols%3D0%26start%3D1715%26end%3D1871%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.6 Moments and Centers of Mass” here (opens in new window).
  Theorem of Pappus
 The theorem of Pappus for volume allows us to find the volume of particular kinds of solids by using the centroid. There is also a theorem of Pappus for surface area, but it is much less useful than the theorem for volume.
 Theorem of Pappus for volume
 Let [image: R] be a region in the plane and let [image: l] be a line in the plane that does not intersect [image: R]. Then the volume of the solid of revolution formed by revolving [image: R] around [image: l] is equal to the area of [image: R] multiplied by the distance [image: d] traveled by the centroid of [image: R].
  Proof
 
 We can prove the case when the region is bounded above by the graph of a function [image: f(x)] and below by the graph of a function [image: g(x)] over an interval [image: \left[a,b\right],] and for which the axis of revolution is the [image: y]-axis. In this case, the area of the region is [image: A={\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx.] Since the axis of rotation is the [image: y]-axis, the distance traveled by the centroid of the region depends only on the [image: x]-coordinate of the centroid, [image: \overline{x},] which is
 [image: \overline{x}=\frac{{M}_{y}}{m},]
  
 where
 [image: m=\rho {\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx\text{ and }{M}_{y}=\rho {\displaystyle\int }_{a}^{b}x\left[f(x)-g(x)\right]dx.]
 Then,
 [image: d=2\pi \frac{\rho {\displaystyle\int }_{a}^{b}x\left[f(x)-g(x)\right]dx}{\rho {\displaystyle\int }_{a}^{b}\left[f(x)-g(x)\right]dx}]
  
 and thus
 [image: d·A=2\pi {\displaystyle\int }_{a}^{b}x\left[f(x)-g(x)\right]dx.]
  
 However, using the method of cylindrical shells, we have
 [image: V=2\pi {\displaystyle\int }_{a}^{b}x\left[f(x)-g(x)\right]dx.]
  
 So,
 [image: V=d·A]
  
 and the proof is complete.
 [image: _\blacksquare]
  Let [image: R] be a circle of radius [image: 2] centered at [image: (4,0).] Use the theorem of Pappus for volume to find the volume of the torus generated by revolving [image: R] around the [image: y]-axis.
 Show Solution 
 The region and torus are depicted in the following figure.
 [image: This figure has two graphs. The first is the x y coordinate system with a circle centered on the x-axis at x=4. The radius is 2. The second figure is the x y coordinate system. The circle from the first image has been revolved about the y-axis to form a torus.]Figure 13. Determining the volume of a torus by using the theorem of Pappus. (a) A circular region R in the plane; (b) the torus generated by revolving R about the y-axis. The region [image: R] is a circle of radius [image: 2], so the area of [image: R] is [image: A=4\pi] units2. By the symmetry principle, the centroid of [image: R] is the center of the circle. The centroid travels around the [image: y]-axis in a circular path of radius [image: 4], so the centroid travels [image: d=8\pi] units. Then, the volume of the torus is [image: A·d=32{\pi }^{2}] units3.
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				 	Find the balance point (center of mass) of straight objects and flat surfaces
 	Utilize a shape’s symmetry to find the centroid, or geometric center, of flat objects
 	Use Pappus’s theorem to calculate the volume of an object
 
  Engineering The Grand Canyon Skywalk
 The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped observation platform suspended [image: 4000] ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal-clear glass floor allows stunning views of the canyon below (see the following figure).
 [image: This figure is a picture of the Grand Canyon skywalk. It is a building at the edge of the canyon with a walkway extending out over the canyon]Figure 11. The Grand Canyon Skywalk offers magnificent views of the canyon. (credit: 10da_ralta, Wikimedia Commons)  
 The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no visible means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered to be very stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that extend [image: 46] ft down into bedrock. The structure was built to withstand [image: 100]-mph winds and an [image: 8.0]-magnitude earthquake within [image: 50] mi, and is capable of supporting more than [image: 70,000,000] lb.
 One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate the center of gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the observation platform.
 The observation platform is U-shaped. The legs of the U are [image: 10] ft wide and begin on land, under the visitors’ center, [image: 48] ft from the edge of the canyon. The platform extends [image: 70] ft over the edge of the canyon.
 To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the [image: xy]-plane to represent the platform. We begin by dividing the region into three subregions so we can consider each subregion separately. The first region, denoted [image: {R}_{1},] consists of the curved part of the U. We model [image: {R}_{1}] as a semicircular annulus, with inner radius [image: 25] ft and outer radius [image: 35] ft, centered at the origin (see the following figure).
 [image: This figure is a sketch of the Grand Canyon walkway. It is on the xy coordinate system. The walkway is upside-down “u” shaped. It has been divided into three regions. The first region at the top is labeled “Rsub1”. It is a semi-circle with outer radius of 35 feet and inner radius of 25 feet. The second region is labeled “Rsub2”. It has two rectangles with width of 10 feet each and height of 35 feet. The third region is labeled “Rsub3” and is two rectangles. They have a width of 10 feet and height of 48 feet. These represent the part of the walkway inside of the visitor center.]Figure 12. We model the Skywalk with three sub-regions.  
 The legs of the platform, extending [image: 35] ft between [image: {R}_{1}] and the canyon wall, comprise the second sub-region, [image: {R}_{2}.] Last, the ends of the legs, which extend [image: 48] ft under the visitor center, comprise the third sub-region, [image: {R}_{3}.] Assume the density of the lamina is constant and assume the total weight of the platform is [image: 1,200,000] lb (not including the weight of the visitor center; we will consider that later). Use [image: g=32{\text{ft/sec}}^{2}.]
 	Compute the area of each of the three sub-regions. Note that the areas of regions [image: {R}_{2}] and [image: {R}_{3}] should include the areas of the legs only, not the open space between them. Round answers to the nearest square foot. 
 Show Answer The area of the three masses are [image: R_1 = 942] ft2, [image: R_2 = 700] ft2 , and [image: R_3=960]ft2
 
 
 	Determine the mass associated with each of the three sub-regions. 
 Show Answer The masses associated are [image: m_1 = 434,431.6] lb, [image: m_2 = 322,826] lb, and [image: m_3=442,732.8] lb
 
 
 	Calculate the center of mass of each of the three sub-regions. 
 Show Answer The center of masses are [image: y_1 = 19.28] ft, [image: y_2=-17.5] ft, and [image: y_3=-59] ft
 
 
 	Now, treat each of the three sub-regions as a point mass located at the center of mass of the corresponding sub-region. Using this representation, calculate the center of mass of the entire platform. 
 Show Answer The COM of the platform lies at [image: (0,-19.5)] ft
  
 	Assume the visitor center weighs [image: 2,200,000] lb, with a center of mass corresponding to the center of mass of [image: {R}_{3}.] Treating the visitor center as a point mass, recalculate the center of mass of the system. How does the center of mass change? 
 Show Answer The COM of the platform including the center of mass lies at [image: (0,-45)] ft
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				 	Use rules for multiplying, raising to a power, and dividing to simplify logarithmic expressions
 
  Logarithms are essential tools in calculus, particularly when dealing with integrals and exponential functions. Mastering how to condense logarithmic expressions using fundamental rules will simplify complex calculations and enhance your understanding of these concepts.
 Simplify Logarithmic Expressions
 Simplifying logarithmic expressions involves applying specific rules to transform intricate terms into more manageable ones. This process is crucial for effectively solving equations in calculus and other mathematical disciplines.
 rules for logarithms
 	Product Rule: The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of individual logarithms.[image: {\mathrm{log}}_{b}\left(M \times N\right)={\mathrm{log}}_{b}\left(M\right)+{\mathrm{log}}_{b}\left(N\right)\text{ for }b>0]
 	Quotient Rule: The quotient rule for logarithms can be used to simplify a logarithm of a quotient by rewriting it as the difference of individual logarithms.[image: {\mathrm{log}}_{b}\left(\frac{M}{N}\right)={\mathrm{log}}_{b}M-{\mathrm{log}}_{b}N]
 	Power Rule: The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the product of the exponent times the logarithm of the base.[image: {\mathrm{log}}_{b}\left({M}^{n}\right)=n{\mathrm{log}}_{b}M]
 
  We can use the rules of logarithms to condense sums, differences, and products with the same base as a single logarithm. It is important to remember that the logarithms must have the same base to be combined.
 How To: Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a single logarithm
 	Apply the Power Rule: Identify and rewrite any terms that are powers of factors as the logarithm of a power.
 	Apply the Product and Quotient Rules: From left to right, apply the product and quotient properties to rewrite sums of logarithms as the logarithm of a product and differences as the logarithm of a quotient.
 
  Use the power rule for logs to rewrite [image: 4\mathrm{ln}\left(x\right)] as a single logarithm with a leading coefficient of 1.
 Show Solution 
 Because the logarithm of a power is the product of the exponent times the logarithm of the base, it follows that the product of a number and a logarithm can be written as a power. 
 For the expression [image: 4\mathrm{ln}\left(x\right)], we identify the factor, [image: 4], as the exponent and the argument, [image: x], as the base and rewrite the product as a logarithm of a power:
 [image: 4\mathrm{ln}\left(x\right)=\mathrm{ln}\left({x}^{4}\right)]
   Use the power rule for logs to rewrite [image: 2{\mathrm{log}}_{3}4] as a single logarithm with a leading coefficient of 1.
 Show Solution 
 [image: {\mathrm{log}}_{3}16]
  In our next few examples, we will use a combination of logarithm rules to condense logarithms.
 Write [image: {\mathrm{log}}_{3}\left(5\right)+{\mathrm{log}}_{3}\left(8\right)-{\mathrm{log}}_{3}\left(2\right)] as a single logarithm.
 Show Solution 
 From left to right, since we have the addition of two logs, we first use the product rule:
 [image: {\mathrm{log}}_{3}\left(5\right)+{\mathrm{log}}_{3}\left(8\right)={\mathrm{log}}_{3}\left(5\cdot 8\right)={\mathrm{log}}_{3}\left(40\right)]
 This simplifies our original expression to:
 [image: {\mathrm{log}}_{3}\left(40\right)-{\mathrm{log}}_{3}\left(2\right)]
 Using the quotient rule:
 [image: {\mathrm{log}}_{3}\left(40\right)-{\mathrm{log}}_{3}\left(2\right)={\mathrm{log}}_{3}\left(\frac{40}{2}\right)={\mathrm{log}}_{3}\left(20\right)]
   [ohm_question hide_question_numbers=1]129766[/ohm_question]
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				 	Make expressions simpler by applying the rules for multiplying, dividing, and raising numbers to powers
 
  Simplifying Expressions Using the Rules for Multiplying, Dividing, and Raising Numbers to Powers
 Simplifying expressions by applying the rules for multiplying, dividing, and raising numbers to powers is a fundamental skill in algebra and calculus. Mastery of this skill allows you to handle complex equations more efficiently and is crucial for understanding more advanced mathematical concepts, such as integrals, exponential functions, and logarithms.
 The Power Rule for Exponents
 Another word for an exponent is power. You have likely seen or heard an example such as [image: 3^5] can be described as [image: 3] raised to the [image: 5]th power. In this section, we will further expand our capabilities with exponents. We will learn what to do when a term with a power is raised to another power, what to do when two numbers or variables are multiplied and both are raised to an exponent, and what to do when numbers or variables that are divided are raised to a power. We will begin by raising powers to powers.
 the power rule for exponents
 For any positive number [image: x] and integers [image: a] and [image: b]: [image: \left(x^{a}\right)^{b}=x^{a\cdot{b}}].
 
  [ohm_question hide_question_numbers=1]287140[/ohm_question] Raise a Product to a Power
 Raising a product to a power is a fundamental operation in algebra that demonstrates how exponents interact with multiplication. This operation is widely used across various mathematical disciplines, including geometry, where it might be used to calculate the volume of shapes, and in finance, where it can be used to calculate compounded interest over multiple periods.
 The rule simplifies the process of working with powers of products. Instead of multiplying the base numbers repeatedly, we apply the exponent to each factor individually. This is based on the distributive property of exponents over multiplication.
 a product raised to a power
 For any nonzero numbers [image: a] and [image: b] and any integer [image: x], [image: \left(ab\right)^{x}=a^{x}\cdot{b^{x}}].
 
  Simplify the following: [image: \left(2yz\right)^{6}] Show Solution Apply the exponent to each number in the product.[image: 2^{6}y^{6}z^{6}]
 Answer: [image: \left(2yz\right)^{6}=64y^{6}z^{6}]
  If the variable has an exponent with it, use the Power Rule: multiply the exponents.
 Simplify the following:[image: \left(−7a^{4}b\right)^{2}] Show Solution Apply the exponent [image: 2] to each factor within the parentheses.[image: \left(−7\right)^{2}\left(a^{4}\right)^{2}\left(b\right)^{2}]Square the coefficient and use the Power Rule to square [image: \left(a^{4}\right)^{2}].
 [image: 49a^{4\cdot2}b^{2}]
 Simplify.
 [image: 49a^{8}b^{2}]
  
 Answer: [image: \left(-7a^{4}b\right)^{2}=49a^{8}b^{2}]
   The Product Rule for Exponents
 The Product Rule for Exponents is one of the essential rules in algebra that simplifies the process of working with powers. This rule is pivotal when dealing with exponential expressions, particularly when multiplying them. In essence, it tells us that when we multiply two exponents with the same base, we can simply add the exponents to get the new power of the base.
 This rule is extremely useful in various mathematical and real-world applications, such as calculating compound interest, understanding scientific notation, or solving problems in physics and engineering. By using the Product Rule, we can manage and simplify complex expressions without the need for lengthy multiplication.
 the product rule for exponents
 For any number [image: x] and any integers [image: a] and [image: b], [image: \left(x^{a}\right)\left(x^{b}\right) = x^{a+b}].
  
 To multiply exponential terms with the same base, add the exponents.
 
  [image: Caution]Caution! When you are reading mathematical rules, it is important to pay attention to the conditions on the rule. For example, when using the product rule, you may only apply it when the terms being multiplied have the same base and the exponents are integers. Conditions on mathematical rules are often given before the rule is stated, as in this example it says “For any number [image: x] and any integers [image: a] and [image: b].”
 Simplify the following: [image: (a^{3})(a^{7})]
 Show Solution The base of both exponents is [image: a], so the product rule applies.
 [image: \left(a^{3}\right)\left(a^{7}\right)]
 Add the exponents with a common base.
 [image: a^{3+7}]
  
 Answer: [image: \left(a^{3}\right)\left(a^{7}\right) = a^{10}]
   When multiplying more complicated terms, multiply the coefficients and then multiply the variables.
 Simplify the following: [image: 5a^{4}\cdot7a^{6}]
 Show Solution Multiply the coefficients.
 [image: 35\cdot{a}^{4}\cdot{a}^{6}]
 The base of both exponents is [image: a], so the product rule applies. Add the exponents.
 [image: 35\cdot{a}^{4+6}]
 Add the exponents with a common base.
 [image: 35\cdot{a}^{10}]
  
 Answer: [image: 5a^{4}\cdot7a^{6}=35a^{10}]
   [ohm_question hide_question_numbers=1]287141[/ohm_question] The Quotient (Division) Rule for Exponents
 The Quotient Rule for Exponents is as crucial as the Product Rule and serves as its counterpart for division. This rule assists in simplifying expressions where we have exponential terms with the same base being divided. It states that when you divide exponents with the same base, you can subtract the exponents.
 This rule has significant practical applications, especially in fields that involve calculations of rates of change, decay, or growth when they are decreasing, such as in the case of depreciation in finance or radioactive decay in physics.
 the quotient (division) rule for exponents
 For any non-zero number [image: x] and any integers [image: a] and [image: b]:
 [image: \displaystyle \frac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}}]
 To divide exponential terms with the same base, subtract the exponents.
 
  Evaluate the following:[image: \displaystyle \frac{{{4}^{9}}}{{{4}^{4}}}] Show Solution These two exponents have the same base, [image: 4]. According to the Quotient Rule, you can subtract the power in the denominator from the power in the numerator.
 [image: \displaystyle {{4}^{9-4}}]
  
 [image: \displaystyle \frac{{{4}^{9}}}{{{4}^{4}}}=4^{5}]
   When dividing terms that also contain coefficients, divide the coefficients and then divide variable powers with the same base by subtracting the exponents.
 Simplify the following:[image: \displaystyle \frac{12{{x}^{4}}}{2x}] Show Solution Separate into numerical and variable factors.
 [image: \displaystyle \left( \frac{12}{2} \right)\left( \frac{{{x}^{4}}}{x} \right)]
 Since the bases of the exponents are the same, you can apply the Quotient Rule. Divide the coefficients and subtract the exponents of matching variables.
 [image: \displaystyle 6\left( {{x}^{4-1}} \right)]
  
 [image: \displaystyle \frac{12{{x}^{4}}}{2x}]=[image: \displaystyle 6{{x}^{3}}]
   [ohm_question hide_question_numbers=1]287143[/ohm_question] 
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				 	Identify hyperbolic functions their graphs, and understand their fundamental identities
 
  Hyperbolic Functions
 Hyperbolic functions are defined in terms of certain combinations of [image: e^x] and [image: e^{−x}]. These functions arise naturally in various engineering and physics applications, including the study of water waves and vibrations of elastic membranes.
 Another common use for a hyperbolic function is the representation of a hanging chain or cable, also known as a catenary. If we introduce a coordinate system so that the low point of the chain lies along the [image: y]-axis, we can describe the height of the chain in terms of a hyperbolic function. 
 [image: A photograph of a spider web collecting dew drops.]Figure 6. The shape of a strand of silk in a spider’s web can be described in terms of a hyperbolic function. The same shape applies to a chain or cable hanging from two supports with only its own weight. (credit: “Mtpaley”, Wikimedia Commons) Using the definition of [image: \cosh(x)] and principles of physics, it can be shown that the height of a hanging chain can be described by the function [image: h(x)=a \cosh(x/a)+c] for certain constants [image: a] and [image: c].
  hyperbolic functions
 Hyperbolic cosine
 [image: \cosh x=\large \frac{e^x+e^{−x}}{2}]
  
 Hyperbolic sine
 [image: \sinh x=\large \frac{e^x-e^{−x}}{2}]
  
 Hyperbolic tangent
 [image: \tanh x=\large \frac{\sinh x}{\cosh x} \normalsize = \large \frac{e^x-e^{−x}}{e^x+e^{−x}}]
  
 Hyperbolic cosecant
 [image: \text{csch} \, x=\large \frac{1}{\sinh x} \normalsize = \large \frac{2}{e^x-e^{−x}}]
  
 Hyperbolic secant
 [image: \text{sech} \, x=\large \frac{1}{\cosh x} \normalsize = \large \frac{2}{e^x+e^{−x}}]
  
 Hyperbolic cotangent
 [image: \coth x=\large \frac{\cosh x}{\sinh x} \normalsize = \large \frac{e^x+e^{−x}}{e^x-e^{−x}}]
  The name cosh rhymes with “gosh,” whereas the name sinh is pronounced “cinch.” Tanh, sech, csch, and coth are pronounced “tanch,” “seech,” “coseech,” and “cotanch,” respectively.
  But why are these functions called hyperbolic functions?
 To answer this question, consider the quantity [image: \cosh^2 t-\sinh^2 t]. Using the definition of [image: \cosh] and [image: \sinh], we see that
 [image: \cosh^2 t-\sinh^2 t=\large \frac{e^{2t}+2+e^{-2t}}{4}-\frac{e^{2t}-2+e^{-2t}}{4} \normalsize =1]
  
 This identity is the analog of the trigonometric identity [image: \cos^2 t+\sin^2 t=1]. Here, given a value [image: t], the point [image: (x,y)=(\cosh t,\sinh t)] lies on the unit hyperbola [image: x^2-y^2=1] (Figure 7).
 [image: An image of a graph. The x axis runs from -1 to 3 and the y axis runs from -3 to 3. The graph is of the relation “(x squared) - (y squared) -1”. The left most point of the relation is at the x intercept, which is at the point (1, 0). From this point the relation both increases and decreases in curves as x increases. This relation is known as a hyperbola and it resembles a sideways “U” shape. There is a point plotted on the graph of the relation labeled “(cosh(1), sinh(1))”, which is at the approximate point (1.5, 1.2).]Figure 7. The unit hyperbola [image: \cosh^2 t-\sinh^2 t=1].  If you think hyperbolic functions look a lot like trigonometric ones, you’re not wrong! They share similar properties because they’re both connected to the concept of the exponential function [image: e^x]. Remember, while trigonometric functions relate to the unit circle, hyperbolic functions are associated with the unit hyperbola.
  Graphs of Hyperbolic Functions
 The graphs of [image: \cosh x] and [image: \sinh x], can be derived by observing how they relate to exponential functions.
 As [image: x] approaches towards infinity, both functions approach [image: \frac{1}{2}e^x] because the term [image: e^{−x}] becomes negligible.
 In contrast, as [image: x] moves towards negative infinity, [image: \cosh x] mirrors [image: \frac{1}{2}e^{−x}], while [image: \sinh x] mirrors [image: -\frac{1}{2}e^{−x}].
 Therefore, the graphs [image: \frac{1}{2}e^x, \, \frac{1}{2}e^{−x}], and [image: −\frac{1}{2}e^{−x}] provide a roadmap for sketching the graphs.
 When graphing [image: \tanh x], we note that its value starts at [image: 0] when [image: x] is [image: 0] and then ascends towards [image: 1] or descends towards  [image: -1] as [image: x] goes to positive or negative infinity, respectively.
 The graphs of the other three hyperbolic functions can be sketched using the graphs of [image: \cosh x, \, \sinh x], and [image: \tanh x] (Figure 8).
 [image: An image of six graphs. Each graph has an x axis that runs from -3 to 3 and a y axis that runs from -4 to 4. The first graph is of the function “y = cosh(x)”, which is a hyperbola. The function decreases until it hits the point (0, 1), where it begins to increase. There are also two functions that serve as a boundary for this function. The first of these functions is “y = (1/2)(e to power of -x)”, a decreasing curved function and the second of these functions is “y = (1/2)(e to power of x)”, an increasing curved function. The function “y = cosh(x)” is always above these two functions without ever touching them. The second graph is of the function “y = sinh(x)”, which is an increasing curved function. There are also two functions that serve as a boundary for this function. The first of these functions is “y = (1/2)(e to power of x)”, an increasing curved function and the second of these functions is “y = -(1/2)(e to power of -x)”, an increasing curved function that approaches the x axis without touching it. The function “y = sinh(x)” is always between these two functions without ever touching them. The third graph is of the function “y = sech(x)”, which increases until the point (0, 1), where it begins to decrease. The graph of the function has a hump. The fourth graph is of the function “y = csch(x)”. On the left side of the y axis, the function starts slightly below the x axis and decreases until it approaches the y axis, which it never touches. On the right side of the y axis, the function starts slightly to the right of the y axis and decreases until it approaches the x axis, which it never touches. The fifth graph is of the function “y = tanh(x)”, an increasing curved function. There are also two functions that serve as a boundary for this function. The first of these functions is “y = 1”, a horizontal line function and the second of these functions is “y = -1”, another horizontal line function. The function “y = tanh(x)” is always between these two functions without ever touching them. The sixth graph is of the function “y = coth(x)”. On the left side of the y axis, the function starts slightly below the boundary line “y = 1” and decreases until it approaches the y axis, which it never touches. On the right side of the y axis, the function starts slightly to the right of the y axis and decreases until it approaches the boundary line “y = -1”, which it never touches.]Figure 8. The hyperbolic functions involve combinations of [image: e^x] and [image: e^{−x}]. 
 Identities Involving Hyperbolic Functions
 Just as trigonometric functions have identities that allow for the simplification and transformation of expressions, hyperbolic functions also possess their own set of identities.
 hyperbolic function identities
 Hyperbolic Reflection Identities: 	[image: \cosh(−x)=\cosh x]
 	[image: \sinh(−x)=−\sinh x]
 
 Hyperbolic Pythagorean Identities:
 	[image: \cosh^2 x-\sinh^2 x=1]
 
 Hyperbolic Squared Identities:
 	[image: 1-\tanh^2 x=\text{sech}^2 x]
 	[image: \coth^2 x-1=\text{csch}^2 x]
 
 Hyperbolic Addition Formulas:
 	[image: \sinh(x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y]
 	[image: \cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y]
 
 Exponential Definitions of Hyperbolic Functions
 	[image: \cosh x+\sinh x=e^x]
 	[image: \cosh x-\sinh x=e^{−x}]
 
 
  	Simplify [image: \sinh(5 \ln x)].
 	If [image: \sinh x=\frac{3}{4}], find the values of the remaining five hyperbolic functions.
 
 Show Solution 
 	Using the definition of the [image: \sinh] function, we write [image: \sinh(5 \ln x)=\large \frac{e^{5 \ln x}-e^{-5 \ln x}}{2} \normalsize = \large \frac{e^{\ln(x^5)}-e^{\ln(x^{-5})}}{2} \normalsize =\large \frac{x^5-x^{-5}}{2}].
 
 	Using the identity [image: \cosh^2 x-\sinh^2 x=1], we see that [image: \cosh^2 x=1+\big(\frac{3}{4}\big)^2=\frac{25}{16}].
 Since [image: \cosh x \ge 1] for all [image: x], we must have [image: \cosh x=5/4]. Then, using the definitions for the other hyperbolic functions, we conclude that [image: \tanh x=3/5, \, \text{csch} \, x=4/3, \, \text{sech} \, x=4/5], and [image: \coth x=5/3].
 
 
 Watch the following video to see the worked solution to this example.https://youtube.com/watch?v=tOkk_pSFpzk%3Fcontrols%3D0%26start%3D1498%26end%3D1738%26autoplay%3D0For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this video using this link (opens in new window).
   [ohm_question hide_question_numbers=1]287174[/ohm_question]
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				 	Understand the natural logarithm and the mathematical constant e using integrals
 	Identify how to differentiate the natural logarithm function
 	Perform integrations where the natural logarithm is involved
 	Understand how to find derivatives and integrals of exponential functions
 	Convert logarithmic and exponential expressions to base e forms
 
  We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are irrational. The definition of the number [image: e] is another area where the previous development was somewhat incomplete. We now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.
 For purposes of this section, assume we have not yet defined the natural logarithm, the number [image: e], or any of the integration and differentiation formulas associated with these functions. 
 The Natural Logarithm as an Integral
 Recall the power rule for integrals:
 [image: \displaystyle\int {x}^{n}dx=\frac{{x}^{n+1}}{n+1}+C,n\ne \text{−}1.]
 This rule doesn’t work for [image: n=-1,] as it would force us to divide by zero. So, how do we integrate [image: \displaystyle\int \frac{1}{x}dx?] According to the Fundamental Theorem of Calculus, we know that [image: {\displaystyle\int }_{1}^{x}\dfrac{1}{t}dt] is an antiderivative of [image: \frac{1}{x}.] 
 Therefore, we define the natural logarithm function as follows:
 defining the natural logarithm
 For [image: x>0,] define the natural logarithm function by
 [image: \text{ln}x={\displaystyle\int }_{1}^{x}\frac{1}{t}dt]
  For [image: x>1,] this represents the area under the curve [image: y=\frac{1}{t}] from [image: 1] to [image: x.] For [image: x<1,] we have,
 [image: {\displaystyle\int }_{1}^{x}\frac{1}{t}dt=\text{−}{\displaystyle\int }_{x}^{1}\frac{1}{t}dt,],
 so it is the negative of the area under the curve from [image: x\text{ to }1].
 [image: This figure has two graphs. The first is the curve y=1/t. It is decreasing and in the first quadrant. Under the curve is a shaded area. The area is bounded to the left at x=1. The area is labeled “area=lnx”. The second graph is the same curve y=1/t. It has shaded area under the curve bounded to the right by x=1. It is labeled “area=-lnx”.]Figure 1. (a) When [image: x>1,] the natural logarithm is the area under the curve [image: y=\frac{1}{t}] from [image: 1\text{ to }x.] (b) When [image: x<1,] the natural logarithm is the negative of the area under the curve from [image: x] to 1. Notice that [image: \text{ln}1=0.] Furthermore, since [image: \frac{1}{t} > 0] for [image: t > 0], [image: \ln x] is increasing for [image: x > 0].
 Properties of the Natural Logarithm
 Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result of to the Fundamental Theorem of Calculus.
 derivative of the natural logarithm
 For [image: x>0,] the derivative of the natural logarithm is given by
 [image: \frac{d}{dx}\text{ln}x=\dfrac{1}{x}.]
 The function [image: \text{ln}x] is differentiable; therefore, it is continuous.
 A graph of [image: \text{ln}x] is shown below. Notice that it is continuous throughout its domain of [image: (0,\infty ).]
 [image: This figure is a graph. It is an increasing curve labeled f(x)=lnx. The curve is increasing with the y-axis as an asymptote. The curve intersects the x-axis at x=1.]Figure 2. The graph of [image: f(x)=\text{ln}x] shows that it is a continuous function. Calculate the following derivatives:
 	[image: \frac{d}{dx}\text{ln}(5{x}^{3}-2)]
 	[image: \frac{d}{dx}{(\text{ln}(3x))}^{2}]
 
 Show Solution 
 We need to apply the chain rule in both cases.
 	[image: \frac{d}{dx}\text{ln}(5{x}^{3}-2)=\frac{15{x}^{2}}{5{x}^{3}-2}]
 	[image: \frac{d}{dx}{(\text{ln}(3x))}^{2}=\frac{2(\text{ln}(3x))·3}{3x}=\frac{2(\text{ln}(3x))}{x}]
 
   Note that if we use the absolute value function and create a new function [image: \text{ln}|x|,] we can extend the domain of the natural logarithm to include [image: x<0.] Then [image: (\frac{d}{dx})\text{ln}|x|=\frac{1}{x}.] This gives rise to the familiar integration formula.
 integral of (1/[image: u]) du
 The natural logarithm is the antiderivative of the function [image: f(u)=1\text{/}u\text{:}]
 [image: \displaystyle\int \frac{1}{u}du=\text{ln}|u|+C]
  Calculate the integral [image: \displaystyle\int \frac{{x}^{2}}{{x}^{3}+6}dx.]
 Show Solution 
 [image: \displaystyle\int \frac{{x}^{2}}{{x}^{3}+6}dx=\frac{1}{3}\text{ln}|{x}^{3}+6|+C]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=6_9o-2mK1tk%3Fcontrols%3D0%26start%3D137%26end%3D234%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “6.7 Try it Problems” here (opens in new window).
 
  [ohm_question hide_question_numbers=1]288449[/ohm_question]
  Although we have called our function a “logarithm,” we have not actually proved that any of the properties of logarithms hold for this function. We do so here.
 properties of the natural logarithm
 If [image: a,b>0] and [image: r] is a rational number, then
 	[image: \text{ln}1=0]
 	[image: \text{ln}(ab)=\text{ln}a+\text{ln}b]
 	[image: \text{ln}(\frac{a}{b})=\text{ln}a-\text{ln}b]
 	[image: \text{ln}({a}^{r})=r\text{ln}a]
 
  Proof
 
 	By definition, [image: \text{ln}1={\displaystyle\int }_{1}^{1}\frac{1}{t}dt=0.]
 	We have [image: \text{ln}(ab)={\displaystyle\int }_{1}^{ab}\frac{1}{t}dt={\displaystyle\int }_{1}^{a}\frac{1}{t}dt+{\displaystyle\int }_{a}^{ab}\frac{1}{t}dt.]
 Use [image: u\text{-substitution}] on the last integral in this expression. Let [image: u=t\text{/}a.] Then [image: du=(1\text{/}a)dt.] Furthermore, when [image: t=a,u=1,] and when [image: t=ab,u=b.] So we get
 [image: \text{ln}(ab)={\displaystyle\int }_{1}^{a}\frac{1}{t}dt+{\displaystyle\int }_{a}^{ab}\frac{1}{t}dt={\displaystyle\int }_{1}^{a}\frac{1}{t}dt+{\displaystyle\int }_{1}^{ab}\frac{a}{t}·\frac{1}{a}dt={\displaystyle\int }_{1}^{a}\frac{1}{t}dt+{\displaystyle\int }_{1}^{b}\frac{1}{u}du=\text{ln}a+\text{ln}b.]
  
 
 	Note that [image: \frac{d}{dx}\text{ln}({x}^{r})=\frac{r{x}^{r-1}}{{x}^{r}}=\frac{r}{x}.]
 Furthermore,
 [image: \frac{d}{dx}(r\text{ln}x)=\frac{r}{x}.]
 Since the derivatives of these two functions are the same, by the Fundamental Theorem of Calculus, they must differ by a constant. So we have
 [image: \text{ln}({x}^{r})=r\text{ln}x+C]
 for some constant [image: C.] Taking [image: x=1,] we get
 [image: \begin{array}{ccc}\hfill \text{ln}({1}^{r})& =\hfill & r\text{ln}(1)+C\hfill \\ \hfill 0& =\hfill & r(0)+C\hfill \\ \hfill C& =\hfill & 0.\hfill \end{array}]
 Thus [image: \text{ln}({x}^{r})=r\text{ln}x] and the proof is complete. Note that we can extend this property to irrational values of [image: r] later in this section.
 Part iii. follows from parts ii. and iv. and the proof is left to you.
 
 
 [image: _\blacksquare]
  Use properties of logarithms to simplify the following expression into a single logarithm:
 [image: \text{ln}9-2\text{ln}3+\text{ln}(\frac{1}{3})] 
 Show Solution 
 We have
 [image: \text{ln}9-2\text{ln}3+\text{ln}(\frac{1}{3})=\text{ln}({3}^{2})-2\text{ln}3+\text{ln}({3}^{-1})=2\text{ln}3-2\text{ln}3-\text{ln}3=\text{−}\text{ln}3.]
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				Defining the Number [image: e]
 Now that we have the natural logarithm defined, we can use that function to define the number [image: e.]
 the number [image: e]
 The number [image: e] is defined to be the real number such that
 [image: \text{ln}e=1]
  To put it another way, the area under the curve [image: y=\frac{1}{t}] between [image: t=1] and [image: t=e] is [image: 1] (Figure 3).
 [image: This figure is a graph. It is the curve y=1/t. It is decreasing and in the first quadrant. Under the curve is a shaded area. The area is bounded to the left at x=1 and to the right at x=e. The area is labeled “area=1”.]Figure 3. The area under the curve from 1 to [image: e] is equal to one. The proof that such a number exists and is unique is left to you. (Hint: Use the Intermediate Value Theorem to prove existence and the fact that [image: \text{ln}x] is increasing to prove uniqueness.)
  The number [image: e] can be shown to be irrational, although we won’t do so here. Its approximate value is given by
 [image: e\approx 2.71828182846]
 The Exponential Function
 We now turn our attention to the function [image: {e}^{x}.] Note that the natural logarithm is one-to-one and therefore has an inverse function. For now, we denote this inverse function by [image: \text{exp }x.] Then,
 [image: \text{exp}(\text{ln }x)=x\text{ for }x>0\text{ and }\text{ln}(\text{exp }x)=x\text{ for all }x.]
 The following figure shows the graphs of [image: \text{exp }x] and [image: \text{ln }x.]
 [image: This figure is a graph. It has three curves. The first curve is labeled exp x. It is an increasing curve with the x-axis as a horizontal asymptote. It intersects the y-axis at y=1. The second curve is a diagonal line through the origin. The third curve is labeled lnx. It is an increasing curve with the y-axis as an vertical axis. It intersects the x-axis at x=1.]Figure 4. The graphs of [image: \text{ln}x] and [image: \text{exp}x.] We hypothesize that [image: \text{exp }x={e}^{x}.]
 For rational values of [image: x,] this is easy to show. If [image: x] is rational, then we have [image: \text{ln }({e}^{x})=x\text{ln }e=x.] Thus, when [image: x] is rational, [image: {e}^{x}=\text{exp }x.]
 For irrational values of [image: x,] we simply define [image: {e}^{x}] as the inverse function of [image: \text{ln }x.]
 defining the exponential function
 For any real number [image: x,] define [image: y={e}^{x}] to be the number for which
 [image: \text{ln}y=\text{ln}({e}^{x})=x]
  Then we have [image: {e}^{x}=\text{exp}(x)] for all [image: x,] and thus
 [image: {e}^{\text{ln}x}=x\text{ for }x>0\text{ and }\text{ln}({e}^{x})=x]
 for all [image: x.]
 Properties of the Exponential Function
 Since the exponential function was defined in terms of an inverse function, and not in terms of a power of [image: e,] we must verify that the usual laws of exponents hold for the function [image: {e}^{x}.]
 properties of the exponential function
 If [image: p] and [image: q] are any real numbers and [image: r] is a rational number, then
 	[image: {e}^{p}{e}^{q}={e}^{p+q}]
 	[image: \frac{{e}^{p}}{{e}^{q}}={e}^{p-q}]
 	[image: {({e}^{p})}^{r}={e}^{pr}]
 
  Proof
 
 Note that if [image: p] and [image: q] are rational, the properties hold. However, if [image: p] or [image: q] are irrational, we must apply the inverse function definition of [image: {e}^{x}] and verify the properties. Only the first property is verified here; the other two are left to you. We have
 [image: \text{ln}({e}^{p}{e}^{q})=\text{ln}({e}^{p})+\text{ln}({e}^{q})=p+q=\text{ln}({e}^{p+q}).]
  
 Since [image: \text{ln}x] is one-to-one, then
 [image: {e}^{p}{e}^{q}={e}^{p+q}.]
 [image: _\blacksquare]
  As with part iv. of the logarithm properties, we can extend property iii. to irrational values of [image: r,] and we do so by the end of the section.
 We also want to verify the differentiation formula for the function [image: y={e}^{x}.]
 To do this, we need to use implicit differentiation. Let [image: y={e}^{x}.] Then,
 [image: \begin{array}{ccc}\hfill \text{ln}y& =\hfill & x\hfill \\ \hfill \frac{d}{dx}\text{ln}y& =\hfill & \frac{d}{dx}x\hfill \\ \hfill \frac{1}{y}\frac{dy}{dx}& =\hfill & 1\hfill \\ \hfill \frac{dy}{dx}& =\hfill & y.\hfill \end{array}]
 Thus, we see
 [image: \frac{d}{dx}{e}^{x}={e}^{x}]
 as desired, which leads immediately to the integration formula
 [image: \displaystyle\int {e}^{x}dx={e}^{x}+C]
 We apply these formulas in the following examples.
 Evaluate the following derivatives:
 	[image: \frac{d}{dt}{e}^{3t}{e}^{{t}^{2}}]
 	[image: \frac{d}{dx}{e}^{3{x}^{2}}]
 
 Show Solution 
 We apply the chain rule as necessary.
 	[image: \frac{d}{dt}{e}^{3t}{e}^{{t}^{2}}=\frac{d}{dt}{e}^{3t+{t}^{2}}={e}^{3t+{t}^{2}}(3+2t)]
 	[image: \frac{d}{dx}{e}^{3{x}^{2}}={e}^{3{x}^{2}}6x]
 
  
  Evaluate the following integral: [image: \displaystyle\int \frac{4}{{e}^{3x}}dx.]
 Show Solution 
 [image: \displaystyle\int \frac{4}{{e}^{3x}}dx=-\frac{4}{3}{e}^{-3x}+C]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=6_9o-2mK1tk%3Fcontrols%3D0%26start%3D359%26end%3D460%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “6.7 Try It Problems” here (opens in new window).
  [ohm_question hide_question_numbers=1]20047[/ohm_question]
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				General Logarithmic and Exponential Functions
 We close this section by looking at exponential functions and logarithms with bases other than [image: e.]
 Exponential functions are functions of the form [image: f(x)={a}^{x}.] Note that unless [image: a=e,] we still do not have a mathematically rigorous definition of these functions for irrational exponents.
 Let’s rectify that here by defining the function [image: f(x)={a}^{x}] in terms of the exponential function [image: {e}^{x}.] 
 definition of general exponential functions
 For any [image: a>0,] and for any real number [image: x,] define [image: y={a}^{x}] as follows:
 [image: y={a}^{x}={e}^{x\text{ln }a}]
  Now [image: {a}^{x}] is defined rigorously for all values of [image: x].
 This definition also allows us to generalize property iv. of logarithms and property iii. of exponential functions to apply to both rational and irrational values of [image: r.] It is straightforward to show that properties of exponents hold for general exponential functions defined in this way.
 Let’s now apply this definition to calculate a differentiation formula for [image: {a}^{x}.] We have
 [image: \frac{d}{dx}{a}^{x}=\frac{d}{dx}{e}^{x\text{ln }a}={e}^{x\text{ln }a}\text{ln}a={a}^{x}\text{ln }a.]
 The corresponding integration formula follows immediately.
 derivatives and integrals involving general exponential functions
 Let [image: a>0.] Then,
 [image: \frac{d}{dx}{a}^{x}={a}^{x}\text{ln }a]
 and
 [image: \displaystyle\int {a}^{x}dx=\frac{1}{\text{ln }a}{a}^{x}+C]
  If [image: a\ne 1,] then the function [image: {a}^{x}] is one-to-one and has a well-defined inverse. Its inverse is denoted by [image: {\text{log}}_{a}x.] Then,
 [image: y={\text{log}}_{a}x\text{if and only if}x={a}^{y}]
 Note that general logarithm functions can be written in terms of the natural logarithm. Let [image: y={\text{log}}_{a}x.] Then, [image: x={a}^{y}.] Taking the natural logarithm of both sides of this second equation, we get
 [image: \begin{array}{ccc}\hfill \text{ln}x& =\hfill & \text{ln}({a}^{y})\hfill \\ \hfill \text{ln}x& =\hfill & y\text{ln}a\hfill \\ \hfill y& =\hfill & \frac{\text{ln}x}{\text{ln}a}\hfill \\ \hfill {\text{log}}_{}x& =\hfill & \frac{\text{ln}x}{\text{ln}a}.\hfill \end{array}]
 Thus, we see that all logarithmic functions are constant multiples of one another. Next, we use this formula to find a differentiation formula for a logarithm with base [image: a.] Again, let [image: y={\text{log}}_{a}x.] Then,
 [image: \begin{array}{cc}\hfill \frac{dy}{dx}& =\frac{d}{dx}({\text{log}}_{a}x)\hfill \\ & =\frac{d}{dx}(\frac{\text{ln}x}{\text{ln}a})\hfill \\ & =(\frac{1}{\text{ln}a})\frac{d}{dx}(\text{ln}x)\hfill \\ & =\frac{1}{\text{ln}a}·\frac{1}{x}\hfill \\ & =\frac{1}{x\text{ln}a}.\hfill \end{array}]
 derivatives of general logarithm functions
 Let [image: a>0.] Then,
 [image: \frac{d}{dx}{\text{log}}_{a}x=\frac{1}{x\text{ln}a}]
  Evaluate the following derivatives:
 	[image: \frac{d}{dt}({4}^{t}·{2}^{{t}^{2}})]
 	[image: \frac{d}{dx}{\text{log}}_{8}(7{x}^{2}+4)]
 
 Show Solution 
 We need to apply the chain rule as necessary.
 	[image: \frac{d}{dt}({4}^{t}·{2}^{{t}^{2}})=\frac{d}{dt}({2}^{2t}·{2}^{{t}^{2}})=\frac{d}{dt}({2}^{2t+{t}^{2}})={2}^{2t+{t}^{2}}\text{ln}(2)(2+2t)]
 	[image: \frac{d}{dx}{\text{log}}_{8}(7{x}^{2}+4)=\frac{1}{(7{x}^{2}+4)(\text{ln}8)}(14x)]
 
   Evaluate the following integral: [image: \displaystyle\int {x}^{2}{2}^{{x}^{3}}dx.]
 Show Solution 
 [image: \displaystyle\int {x}^{2}{2}^{{x}^{3}}dx=\frac{1}{3\text{ln}2}{2}^{{x}^{3}}+C]
 Watch the following video to see the worked solution to the above Try It.
 https://youtube.com/watch?v=6_9o-2mK1tk%3Fcontrols%3D0%26start%3D664%26end%3D789%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “6.7 Try It Problems” here (opens in new window).
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				 	Understand the natural logarithm and the mathematical constant [image: e] using integrals
 	Identify how to differentiate the natural logarithm function
 	Perform integrations where the natural logarithm is involved
 	Understand how to find derivatives and integrals of exponential functions
 	Convert logarithmic and exponential expressions to base e forms
 
  Integrals, Exponential Functions, and Logarithms
 https://youtube.com/watch?v=zmnh448y_ZU%3Fsi%3DxK_q41S_THs-JGGl
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				 	Apply the exponential growth formula to real-world cases like increasing populations or investments
 	Describe how long it takes for quantities to double or reduce by half
 	Implement the exponential decay formula for scenarios like radioactive substances decaying or objects cooling down
 
  Exponential Growth Model
 Many systems exhibit exponential growth. These systems follow a model of the form [image: y={y}_{0}{e}^{kt},] where [image: {y}_{0}] represents the initial state of the system and [image: k] is a positive constant, called the growth constant.
 Notice that in an exponential growth model, we have
 [image: {y}^{\prime }=k{y}_{0}{e}^{kt}=ky]
 That is, the rate of growth is proportional to the current function value. This is a key feature of exponential growth.
 exponential growth model
 Systems that exhibit exponential growth increase according to the mathematical model
 [image: y={y}_{0}{e}^{kt},]
  
 where [image: {y}_{0}] represents the initial state of the system and [image: k>0] is a constant, called the growth constant.
  Population Growth
 Population growth is a common example of exponential growth.
 Consider a population of bacteria, for instance. It seems plausible that the rate of population growth would be proportional to the size of the population. After all, the more bacteria there are to reproduce, the faster the population grows.
 Figure 1 and the table below represent the growth of a population of bacteria with an initial population of [image: 200] bacteria and a growth constant of [image: 0.02]. Notice that after only [image: 2] hours [image: (120] minutes), the population is [image: 10] times its original size!
 [image: This figure is a graph. It is the exponential curve for y=200e^0.02t. It is in the first quadrant and an increasing function. It begins on the y-axis.]Figure 1. An example of exponential growth for bacteria. Exponential Growth of a Bacterial Population 	Time (min) 	Population Size (no. of bacteria) 
  	10 	244 
 	20 	298 
 	30 	364 
 	40 	445 
 	50 	544 
 	60 	664 
 	70 	811 
 	80 	991 
 	90 	1210 
 	100 	1478 
 	110 	1805 
 	120 	2205 
  
  Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential growth models, we must always be careful to interpret the function values in the context of the phenomenon we are modeling.
  Consider the population of bacteria described earlier. This population grows according to the function [image: f(t)=200{e}^{0.02t},] where [image: t] is measured in minutes. How many bacteria are present in the population after 5 hours [image: (300] minutes)? When does the population reach 100,000 bacteria?
 Show Solution 
 We have [image: f(t)=200{e}^{0.02t}.] Then
 [image: f(300)=200{e}^{0.02(300)}\approx 80,686.]
 There are 80,686 bacteria in the population after 5 hours.
 To find when the population reaches 100,000 bacteria, we solve the equation
 [image: \begin{array}{ccc}\hfill 100,000& =\hfill & 200{e}^{0.02t}\hfill \\ \hfill 500& =\hfill & {e}^{0.02t}\hfill \\ \hfill \text{ln}500& =\hfill & 0.02t\hfill \\ \hfill t& =\hfill & \frac{\text{ln}500}{0.02}\approx 310.73.\hfill \end{array}]
 The population reaches 100,000 bacteria after 310.73 minutes.
   Let’s now turn our attention to a financial application: compound interest.
 Compound Interest
 Interest that is not compounded is called simple interest. Simple interest is paid once, at the end of the specified time period (usually 1 year). 
 If we put [image: $1000] in a savings account earning [image: 2\%] simple interest per year, then at the end of the year we have,
 [image: 1000(1+0.02)=$1020.]
  Compound interest is paid multiple times per year, depending on the compounding period.
 If a bank compounds the interest every [image: 6] months, it credits half of the year’s interest to the account after [image: 6] months.
 During the second half of the year, the account earns interest not only on the initial [image: $1000,] but also on the interest earned during the first half of the year. Mathematically speaking, at the end of the year, we have
 [image: 1000{(1+\frac{0.02}{2})}^{2}=$1020.10.]
 Similarly, if the interest is compounded every [image: 4] months, we have
 [image: 1000{(1+\frac{0.02}{3})}^{3}=$1020.13,]
 and if the interest is compounded daily [image: (365] times per year), we have [image: $1020.20.]
 If we extend this concept, so that the interest is compounded continuously, after [image: t] years we have
 [image: 1000\underset{n\to \infty }{\text{lim}}{(1+\frac{0.02}{n})}^{nt}.]
 Now let’s manipulate this expression so that we have an exponential growth function. Recall that the number [image: e] can be expressed as a limit:
 [image: e=\underset{m\to \infty }{\text{lim}}{(1+\frac{1}{m})}^{m}.]
 Based on this, we want the expression inside the parentheses to have the form [image: (1+1\text{/}m).] Let [image: n=0.02m.] Note that as [image: n\to \infty ,] [image: m\to \infty] as well. Then we get
 [image: 1000\underset{n\to \infty }{\text{lim}}{(1+\frac{0.02}{n})}^{nt}=1000\underset{m\to \infty }{\text{lim}}{(1+\frac{0.02}{0.02m})}^{0.02mt}=1000{\left[\underset{m\to \infty }{\text{lim}}{(1+\frac{1}{m})}^{m}\right]}^{0.02t}.]
 We recognize the limit inside the brackets as the number [image: e.] So, the balance in our bank account after [image: t] years is given by [image: 1000{e}^{0.02t}.]
  
 
  Generalizing this concept, we see that if a bank account with an initial balance of [image: $P] earns interest at a rate of [image: r\text{%},] compounded continuously, then the balance of the account after [image: t] years is
 [image: \text{Balance}=P{e}^{rt}.]
 A 25-year-old student is offered an opportunity to invest some money in a retirement account that pays [image: 5\%] annual interest compounded continuously. How much does the student need to invest today to have [image: $1] million when she retires at age [image: 65?]
 What if she could earn [image: 6\%] annual interest compounded continuously instead?
 Show Solution 
 We have
 [image: \begin{array}{ccc}\hfill 1,000,000& =\hfill & P{e}^{0.05(40)}\hfill \\ \hfill P& =\hfill & 135,335.28.\hfill \end{array}]
 She must invest [image: $135,335.28] at [image: 5\%] interest.
 If, instead, she is able to earn [image: 6\text{%},] then the equation becomes
 [image: \begin{array}{ccc}\hfill 1,000,000& =\hfill & P{e}^{0.06(40)}\hfill \\ \hfill P& =\hfill & 90,717.95.\hfill \end{array}]
 In this case, she needs to invest only [image: $90,717.95.] This is roughly two-thirds the amount she needs to invest at [image: 5\text{%}.] The fact that the interest is compounded continuously greatly magnifies the effect of the 1% increase in interest rate.
   [ohm_question hide_question_numbers=1]64715[/ohm_question]
  Doubling Time
 If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the same amount of time for a population of bacteria to grow from [image: 100] to [image: 200] bacteria as it does to grow from [image: 10,000] to [image: 20,000] bacteria. This time is called the doubling time.
 To calculate the doubling time, we want to know when the quantity reaches twice its original size. So we have
 [image: \begin{array}{ccc}\hfill 2{y}_{0}& =\hfill & {y}_{0}{e}^{kt}\hfill \\ \hfill 2& =\hfill & {e}^{kt}\hfill \\ \hfill \text{ln}2& =\hfill & kt\hfill \\ \hfill t& =\hfill & \frac{\text{ln}2}{k}.\hfill \end{array}]
 doubling time
 If a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double. It is given by
 [image: \text{Doubling time}=\frac{\text{ln}2}{k}.]
  Assume a population of fish grows exponentially. A pond is stocked initially with [image: 500] fish. After [image: 6] months, there are [image: 1000] fish in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish population reaches [image: 10,000]. When will the owner’s friends be allowed to fish?
 Show Solution 
 We know it takes the population of fish [image: 6] months to double in size. So, if [image: t] represents time in months, by the doubling-time formula, we have [image: 6=(\text{ln}2)\text{/}k.] Then, [image: k=(\text{ln}2)\text{/}6.] Thus, the population is given by [image: y=500{e}^{((\text{ln}2)\text{/}6)t}.] To figure out when the population reaches [image: 10,000] fish, we must solve the following equation:
 [image: \begin{array}{ccc}\hfill 10,000& =\hfill & 500{e}^{(\text{ln}2\text{/}6)t}\hfill \\ \hfill 20& =\hfill & {e}^{(\text{ln}2\text{/}6)t}\hfill \\ \hfill \text{ln}20& =\hfill & (\frac{\text{ln}2}{6})t\hfill \\ \hfill t& =\hfill & \frac{6(\text{ln}20)}{\text{ln}2}\approx 25.93.\hfill \end{array}]
 The owner’s friends have to wait [image: 25.93] months (a little more than [image: 2] years) to fish in the pond.
   [ohm_question hide_question_numbers=1]100768[/ohm_question]
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				Exponential Decay Model
 Exponential functions can also be used to model populations that shrink (from disease, for example), or chemical compounds that break down over time. We say that such systems exhibit exponential decay, rather than exponential growth. The model is nearly the same, except there is a negative sign in the exponent. Thus, for some positive constant [image: k,] we have
 [image: y={y}_{0}{e}^{\text{−}kt}.]
 As with exponential growth, there is a differential equation associated with exponential decay. We have
 [image: {y}^{\prime }=\text{−}k{y}_{0}{e}^{\text{−}kt}=\text{−}ky.]
 exponential decay model
 Systems that exhibit exponential decay behave according to the model
 [image: y={y}_{0}{e}^{\text{−}kt},]
 where [image: {y}_{0}] represents the initial state of the system and [image: k>0] is a constant, called the decay constant.
  
 The following figure shows a graph of a representative exponential decay function.
 [image: This figure is a graph in the first quadrant. It is a decreasing exponential curve. It begins on the y-axis at 2000 and decreases towards the t-axis.]Figure 2. An example of exponential decay. Let’s look at a physical application of exponential decay.
 Newton’s Law of Cooling
 Newton’s law of cooling says that an object cools at a rate proportional to the difference between the temperature of the object and the temperature of the surroundings.
 In other words, if [image: T] represents the temperature of the object and [image: {T}_{a}] represents the ambient temperature in a room, then
 [image: {T}^{\prime }=\text{−}k(T-{T}_{a}).]
 Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function, and this expression has the additional [image: {T}_{a}] term. Fortunately, we can make a change of variables that resolves this issue.
 Let [image: y(t)=T(t)-{T}_{a}.] Then [image: {y}^{\prime }(t)={T}^{\prime }(t)-0={T}^{\prime }(t),] and our equation becomes
 [image: {y}^{\prime }=\text{−}ky.]
 From our previous work, we know this relationship between [image: y] and its derivative leads to exponential decay. Thus,
 [image: y={y}_{0}{e}^{\text{−}kt},]
 and we see that
 [image: \begin{array}{ccc}\hfill T-{T}_{a}& =\hfill & ({T}_{0}-{T}_{a}){e}^{\text{−}kt}\hfill \\ \hfill T& =\hfill & ({T}_{0}-{T}_{a}){e}^{\text{−}kt}+{T}_{a}\hfill \end{array}]
 where [image: {T}_{0}] represents the initial temperature.
 Let’s apply this formula in the following example.
 According to experienced baristas, the optimal temperature to serve coffee is between [image: 155\text{°}\text{F}] and [image: 175\text{°}\text{F}.] Suppose coffee is poured at a temperature of [image: 200\text{°}\text{F},] and after 2 minutes in a [image: 70\text{°}\text{F}] room it has cooled to [image: 180\text{°}\text{F}.] When is the coffee first cool enough to serve? When is the coffee too cold to serve? Round answers to the nearest half minute.
 Show Solution 
 We have
 [image: \begin{array}{ccc}\hfill T& =\hfill & ({T}_{0}-{T}_{a}){e}^{\text{−}kt}+{T}_{a}\hfill \\ \hfill 180& =\hfill & (200-70){e}^{\text{−}k(2)}+70\hfill \\ \hfill 110& =\hfill & 130{e}^{-2k}\hfill \\ \hfill \frac{11}{13}& =\hfill & {e}^{-2k}\hfill \\ \hfill \text{ln}\frac{11}{13}& =\hfill & -2k\hfill \\ \hfill \text{ln}11-\text{ln}13& =\hfill & -2k\hfill \\ \hfill k& =\hfill & \frac{\text{ln}13-\text{ln}11}{2}.\hfill \end{array}]
 Then, the model is
 [image: T=130{e}^{(\text{ln}11-\text{ln}13\text{/}2)t}+70.]
 The coffee reaches [image: 175\text{°}\text{F}] when
 [image: \begin{array}{ccc}\hfill 175& =\hfill & 130{e}^{(\text{ln}11-\text{ln}13\text{/}2)t}+70\hfill \\ \hfill 105& =\hfill & 130{e}^{(\text{ln}11-\text{ln}13\text{/}2)t}\hfill \\ \hfill \frac{21}{26}& =\hfill & {e}^{(\text{ln}11-\text{ln}13\text{/}2)t}\hfill \\ \hfill \text{ln}\frac{21}{26}& =\hfill & \frac{\text{ln}11-\text{ln}13}{2}t\hfill \\ \hfill \text{ln}21-\text{ln}26& =\hfill & \frac{\text{ln}11-\text{ln}13}{2}t\hfill \\ \hfill t& =\hfill & \frac{2(\text{ln}21-\text{ln}26)}{\text{ln}11-\text{ln}13}\approx 2.56.\hfill \end{array}]
 The coffee can be served about 2.5 minutes after it is poured. The coffee reaches [image: 155\text{°}\text{F}] at
 [image: \begin{array}{ccc}\hfill 155& =\hfill & 130{e}^{(\text{ln}11-\text{ln}13\text{/}2)t}+70\hfill \\ \hfill 85& =\hfill & 130{e}^{(\text{ln}11-\text{ln}13)t}\hfill \\ \hfill \frac{17}{26}& =\hfill & {e}^{(\text{ln}11-\text{ln}13)t}\hfill \\ \hfill \text{ln}17-\text{ln}26& =\hfill & (\frac{\text{ln}11-\text{ln}13}{2})t\hfill \\ \hfill t& =\hfill & \frac{2(\text{ln}17-\text{ln}26)}{\text{ln}11-\text{ln}13}\approx 5.09.\hfill \end{array}]
 The coffee is too cold to be served about 5 minutes after it is poured.
  
  [ohm_question hide_question_numbers=1]288450[/ohm_question]
  Half-Life and Radioactive Decay
 Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a constant half-life.
 To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we have
 [image: \begin{array}{ccc}\hfill \frac{{y}_{0}}{2}& =\hfill & {y}_{0}{e}^{\text{−}kt}\hfill \\ \hfill \frac{1}{2}& =\hfill & {e}^{\text{−}kt}\hfill \\ \hfill -\text{ln}2& =\hfill & \text{−}kt\hfill \\ \hfill t& =\hfill & \frac{\text{ln}2}{k}.\hfill \end{array}]
 Note: This is the same expression we came up with for doubling time.
 half-life
 If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is given by
 [image: \text{Half-life}=\frac{\text{ln}2}{k}]
 
  One of the most common applications of an exponential decay model is carbon dating. [image: \text{Carbon-}14] decays (emits a radioactive particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon was originally present in an object and how much carbon remains, we can determine the age of the object.
 The half-life of [image: \text{carbon-}14] is approximately [image: 5730] years—meaning, after that many years, half the material has converted from the original [image: \text{carbon-}14] to the new nonradioactive [image: \text{nitrogen-}14.]
 Another example of radioactive decay is uranium-238, which decays into lead-206 over a much longer period, with a half-life of about [image: 4.5] billion years. This property is often used to date rocks and fossils, providing important insights into the history of the Earth and its geological events.
  If we have [image: 100] g [image: \text{carbon-}14] today, how much is left in [image: 50] years?  
 Show Solution 
 We have
 [image: \begin{array}{ccc}\hfill 5730& =\hfill & \frac{\text{ln}2}{k}\hfill \\ \hfill k& =\hfill & \frac{\text{ln}2}{5730}.\hfill \end{array}]
 So, the model says
 [image: y=100{e}^{\text{−}(\text{ln}2\text{/}5730)t}.]
 In 50 years, we have
 [image: \begin{array}{ccc}\hfill y& =\hfill & 100{e}^{\text{−}(\text{ln}2\text{/}5730)(50)}\hfill \\ & \approx \hfill & 99.40.\hfill \end{array}]
 Therefore, in 50 years, 99.40 g of [image: \text{carbon-}14] remains.
  
  If an artifact that originally contained [image: 100] g of carbon now contains [image: 10] g of carbon, how old is it? Round the answer to the nearest hundred years.
 Show Solution 
 To determine the age of the artifact, we must solve
 [image: \begin{array}{ccc}\hfill 10& =\hfill & 100{e}^{\text{−}(\text{ln}2\text{/}5730)t}\hfill \\ \hfill \frac{1}{10}& =\hfill & {e}^{\text{−}(\text{ln}2\text{/}5730)t}\hfill \\ \hfill t& \approx \hfill & 19035.\hfill \end{array}]
 The artifact is about 19,000 years old.
   [ohm_question hide_question_numbers=1]5787[/ohm_question]
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		Exponential Growth and Decay: Apply It

								

	
				 	Apply the exponential growth formula to real-world cases like increasing populations or investments
 	Describe how long it takes for quantities to double or reduce by half
 	Implement the exponential decay formula for scenarios like radioactive substances decaying or objects cooling down
 
  Exponential Growth and Decay
 https://youtube.com/watch?v=M9rcYTuFG4w%3Fsi%3DIaDX4PV6vYgCzXIx https://youtube.com/watch?v=iT2tdp8Z0nY%3Fsi%3DJajoi1ukMgycvhxM
 https://youtube.com/watch?v=R3sl_nT09H0%3Fsi%3DUUqj3uTHOiZXEwpL
  https://youtube.com/watch?v=xDoNxBG1J84%3Fsi%3DBP6EXHpVS8LQf4SO
 https://youtube.com/watch?v=ASV6vqyQEs0%3Fsi%3DutBu-c8Dhlw-pc7_
  Note: These videos use [image: P] and [image: P_0] where the text uses [image: y] and [image: y_0] in the exponential growth and decay equations. While the notation looks different, they are saying the same thing.
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				 	Differentiate and integrate hyperbolic functions and their inverse forms
 	Understand the practical situations where the catenary curve appears
 
  Derivatives and Integrals of the Hyperbolic Functions
 The hyperbolic sine ([image: sinh]) and hyperbolic cosine ([image: cosh]) functions are defined as:
 [image: \text{sinh}x=\dfrac{{e}^{x}-{e}^{\text{−}x}}{2}\text{     and     }\text{cosh}x=\dfrac{{e}^{x}+{e}^{\text{−}x}}{2}]
 The other hyperbolic functions are then defined in terms of [image: \text{sinh}x] and [image: \text{cosh}x.] The graphs of these functions provide insights into their behaviors.
 [image: This figure has six graphs. The first graph labeled “a” is of the function y=sinh(x). It is an increasing function from the 3rd quadrant, through the origin to the first quadrant. The second graph is labeled “b” and is of the function y=cosh(x). It decreases in the second quadrant to the intercept y=1, then becomes an increasing function. The third graph labeled “c” is of the function y=tanh(x). It is an increasing function from the third quadrant, through the origin, to the first quadrant. The fourth graph is labeled “d” and is of the function y=coth(x). It has two pieces, one in the third quadrant and one in the first quadrant with a vertical asymptote at the y-axis. The fifth graph is labeled “e” and is of the function y=sech(x). It is a curve above the x-axis, increasing in the second quadrant, to the y-axis at y=1 and then decreases. The sixth graph is labeled “f” and is of the function y=csch(x). It has two pieces, one in the third quadrant and one in the first quadrant with a vertical asymptote at the y-axis.]Figure 1. Graphs of the hyperbolic functions. It is straightforward to develop differentiation formulas for hyperbolic functions. For instance:
 [image: \begin{array}{cc}\hfill \frac{d}{dx}(\text{sinh}x)& =\frac{d}{dx}(\frac{{e}^{x}-{e}^{\text{−}x}}{2})\hfill \\ & =\frac{1}{2}\left[\frac{d}{dx}({e}^{x})-\frac{d}{dx}({e}^{\text{−}x})\right]\hfill \\ & =\frac{1}{2}\left[{e}^{x}+{e}^{\text{−}x}\right]=\text{cosh}x.\hfill \end{array}]
 Similarly, [image: (\frac{d}{dx})\text{cosh}x=\text{sinh}x.]
 derivatives of the hyperbolic functions
 Derivatives of the Hyperbolic Functions 	[image: f(x)] 	[image: \frac{d}{dx}f(x)] 
  	[image: \text{sinh}x] 	[image: \text{cosh}x] 
 	[image: \text{cosh}x] 	[image: \text{sinh}x] 
 	[image: \text{tanh}x] 	[image: {\text{sech}}^{2}x] 
 	[image: \text{coth}x] 	[image: \text{−}{\text{csch}}^{2}x] 
 	[image: \text{sech}x] 	[image: \text{−}\text{sech}x\text{tanh}x] 
 	[image: \text{csch}x] 	[image: \text{−}\text{csch}x\text{coth}x] 
  
  The derivatives of hyperbolic functions share similarities with those of trigonometric functions. For example:
 [image: (\frac{d}{dx}) \sin x= \cos x] and [image: (\frac{d}{dx})\text{sinh}x=\text{cosh}x.]
 However, the derivatives of the cosine functions differ in sign:
 [image: (\frac{d}{dx}) \cos x=\text{−} \sin x,] but [image: (\frac{d}{dx})\text{cosh}x=\text{sinh}x.]
 Using the differentiation formulas, we can derive the integral formulas for hyperbolic functions.
  integral formulas for hyperbolic functions
 [image: \begin{array}{cccccccc}\hfill \displaystyle\int \text{sinh}udu& =\hfill & \text{cosh}u+C\hfill & & & \hfill \displaystyle\int {\text{csch}}^{2}udu& =\hfill & \text{−}\text{coth}u+C\hfill \\ \hfill \displaystyle\int \text{cosh}udu& =\hfill & \text{sinh}u+C\hfill & & & \hfill \displaystyle\int \text{sech}u\text{tanh}udu& =\hfill & \text{−}\text{sech}u+C\hfill \\ \hfill \displaystyle\int {\text{sech}}^{2}udu& =\hfill & \text{tanh}u+C\hfill & & & \hfill \displaystyle\int \text{csch}u\text{coth}udu& =\hfill & \text{−}\text{csch}u+C\hfill \end{array}]
  Evaluate the following derivatives:
 	[image: \frac{d}{dx}(\text{sinh}({x}^{2}))]
 	[image: \frac{d}{dx}{(\text{cosh}x)}^{2}]
 
 Show Solution 
 Using the formulas in the table on derivatives  of the hyperbolic functions and the chain rule, we get
 	[image: \frac{d}{dx}(\text{sinh}({x}^{2}))=\text{cosh}({x}^{2})·2x]
 	[image: \frac{d}{dx}{(\text{cosh}x)}^{2}=2\text{cosh}x\text{sinh}x]
 
   Evaluate the following integrals:
 	[image: \displaystyle\int x\text{cosh}({x}^{2})dx]
 	[image: \displaystyle\int \text{tanh}xdx]
 
 Show Solution 
 We can use [image: u]-substitution in both cases.
 	Let [image: u={x}^{2}.] Then, [image: du=2xdx] and [image: \displaystyle\int x\text{cosh}({x}^{2})dx=\displaystyle\int \frac{1}{2}\text{cosh}udu=\frac{1}{2}\text{sinh}u+C=\frac{1}{2}\text{sinh}({x}^{2})+C.]
 
 	Let [image: u=\text{cosh}x.] Then, [image: du=\text{sinh}xdx] and [image: \displaystyle\int \text{tanh}xdx=\displaystyle\int \frac{\text{sinh}x}{\text{cosh}x}dx=\displaystyle\int \frac{1}{u}du=\text{ln}|u|+C=\text{ln}|\text{cosh}x|+C.]
 Note that [image: \text{cosh}x>0] for all [image: x,] so we can eliminate the absolute value signs and obtain
 [image: \displaystyle\int \text{tanh}xdx=\text{ln}(\text{cosh}x)+C.]
 
 
   [ohm_question hide_question_numbers=1]223494[/ohm_question]
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				Calculus of Inverse Hyperbolic Functions
 Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses. The inverse hyperbolic functions have specific domain and range restrictions, summarized in the table below:
 Domains and Ranges of the Inverse Hyperbolic Functions 	Function 	Domain 	Range 
  	[image: {\text{sinh}}^{-1}x] 	[image: (\text{−}\infty ,\infty )] 	[image: (\text{−}\infty ,\infty )] 
 	[image: {\text{cosh}}^{-1}x] 	[image: (1,\infty )] 	[image: [0,\infty )] 
 	[image: {\text{tanh}}^{-1}x] 	[image: (-1,1)] 	[image: (\text{−}\infty ,\infty )] 
 	[image: {\text{coth}}^{-1}x] 	[image: (\text{−}\infty ,-1)\cup (1,\infty )] 	[image: (\text{−}\infty ,0)\cup (0,\infty )] 
 	[image: {\text{sech}}^{-1}x] 	[image: (0\text{, 1})] 	[image: [0,\infty )] 
 	[image: {\text{csch}}^{-1}x] 	[image: (\text{−}\infty ,0)\cup (0,\infty )] 	[image: (\text{−}\infty ,0)\cup (0,\infty )] 
  
 The graphs of the inverse hyperbolic functions are shown in the following figure.
 [image: This figure has six graphs. The first graph labeled “a” is of the function y=sinh^-1(x). It is an increasing function from the 3rd quadrant, through the origin to the first quadrant. The second graph is labeled “b” and is of the function y=cosh^-1(x). It is in the first quadrant, beginning on the x-axis at 2 and increasing. The third graph labeled “c” is of the function y=tanh^-1(x). It is an increasing function from the third quadrant, through the origin, to the first quadrant. The fourth graph is labeled “d” and is of the function y=coth^-1(x). It has two pieces, one in the third quadrant and one in the first quadrant with a vertical asymptote at the y-axis. The fifth graph is labeled “e” and is of the function y=sech^-1(x). It is a curve decreasing in the first quadrant and stopping on the x-axis at x=1. The sixth graph is labeled “f” and is of the function y=csch^-1(x). It has two pieces, one in the third quadrant and one in the first quadrant with a vertical asymptote at the y-axis.]Figure 2. Graphs of the inverse hyperbolic functions. To find the derivatives of the inverse functions, we use implicit differentiation. We have
 [image: \begin{array}{ccc}\hfill y& =\hfill & {\text{sinh}}^{-1}x\hfill \\ \hfill \text{sinh}y& =\hfill & x\hfill \\ \hfill \frac{d}{dx}\text{sinh}y& =\hfill & \frac{d}{dx}x\hfill \\ \hfill \text{cosh}y\frac{dy}{dx}& =\hfill & 1.\hfill \end{array}]
 Recall that [image: {\text{cosh}}^{2}y-{\text{sinh}}^{2}y=1,] so [image: \text{cosh}y=\sqrt{1+{\text{sinh}}^{2}y}.] Then,
 [image: \frac{dy}{dx}=\frac{1}{\text{cosh}y}=\frac{1}{\sqrt{1+{\text{sinh}}^{2}y}}=\frac{1}{\sqrt{1+{x}^{2}}}.]
 We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. 
 derivatives of inverse hyperbolic functions
 Derivatives of the Inverse Hyperbolic Functions 	[image: f(x)] 	[image: \frac{d}{dx}f(x)] 
  	[image: {\text{sinh}}^{-1}x] 	[image: \frac{1}{\sqrt{1+{x}^{2}}}] 
 	[image: {\text{cosh}}^{-1}x] 	[image: \frac{1}{\sqrt{{x}^{2}-1}}] 
 	[image: {\text{tanh}}^{-1}x] 	[image: \frac{1}{1-{x}^{2}}] 
 	[image: {\text{coth}}^{-1}x] 	[image: \frac{1}{1-{x}^{2}}] 
 	[image: {\text{sech}}^{-1}x] 	[image: \frac{-1}{x\sqrt{1-{x}^{2}}}] 
 	[image: {\text{csch}}^{-1}x] 	[image: \frac{-1}{|x|\sqrt{1+{x}^{2}}}] 
  
  Note that the derivatives of [image: {\text{tanh}}^{-1}x] and [image: {\text{coth}}^{-1}x] are the same. Thus, when we integrate [image: 1\text{/}(1-{x}^{2}),] we need to select the proper antiderivative based on the domain of the functions and the values of [image: x.]
   integral formulas for inverse hyperbolic functions
 [image: \begin{array}{cccccccc}\hfill \displaystyle\int \frac{1}{\sqrt{1+{u}^{2}}}du& =\hfill & {\text{sinh}}^{-1}u+C\hfill & & & \hfill \displaystyle\int \frac{1}{u\sqrt{1-{u}^{2}}}du& =\hfill & \text{−}{\text{sech}}^{-1}|u|+C\hfill \\ \hfill \displaystyle\int \frac{1}{\sqrt{{u}^{2}-1}}du& =\hfill & {\text{cosh}}^{-1}u+C\hfill & & & \hfill \displaystyle\int \frac{1}{u\sqrt{1+{u}^{2}}}du& =\hfill & \text{−}{\text{csch}}^{-1}|u|+C\hfill \\ \hfill \displaystyle\int \frac{1}{1-{u}^{2}}du& =\hfill & \bigg\{\begin{array}{c}{\text{tanh}}^{-1}u+C\text{ if }|u|<1\hfill \\ {\text{coth}}^{-1}u+C\text{ if }|u|>1\hfill \end{array}\hfill & & & & & \end{array}]
  Evaluate the following derivatives:
 	[image: \frac{d}{dx}({\text{sinh}}^{-1}(\frac{x}{3}))]
 	[image: \frac{d}{dx}{({\text{tanh}}^{-1}x)}^{2}]
 
 Show Solution 
 Using the formulas in the table on derivatives of the inverse hyperbolic functions and the chain rule, we obtain the following results:
 	[image: \frac{d}{dx}({\text{sinh}}^{-1}(\frac{x}{3}))=\frac{1}{3\sqrt{1+\frac{{x}^{2}}{9}}}=\frac{1}{\sqrt{9+{x}^{2}}}]
 	[image: \frac{d}{dx}{({\text{tanh}}^{-1}x)}^{2}=\frac{2({\text{tanh}}^{-1}x)}{1-{x}^{2}}]
 
   Evaluate the following integrals:
 	[image: \displaystyle\int \frac{1}{\sqrt{{x}^{2}-4}}dx,\text{}x>2]
 	[image: \displaystyle\int \frac{1}{\sqrt{1-{e}^{2x}}}dx]
 
 Show Solution 
 	[image: \displaystyle\int \frac{1}{\sqrt{{x}^{2}-4}}dx={\text{cosh}}^{-1}(\frac{x}{2})+C]
 	[image: \displaystyle\int \frac{1}{\sqrt{1-{e}^{2x}}}dx=\text{−}{\text{sech}}^{-1}({e}^{x})+C]
 
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=ozRCEFk1tmA%3Fcontrols%3D0%26start%3D1140%26end%3D1263%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “2.9 Calculus of Hyperbolic Functions” here (opens in new window).
  [ohm_question hide_question_numbers=1]223496[/ohm_question]
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		Calculus of the Hyperbolic Functions: Learn It 3

								

	
				Applications of Hyperbolic Functions
 Hyperbolic functions have practical applications, particularly in the modeling of hanging cables. When a cable of uniform density hangs between two supports, it forms a curve known as a catenary. Examples of catenaries include high-voltage power lines, chains hanging between posts, and strands of a spider’s web.
 [image: An image of chains hanging between posts that all take the shape of a catenary.]Figure 3. Chains between these posts take the shape of a catenary. (credit: modification of work by OKFoundryCompany, Flickr) Mathematically, catenaries can be modeled using hyperbolic functions. Specifically, functions of the form [image: y=a\text{cosh}\left(\frac{x}{a}\right)] represent catenaries. For instance, the graph of [image: y=2\text{cosh}\left(\frac{x}{2}\right)] demonstrates this shape effectively.
 [image: This figure is a graph. It is of the function f(x)=2cosh(x/2). The curve decreases in the second quadrant to the y-axis. It intersects the y-axis at y=2. Then the curve becomes increasing.]Figure 4. A hyperbolic cosine function forms the shape of a catenary. This visualization helps in understanding how hyperbolic functions apply to real-world structures.
 When solving problems related to catenaries and their lengths, we use the arc length formula. This formula helps us determine the length of the hanging cable modeled by a hyperbolic function.
 Recall that the formula for arc length is
 [image: \text{Arc Length}={\displaystyle\int }_{a}^{b}\sqrt{1+{\left[{f}^{\prime }(x)\right]}^{2}}dx.]
  Assume a hanging cable has the shape [image: 10\text{cosh}\left(\frac{x}{10}\right)] for [image: -15\le x\le 15,] where [image: x] is measured in feet. Determine the length of the cable (in feet).
 Show Solution 
 We have [image: f(x)=10\text{cosh}(x\text{/}10),] so [image: {f}^{\prime }(x)=\text{sinh}(x\text{/}10).] Then
 [image: \begin{array}{cc}\hfill \text{Arc Length}& ={\displaystyle\int }_{a}^{b}\sqrt{1+{\left[{f}^{\prime }(x)\right]}^{2}}dx\hfill \\ & ={\displaystyle\int }_{-15}^{15}\sqrt{1+{\text{sinh}}^{2}(\frac{x}{10})}dx.\hfill \end{array}]
 Now recall that [image: 1+{\text{sinh}}^{2}x={\text{cosh}}^{2}x,] so we have
 [image: \begin{array}{cc}\hfill \text{Arc Length}& ={\displaystyle\int }_{-15}^{15}\sqrt{1+{\text{sinh}}^{2}(\frac{x}{10})}dx\hfill \\ & ={\displaystyle\int }_{-15}^{15}\text{cosh}(\frac{x}{10})dx\hfill \\ & =10\text{sinh}{(\frac{x}{10})|}_{-15}^{15}=10\left[\text{sinh}(\frac{3}{2})-\text{sinh}(-\frac{3}{2})\right]=20\text{sinh}\left(\frac{3}{2}\right)\hfill \\ & \approx 42.586\text{ft}\text{.}\hfill \end{array}]
 Watch the following video to see the worked solution to this example.
 https://youtube.com/watch?v=fN1noldfkDE%3Fcontrols%3D0%26autoplay%3D0
 For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
 You can view the transcript for this segmented clip of “6.9.3 #73 (edited)” here (opens in new window).
  [ohm_question hide_question_numbers=1]223450[/ohm_question]
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		Calculus of the Hyperbolic Functions: Apply It

								

	
				 	Differentiate and integrate hyperbolic functions and their inverse forms
 	Understand the practical situations where the catenary curve appears
 
  Calculus of the Hyperbolic Functions
 https://youtube.com/watch?v=uMXcKY_w3w4%3Fsi%3DtZS9Vk1wwHJVR3jn https://youtube.com/watch?v=Q6-QZxUDfE0%3Fsi%3DADF7DbLDS7kVAkx2 Pause these videos at the beginning and try to solve the problems on your own. Then, resume watching the video to check if you solved them correctly. https://youtube.com/watch?v=u-_J0KjG1PU%3Fsi%3DM40Np8g021pntjMm https://youtube.com/watch?v=dmAf1dUQNl8%3Fsi%3DLEtxZGstgiygWOwR https://youtube.com/watch?v=AlQAOmL14Uw%3Fsi%3D6ZhsogYxpL0UBdxQ https://youtube.com/watch?v=S58WptODiZ4%3Fsi%3DDkQKTdfCo-hdhGJ7 https://youtube.com/watch?v=V4Atg5NbHOw%3Fsi%3DKrKHZsxH_kyrBobV https://youtube.com/watch?v=I9MV2FLxkIE%3Fsi%3D4UkYsroQU8923YSR
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Evaluate the power.
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Apply the definition of the derivative.
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Factor out sin zand cos .

Apply rig limit formulas.
Simplify.
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